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The flow-induced vibrations of an elastically mounted circular cylinder, free to
oscillate in the streamwise and cross-flow directions, and forced to rotate about
its axis, are investigated via two- and three-dimensional simulations. The Reynolds
number based on the body diameter and inflow velocity is equal to 100. The impact
of the imposed rotation on the flow—structure system behaviour is explored over
wide ranges of values of the rotation rate (ratio between the cylinder surface
and inflow velocities, o € [0, 5.5]) and of the reduced velocity (inverse of the
oscillator natural frequency non-dimensionalized by the inflow velocity and body
diameter, U* € [1, 25]). Flow-induced vibrations are found to develop over the
entire range of «, including in the intervals where the imposed rotation cancels
flow unsteadiness when the body is rigidly mounted (i.e. not allowed to translate).
The responses of the two-degree-of-freedom oscillator substantially depart from
their one-degree-of-freedom counterparts. Up to a rotation rate close to 2, the body
exhibits oscillations comparable to the vortex-induced vibrations usually reported
for a non-rotating circular cylinder: they develop under flow—body synchronization
and their amplitudes present bell-shaped evolutions as functions of U*. They are,
however, enhanced by the rotation as they can reach 1 body diameter in each
direction, which represents twice the peak amplitude of cross-flow response for
o = 0. The symmetry breaking due to the rotation results in deviations from the
typical figure-eight orbits. The flow remains close to that observed in the rigidly
mounted body case, i.e. two-dimensional with two spanwise vortices shed per cycle.
Beyond « = 2, the structural responses resemble the galloping oscillations generally
encountered for non-axisymmetric bodies, with amplitudes growing unboundedly
with U*. The response growth rate increases with « and amplitudes larger than 20
diameters are observed. The cylinder describes, at low frequencies, elliptical orbits
oriented in the opposite sense compared to the imposed rotation. The emergence
of subharmonic components of body displacements, leading to period doubling or
quadrupling, induces slight variations about this canonical shape. These responses
are not predicted by a quasi-steady modelling of fluid forcing, i.e. based on the
evolution of the mean flow at each step of body motion; this suggests that the
interaction with flow unsteadiness cannot be neglected. It is shown that flow—body
synchronization persists, which is not expected for galloping oscillations. Within this
region of the parameter space, the flow undergoes a major reconfiguration. A myriad
of novel spatio-temporal structures arise with up to 20 vortices formed per cycle.
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The flow three-dimensional transition occurs down to o &2, versus 3.7 for the rigidly
mounted body. It is, however, shown that it has only a limited influence on the
system behaviour.

Key words: flow—structure interactions, vortex streets, wakes

1. Introduction

Flow-induced vibrations (FIV) of flexible or elastically mounted bodies with bluff
cross-sections are omnipresent in nature (e.g. oscillations of trees in wind) and are also
common in many civil, offshore and nuclear engineering applications (e.g. vibrations
of mooring lines and cables exposed to ocean currents). These vibrations impact the
fatigue life of the structures and often cause an amplification of the forces exerted
on their supports. In the context of renewable energy production, they may also be
used to harvest energy from wind or water streams. The fundamental mechanisms
of FIV have been the object of a number of studies, as collected in Blevins (1990),
Naudascher & Rockwell (1994) and Paidoussis, Price & de Langre (2010).

The present study concerns the FIV of an elastically mounted, rigid circular
cylinder forced to rotate about its axis. Such system may provide insights for
applications where the rotation could be used to reduce or enhance structural
responses. From a fundamental perspective, it represents a paradigm of symmetry
breaking in fluid—structure interaction. This work follows three previous studies
where the body was allowed to move in a single direction, either normal to the
current (Bourguet & Lo Jacono 2014), aligned with the current (Bourguet & Lo
Jacono 2015) or at an arbitrary angle (Bourguet 2019). The objective here is to
extend the analysis to the case where the cylinder is allowed to move in the plane
perpendicular to its axis, i.e. with two degrees of freedom. As explicated hereafter,
the responses of the two-degree-of-freedom oscillator are expected to differ from
their one-degree-of-freedom counterparts. This may be regarded as a step towards
real physical systems, which are generally not constrained to a single direction of
motion.

The impact of a forced rotation on the flow and fluid forcing has been well
documented in the case of a rigidly mounted, circular cylinder placed in a
cross-current (Diaz et al. 1983; Badr et al. 1990; Chew, Cheng & Luo 1995; Kang,
Choi & Lee 1999; Stojkovi¢, Breuer & Durst 2002; Mittal & Kumar 2003; Pralits,
Brandt & Giannetti 2010; Aljure et al. 2015). The term rigidly mounted indicates
that the body, subjected or not to a forced rotation, cannot translate. In the following,
the rotation rate (o) is defined as the ratio between the cylinder surface velocity
and the oncoming flow velocity. The Reynolds number (Re) is based on the body
diameter and on the oncoming flow velocity. The rotation breaks the symmetry of
the physical system. Even at low values of «, this symmetry breaking induces an
asymmetry in the strength of the alternating von Kdrmén vortices and the appearance
of a time-averaged force normal to the current (Magnus effect). The rotation leads
to a cancellation of the alternating vortex shedding and force fluctuations above
a ~ 2, over a wide range of Re (¢ = 1.8 for Re = 100). An unsteady flow regime
characterized by low-frequency, large-amplitude fluctuations of fluid forces has been
reported at higher «, typically around o =5 for Re = 100. The rotation also alters
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the flow three-dimensional transition scenario (e.g. Pralits, Giannetti & Brandt 2013;
Radi et al. 2013; Rao et al. 2013; Navrose, Meena & Mittal 2015).

On the other hand, the FIV of rigid bluff bodies have also been extensively
investigated, in the absence of rotation. Vortex-induced vibrations (VIV) and
motion-induced vibrations (MIV) are the two forms of FIV usually encountered
for bluff bodies. A non-rotating, rigid circular cylinder has often served as a
canonical problem to study VIV (Feng 1968; Bearman 1984, 2011; Mittal & Tezduyar
1992; Hover, Techet & Triantafyllou 1998; Khalak & Williamson 1999; Blackburn,
Govardhan & Williamson 2000; Shiels, Leonard & Roshko 2001; Okajima, Kosugi
& Nakamura 2002; Sarpkaya 2004; Williamson & Govardhan 2004; Lucor, Foo
& Karniadakis 2005; Klamo, Leonard & Roshko 2006; Leontini et al. 2006; Dahl
et al. 2010; Cagney & Balabani 2013; Konstantinidis 2014; Gsell, Bourguet & Braza
2016; Navrose & Mittal 2016; Yao & Jaiman 2017; Riches & Morton 2018; Gurian,
Currier & Modarres-Sadeghi 2019). These vibrations are driven by a mechanism of
synchronization, referred to as lock-in, between body motion and flow unsteadiness
associated with vortex shedding. In the above mentioned configuration, VIV generally
develop over a well-defined range of the reduced velocity (U*), i.e. inverse of the
oscillator natural frequency non-dimensionalized by the inflow velocity and the body
diameter. Within this range, vibration amplitudes exhibit bell-shaped evolutions as
functions of U*. The maximum amplitudes are of the order of one body diameter
in the direction normal to the current (cross-flow direction) and one or more orders
of magnitude lower in the direction parallel to the current (in-line direction). MIV
are another form of FIV which do not involve a coupling between the time scales
of flow unsteadiness and body motion. MIV develop when the motion of the body
tends to enhance the energy transfer from the flow to the structure (Blevins 1990).
They can often be predicted through quasi-steady approaches, where each step
of body oscillation is seen as a steady configuration by the flow (Parkinson &
Smith 1964). Due to the symmetry of the physical system, a non-rotating circular
cylinder is not susceptible to MIV. However, as discussed in the next paragraph,
such vibrations may arise due to the symmetry breaking caused by the rotation.
Prior works concerning non-axisymmetric bodies have identified the main features of
these self-excited vibrations, usually referred to as galloping responses (Den Hartog
1932; Mukhopadhyay & Dugundji 1976; Nakamura & Tomonari 1977; Tamura 1999;
Hémon, Amandolese & Andrianne 2017). Contrary to VIV, their amplitudes tend
to increase unboundedly with U* and their frequencies are generally lower than
VIV frequencies. Non-axisymmetric bodies often exhibit both VIV and MIV, and
sometimes combinations of these vibration regimes (Bearman et al. 1987; Corless
& Parkinson 1988; Hémon & Santi 2002; Nemes et al. 2012; Zhao et al. 2014a;
Mannini, Marra & Bartoli 2016; Seyed-Aghazadeh, Carlson & Modarres-Sadeghi
2017; Zhao, Hourigan & Thompson 2019). For non-rotating bodies, the possible
differences appearing between one- and two-degree-of-freedom oscillator responses
have been studied in previous works, for both MIV (Abdel-Rohman 1992; Jones 1992)
and VIV (Jauvtis & Williamson 2004; Cagney & Balabani 2014; Gsell, Bourguet &
Braza 2019). A typical example that illustrates the effect of adding a second degree of
freedom to the oscillator occurs in the intermediate range of U*, for circular cylinder
VIV (Gsell et al. 2019): no in-line vibrations develop in the one-degree-of-freedom
case while such vibrations emerge if cross-flow motion is allowed; in addition,
these in-line oscillations are accompanied by a major amplification of the cross-flow
responses, compared to the one-degree-of-freedom case. Such alteration of the system
behaviour, when a second degree of freedom is added, motivates the present work,
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where the impact of a forced rotation is explored for a two-degree-of-freedom
oscillator.

The FIV of a rigid circular cylinder subjected to a forced rotation have been
examined in recent studies. Most of these studies concern single-degree-of-freedom
oscillators, where the cylinder is restrained to move either in the cross-flow direction
(Bourguet & Lo Jacono 2014; Zhao, Cheng & Lu 2014b; Seyed-Aghazadeh &
Modarres-Sadeghi 2015; Wong et al. 2017) or in the in-line direction (Bourguet &
Lo Jacono 2015; Zhao et al. 2018). Due to differences in the physical parameters of
the experiments and numerical simulations (e.g. Reynolds number, structural damping,
structure to displaced fluid mass ratio), the maximum amplitudes of vibration and the
size of the vibration regions in the (o, U*) domain vary from one study to the other.
However, general trends persist in all cases. In each direction, vibrations develop over
a wide range of «, including beyond the critical value associated with the suppression
of the von Kdrman vortex street past a rigidly mounted cylinder. In the cross-flow
direction, the response of the oscillator can be considerably amplified by the rotation.
It, however, remains comparable to the VIV developing for o = 0, including in the
higher range of «: the lock-in condition is established, the vibration amplitude exhibits
a bell-shaped evolution as a function of U*. For Re = 100 and structural properties
similar to those selected in the present work, a maximum amplitude of 1.9 diameters
was reported for o = 3.75 (Bourguet & Lo Jacono 2014). In the in-line direction,
in contrast, two distinct regimes emerge in the (¢, U*) domain. VIV-like responses
are still observed for low values of «. For larger values of «, typically o > 2.7 for
the same parameters as those selected in the present work, the vibrations resemble
galloping responses, with amplitudes continuously increasing with U*. Body motion
and flow unsteadiness remain synchronized for these galloping-like responses. More
precisely, the spectral components of flow fluctuations occur at the vibration frequency
and integer multiples of this frequency. The flow three-dimensional transition is
delayed under cross-flow oscillation, i.e. the transition occurs at higher values of «
than for a rigidly mounted body. The opposite trend appears under in-line oscillation.
In order to bridge the gap between the two above configurations and describe the
passage from VIV- to galloping-like responses at high «, the orientation of the
vibration plane was introduced as a new parameter of the problem in a previous work
(Bourguet 2019). In this work, it was shown that a quasi-steady modelling of fluid
forcing predicts the emergence of galloping-like responses. The interaction with flow
dynamics results, however, in clear deviations from the quasi-steady prediction. For
example, the successive steps in the evolution of the vibration amplitude versus U*,
associated with wake pattern switch, are not captured by the quasi-steady approach.

Only a few studies have addressed the case where the rotating cylinder is free
to vibrate in both the in-line and cross-flow directions. Zhao et al. (2014b) focused
on the alteration of the VIV for o < 1. The symmetry breaking due to the rotation
results in a switch from the typical figure-eight-shaped trajectories (e.g. Dahl et al.
2010) to single-looped orbits. The main features of non-rotating body VIV persist
in this range of «. Yet the differences occurring between the behaviours of the
one- and two-degree-of-freedom oscillators are enhanced by the rotation. Stansby &
Rainey (2001) studied the impact of higher o values and showed that for « € [2, 5],
the two-degree-of-freedom oscillator can exhibit galloping-like, elliptical responses.
Similar responses were observed by Yogeswaran & Mittal (2011) for ¢ = 4.5. In
this case, vortex formation is associated with high-frequency fluctuations of fluid
forces, that are superimposed on the low-frequency oscillations related to body
motion. By exploring specific regions of the (o, U*) domain, previous works have
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shown that both VIV-like and galloping-like responses may be encountered for a
two-degree-of-freedom oscillator. They have described some salient features of each
form of response. A global vision of the system behaviour in this parameter space,
including response regime transitions, is still missing. It appears that no systematic
analysis of the flow dynamics and forcing has been reported for o > 1. In addition,
prior numerical simulations were based on two-dimensional flow assumption: the
occurrence of three-dimensional transition and its effect on the responses is another
aspect that needs to be clarified.

In the present work, the two-degree-of-freedom FIV of a rigid circular cylinder
subjected to a forced rotation are investigated by means of two- and three-dimensional
numerical simulations. The behaviour of the coupled flow—structure system is
examined over a wide range of U* values, for « € [0, 5.5]. The Reynolds number
is set to 100 as in the above mentioned studies concerning single-degree-of-freedom
oscillators (Bourguet & Lo Jacono 2014, 2015; Bourguet 2019). For this value of Re,
the selected range of « includes the two unsteady flow regions identified for a rigidly
mounted body (Stojkovi¢ et al. 2002), as well as the critical value associated with
flow three-dimensional transition in this case (o ~ 3.7; Pralits et al. 2013).

The paper is organized as follows. The physical model and the numerical method
are presented in §2. The rigidly mounted cylinder case is briefly addressed in § 3.
The elastically mounted cylinder case is examined in §4 through a joint analysis of
the structural responses, flow physics and fluid forces. The main findings of this work
are summarized in § 5.

2. Formulation and numerical method

The flow—structure configuration and its modelling are presented in §2.1. The
numerical method employed and its validation are described in §2.2.

2.1. Physical system

A sketch of the physical system is presented in figure 1. The configuration is the same
as in the previous works concerning rotating circular cylinders (Bourguet & Lo Jacono
2014, 2015; Bourguet 2019), except that in the present study the elastically mounted,
rigid body is free to move in both the in-line and cross-flow directions, instead of a
single direction.

The (x,y, z) frame is fixed. The axis of the cylinder is parallel to the z axis. The
body is placed in an incompressible cross-current which is aligned with the x axis.
The Reynolds number based on the oncoming flow velocity (U) and cylinder diameter
(D), Re=p;UD/u, where pr and p denote the fluid density and viscosity, is set equal
to 100, as in the above mentioned works.

As suggested by prior studies and confirmed by the present results, the transition
to three-dimensional flow occurs within the parameter space investigated. That is why
the two-dimensional and three-dimensional Navier—Stokes equations are employed to
predict the flow dynamics. In the three-dimensional case, the cylinder aspect ratio is
set to L/D = 24, where L is the cylinder length in the spanwise direction (z axis).
The increased aspect ratio compared to previous studies (where L/D = 10) is justified
by the emergence of longer spanwise wavelengths in some regions of the present
parameter space, i.e. of the order of 4-5D versus 2D in prior works.

The cylinder can translate in the in-line direction (x axis) and in the cross-flow
direction (y axis). Its mass per unit length is denoted by p.. The structural
stiffnesses and damping ratios are the same in the in-line and cross-flow directions;
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U, ps, 0

FIGURE 1. Sketch of the physical system.

they are designated by k and &, respectively. All the physical variables are
non-dimensionalized by the cylinder diameter, the current velocity and the fluid
density. The non-dimensional mass of the structure is defined as m = p./p;D*. The
non-dimensional cylinder displacements, velocities and accelerations, in the in-line
and cross-flow directions, are denoted by ¢, ., ., and Ly, éy, Ey, respectively. The
sectional in-line and cross-flow force coefficients are defined as C,, = ZFM/,ofDU2
and Cy, =2F,/ ,ofDUz, where F,, and F), are the dimensional sectional fluid forces
aligned with the x and y axes. The in-line and cross-flow force coefficients are the
span-averaged values of the sectional force coefficients, Cy = (Cy) and C, = (Cyy),
where ( ) is the span-averaging operator; in the two-dimensional case, C, = C,, and
C, = Cy,. The dynamics of the two-degree-of-freedom oscillator is governed by the
following equations:

. 4n&. 27\ 2 e
§x+7U* O+ <U*> {x—%, (2.1a)
. 4mE . 27\’ _ G
bt ot (U*) &= (2.1)

The reduced velocity is defined as U* = 1/f,, where f, is the non-dimensional natural
frequency in vacuum, f, = D/2nU/k/p..

The cylinder is subjected to a forced, counter-clockwise, steady rotation about its
axis. The rotation is controlled by the rotation rate o = 2D/2U, where §2 is the
angular velocity of the cylinder.

The behaviour of the flow-structure system is explored in the (¢, U*) parameter
space, with o € [0, 5.5] and U* € [1, 25]. As previously mentioned, the range of o
values under study encompasses the two unsteady flow regions reported at Re = 100
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FIGURE 2. Time-averaged (a) in-line and (b) cross-flow force coefficients as functions of
the polynomial order, in the rigidly mounted cylinder case, for o =5.

for a rigidly mounted cylinder (Stojkovié¢ et al. (2002), under two-dimensional flow
assumption).

The structural damping is set equal to zero (§ =0) to allow maximum amplitude
vibrations and m is set equal to 10, as in the above mentioned studies concerning
single-degree-of-freedom oscillators. Additional simulations (not presented here) show
that the principal features of the system behaviour persist when a low level of
structural damping is added.

In addition to the elastically mounted body case, a series of two- and three-
dimensional simulations is carried out for a rigidly mounted cylinder. A series of
two-dimensional simulations where the cylinder is forced to translate at a constant
velocity is also performed, to assess the validity of a quasi-steady modelling of fluid
forcing.

2.2. Numerical method

The numerical method is the same as in previous studies concerning comparable flow—
structure systems (e.g. Bourguet & Lo Jacono 2014). It is briefly summarized here and
some additional validation results are presented. The coupled flow—structure equations
are solved by the parallelized code Nektar, which is based on the spectral/hip element
method (Karniadakis & Sherwin 1999). A large rectangular computational domain is
considered (350D downstream and 250D in front, above, and below the cylinder) in
order to avoid any spurious blockage effects due to domain size. A no-slip condition
is applied on the cylinder surface. Flow periodicity conditions are employed on the
side (spanwise) boundaries in the three-dimensional case.

The parameter space explored in the present work includes higher values of «
than those considered in the above mentioned studies. Two cases are selected in the
higher range of a: (i) « =5 for the rigidly mounted body, which can be compared
to prior simulation results from the literature and (ii) (¢, U*) = (5.5, 20), where
the elastically mounted cylinder exhibits very-large-amplitude oscillations. For each
case, the evolutions of some physical quantities as functions of the spectral element
polynomial order are plotted in figures 2 and 3 (two-dimensional simulations). The
time-averaged force coefficients (T denotes time-averaged values) are represented in
both cases. The maximum amplitude of cross-flow vibration (* denotes the fluctuation
about the time-averaged value), as well as the cross-flow frequency ratio (f = f,/fu.
where f; is the dominant frequency of cross-flow motion), are added in the elastically
mounted body case. A polynomial order equal to 4 is selected since an increase
from order 4 to 5 has no significant impact on the results. It has also been verified,
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FIGURE 3. (a) Time-averaged in-line force coefficient, (b) time-averaged cross-flow force
coefficient, (¢) maximum amplitude of cross-flow vibration, (d) cross-flow frequency
ratio, as functions of the polynomial order, in the elastically mounted cylinder case, for
(o, U*) = (5.5, 20).

(@) : : (b) —25.0
15H— - Stojkovié et al. (2002)

1'0 —— Present study —-25.5

05 ~26.0

Gyl Cy —265
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FIGURE 4. Time series of the (a) in-line and (b) cross-flow force coefficients, over one
vortex shedding period, in the rigidly mounted cylinder case, for o« = 5. The present
simulation results are compared to the time series reported by Stojkovi¢ et al. (2002).

in these two cases, that dividing the non-dimensional time step by 2 (i.e. from
0.0005 to 0.00025) has no influence. A comparison of the time evolutions of the
force coefficients issued from the present study with the results reported by Stojkovié
et al. (2002) in case (i) is presented in figure 4. In these plots and in the following,
t designates the non-dimensional time variable. The vortex shedding frequencies,
time-averaged and peak-to-peak (subscript ,,) values of the force coefficients are
compared in table 1. This comparison confirms the validity of the present numerical
method. For the three-dimensional simulations, 128 complex Fourier modes are
employed in the spanwise direction. It has been verified that doubling the number of
Fourier modes has only a negligible impact on the results. It has also been verified
that the different flow structures encountered in the parameter space, including the
subharmonic patterns, persist when the cylinder aspect ratio is varied (down to 5m).

The simulations are initialized with the established periodic flow past a stationary
cylinder at Re = 100. Then the forced rotation is started and the body is released.
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Study Frequency  C, C, (Cop  (Cpy
Stojkovi¢ er al. (2002)  0.022 039 —26.58 2.00 244
Present 0.022 032 -26.60 206 249

TABLE 1. Vortex shedding frequency, time-averaged and peak-to-peak values of the
in-line and cross force coefficients, in the rigidly mounted cylinder case, for o =5.

The analysis is based on time series of more than 40 oscillation cycles, collected after
convergence of the time-averaged and root mean square (r.m.s.) values of the fluid
force coefficients and body displacements.

The entire parameter space is covered by two-dimensional simulations. The limits
of the three-dimensional transition regions are identified via a first series of three-
dimensional simulations. Three-dimensional simulation results are then collected in 30
cases, 9 for the rigidly mounted body and 21 for the elastically mounted body. The
selected cases (i) cover the parameter space and (ii) provide a refined vision of the
system behaviour at the edge of the large-amplitude vibration region for o =5.

3. Rigidly mounted cylinder

Before exploring the behaviour of the coupled flow—structure system, the case where
the cylinder is rigidly mounted is briefly considered in this section. The objective here
is to describe the impact of the imposed rotation on the flow and fluid forces, in the
absence of vibration and for « € [0, 5.5].

An overview of the flow for selected values of o is presented in figure 5, by
means of instantaneous iso-surfaces of spanwise vorticity (z component). These
visualizations confirm that a variety of regimes are encountered over the range of
o investigated: steady and unsteady, two- and three-dimensional, with more or less
regular spanwise structures. A map of the different regimes is proposed in figure 6.
The unsteady/steady flow regimes are indicated in grey/white. In a range of o around
4.5, the flow is found to be unsteady via three-dimensional simulations, whereas it
remains steady under two-dimensional flow assumption. This region is denoted by
a grey area with horizontal white stripes. The dominant frequency of the cross-flow
force coefficient (f¢,) is plotted in each unsteady flow regime. The region where the
flow undergoes three-dimensional transition is indicated by oblique blue stripes. In
the three-dimensional flow region, the values of f¢, are issued from three-dimensional
simulations.

For a < 1.8, the flow is two-dimensional, unsteady and periodic. It is characterized
by the formation of two counter-rotating, spanwise vortices per period (figure 5a). The
rotation induces an asymmetry in the strength of the positive and negative vortices but
flow structure remains comparable to the 2S pattern observed for o =0 (Williamson
& Roshko 1988). This asymmetry causes a switch in force frequency ratio, from
Je. = 2fc, to fe, = fc,, where fc, is the dominant frequency of the in-line force
coefficient. Wake frequency (equal to f) only slightly deviates from the Strouhal
frequency (i.e. vortex shedding frequency for o =0, fi, = 0.164). This first unsteady
regime is referred to as Unsteady 1 (Ul) in the following. When o is increased
beyond 1.8 and up to 4.15 approximately, the flow is steady. This first steady regime
is referred to as Steady 1 (S1). The flow undergoes three-dimensional transition
for ¢ &~ 3.7, as reported in prior studies (Pralits et al. 2013; Rao et al. 2013). The
wake is composed of two layers of vorticity of opposite signs and deflected upwards
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(@) (b)

() (d)

(e) ()

FIGURE 5. Instantaneous iso-surfaces of spanwise vorticity in the rigidly mounted body
case: (a) a =1, Ul regime, 2S pattern (w, = £0.2); (b) a =3, S1 regime, D' pattern
(w, = £0.04); (¢) ¢ =4, Sl regime, D~ pattern (v, = £0.04); (d) o =4.5, U2 regime
(w, = £0.06); (¢) a =5, U3 regime (w, = £0.03); (f) a =5.5, S2 regime, D' pattern
(w, = £0.004). Positive/negative vorticity values are plotted in yellow/blue. Part of the
computational domain is shown.

(figure 5b,c). At a rotation rate comparable to the critical value for three-dimensional
transition (o & 3.7), a switch of the two layers of vorticity can be noted in the wake.
This switch is accompanied by a change in the sign of the in-line force (i.e. drag), as
shown hereafter. The two steady wake patterns were called D and D~ in a previous
work (Bourguet & Lo Jacono 2014), in reference to the positive or negative value
of the drag. In the S1 regime, the three-dimensional flow exhibits a regular spanwise
alignment of elongated streamwise tongues of vorticity. A typical wavelength of 1.6
body diameters appears for o« = 4. For comparison, in the absence of rotation, the
three-dimensional transition occurs at Re ~ 190 with a critical wavelength close to
4 diameters (Williamson 1996). A second region of unsteady flow emerges when
the rotation rate is further increased. From « = 4.15 to o = 4.8 approximately, the
flow is globally comparable to that observed in the three-dimensional part of the S1
regime. However, it is now unsteady and the spanwise alignment of the streamwise
tongues of vorticity is more erratic (figure 5d). The dominant spanwise wavelength
slightly increases, e.g. close to 2 body diameters for « =4.5. The flow time evolution
is less regular than in the Ul regime. The typical frequency of flow unsteadiness,
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FIGURE 6. Flow regimes as functions of the rotation rate, in the rigidly mounted cylinder
case. The different regimes are delimited by plain black lines and their names are
indicated in black. Oblique blue stripes denote the region where the flow undergoes
three-dimensional transition. The unsteady/steady flow regimes are indicated in grey/white.
The region where the flow is found to be unsteady via three-dimensional simulations,
whereas it remains steady under two-dimensional flow assumption (U2 regime), is denoted
by a grey area with horizontal white stripes. The evolution of the dominant frequency
of the cross-flow force coefficient as a function of the rotation rate is plotted in each
unsteady flow region (three-dimensional simulation results in the three-dimensional flow
region). Some typical wake patterns are indicated in brackets in green. The limit between
the D™ and D~ patterns (S1 regime) is denoted by a green dashed line.

quantified via fc,, is close to 0.04 and thus substantially lower than in the first
unsteady regime. An important aspect is that the flow remains steady in this range of
o under two-dimensional flow assumption, as previously reported by Stojkovié et al.
(2002). Following the above nomenclature, this regime is called Unsteady 2 (U2).
Another unsteady regime appears from o =4.8 to o =5.15, approximately. Contrary
to the U2 regime, it also exists under two-dimensional flow assumption (e.g. Stojkovié¢
et al. 2002), even though the flow is actually three-dimensional in this regime. The
flow is close to periodic. It is characterized by the shedding of a single, large-scale,
(positive) spanwise vortex per cycle, at low frequency compared to the Ul regime
(figure Se). The shedding frequency, close to 0.02, tends to decrease with « in this
regime. The well-defined spanwise undulation presents a typical wavelength close to
5 diameters. This third unsteady regime is referred to as Unsteady 3 (U3). Beyond
o =5.15 and up to @ = 5.5, the flow is found to be steady and two-dimensional
(figure 5f). Wake structure globally resembles the D" pattern observed in the first
part of the S1 regime. This second steady regime is referred to as Steady 2 (S2). The
names of the different flow regimes, as well as those of the typical wake patterns are
indicated in the map in figure 6.

To further describe these regimes, the time-averaged values of the force coefficients
and the r.m.s. values of their fluctuations are presented in figure 7. In the three-
dimensional flow region (from o = 3.7 to o = 5.15 approximately), both two- and
three-dimensional simulation results are reported in order to quantify the influence of
the three-dimensional transition. The mean in-line force decreases as a function of
the rotation rate, until o ~ 4, where it starts increasing with «. It becomes slightly
negative over a short interval around o = 4. Its evolution appears relatively smooth
through the successive flow regimes. A substantial increase can, however, be noted
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FIGURE 7. (a,b) Time-averaged value of the force coefficient and (c¢,d) r.m.s. value of the
force coefficient fluctuation, in the (a,c) in-line and (b,d) cross-flow directions, as functions
of the rotation rate, in the rigidly mounted cylinder case. The colour code employed to
designate the unsteady and steady flow regimes is the same as in figure 6. In the region of
three-dimensional flow (oblique blue stripes in figure 6), both two- and three-dimensional
simulation results are presented.

between the U2 and U3 regimes. The mean cross-flow force monotonically decreases
over the range of « investigated, with no noticeable impact of the passage from
one flow regime to the other. The r.m.s. values vanish when the flow is steady.
A major amplification of the force coefficient fluctuations can be noted in the U3
regime, compared to the Ul regime. In contrast, only low-magnitude fluctuations
are observed in the U2 regime. It should be mentioned that these plots quantify
the fluctuations of the span-averaged forces. Low r.m.s. values of C, and C’y do
not necessarily imply that the temporal fluctuations of the sectional forces (or any
local flow quantity) are small. In the U2 regime, force fluctuations only occur in
the three-dimensional simulation results since the flow is found to be steady under
two-dimensional flow assumption. Otherwise, only slight differences can be noted
between two- and three-dimensional simulation results.

Some additional observations concerning the three-dimensional flows are presented
on the basis of selected time series of the in-line force, plotted in figure 8. In this
figure, time series of C,, C,; at midspan point (z = 12), and the fluctuation of C,
about C,, are plotted for a selected value of « in each regime of the three-dimensional
flow region, i.e. S1, U2 and U3 regimes. It is recalled that C,; designates the sectional
force coefficient while C, is the span-averaged value of C,,. Comparison of C, and
C,s at an arbitrary point (here midspan point) illustrates the variability of the local
force magnitude and its possibly large temporal fluctuations, even if the span-averaged
coefficient exhibits a low r.m.s. value (figure 8b). This comparison also reveals some
features of flow structure: the periodic difference noted between C, and C,; at
midspan point in figure 8(c) betrays the existence of a subharmonic component in the
three-dimensional flow pattern. The spatio-temporal evolution of the force fluctuation
provides a complementary vision of the flow (bottom plots in figure 8). It confirms


https://doi.org/10.1017/jfm.2020.403

https://doi.org/10.1017/jfm.2020.403 Published online by Cambridge University Press

Two-degree-of-freedom flow-induced vibrations of a rotating cylinder 897 A31-13

(@)
&)
24
005 .
0
z 005 |
010 &
6 —0.15
T T T T _0.20
0 50 100 150 200 250
b) . 04f -
© o e
© o4t e :
= ——————— []02
18 —— — 0 J
e —— e
z 12 B == . 02 |
————— e W 04
6 T —— R _06 ©
—— S P ——— —0.8
0 50 100 150 200 250
2% : —
18 F— = - - - 110 G
z 12 p— — 105 |
6F — — —— - - M1 O
0 50 100 150 200 250

FIGURE 8. Selected times series of the (top) in-line force coefficient (C,) and sectional
force coefficient at midspan (C,, at z=12) and (bottom) fluctuation of the sectional in-line
force coefficient about its span-averaged value, in the rigidly mounted cylinder case, for
(a) o =4 (S1 regime), (b) « =4.5 (U2 regime) and (¢) « =5 (U3 regime). In the bottom
plot of each panel, a dashed-dotted line indicates the midspan point where C,, (represented
in the top plot) is sampled.

the emergence of different spanwise wavelengths depending on the value of « and the
more or less regular nature of the spanwise structure. As previously mentioned, flow
structure in the U2 regime appears as an unsteady and slightly disordered version of
the S1 regime structure. The spatio-temporal plot for ¢« =5 (figure 8c) emphasizes
the subharmonic component developing in the U3 regime, at half the spanwise vortex
shedding frequency.

To summarize, a variety of flow regimes are encountered in the rigidly mounted
body case over the range of o considered in this work. Unsteady flow regimes
develop in two distinct regions: in the lower range of o (Ul regime) where the flow
remains two-dimensional and globally close to that observed for « = 0 and in the
higher range of o, where two successive three-dimensional flow regimes emerge (U2
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and U3 regimes). These two regimes are both characterized by lower frequencies
than the Ul regime. They exhibit contrasted spatio-temporal properties, associated
with different magnitudes of fluid forcing. In particular, a major amplification of fluid
force fluctuations occurs in the U3 regime, which is dominated by the shedding of a
single, large-scale, spanwise vortex. Beyond a brief description of the rigidly mounted
cylinder case, the preliminary observations reported here will serve as reference to
quantify the alteration of flow physics once the body is subjected to flow-induced
vibrations.

4. Elastically mounted cylinder

The behaviour of the coupled flow—structure system is investigated for « € [0, 5.5]
and U* € [1, 25]. The structural responses are described in §4.1. Flow physics is
analysed in §4.2 and fluid forces are examined in §4.3.

4.1. Structural responses

An overview of the flow-induced vibrations of the cylinder is presented in figure 9. In
figure 9(a,b), the maximum in-line and cross-flow oscillation amplitudes of the body
about its time-averaged position are plotted in the (o, U*) domain. The plots are based
on two-dimensional simulation results. These results provide a global vision of the
response trends, even in the higher range of o values where the flow undergoes three-
dimensional transition (§4.2). The three-dimensional simulation results presented in
the following confirm the trends described under two-dimensional flow assumption.

Based on the evolutions of the vibration amplitudes as functions of U*, two distinct
forms of responses can be identified. The significant vibrations that occur until o =2
approximately, appear over a well-defined range of U*, where they exhibit bell-shaped
evolutions. In this region of the parameter space, the rotation alters the magnitude
of the response curves but they remain essentially comparable to those observed
for the typical VIV of a non-rotating circular cylinder. After a transition region
around oo =2, and up to the largest rotation rate under study (o =35.5), the vibrations
present galloping-like evolutions, i.e. their amplitudes tend to grow unboundedly
with U*. The growth rate of the galloping-like responses increases regularly with o.
Amplitudes larger than 20 body diameters are reached in the present parameter space.
It can be noted that the transition from VIV-like to galloping-like responses occurs
simultaneously in the in-line and cross-flow directions. These results corroborate prior
experimental and numerical observations (e.g. Stansby & Rainey 2001; Bourguet &
Lo Jacono 2014; Wong et al. 2017) concerning the appearance of FIV in ranges
of o where the rotation leads to a cancellation of flow unsteadiness in the rigidly
mounted body case (here between o = 1.8 and o =4.15 and beyond « =5.15). They
also confirm that the two-degree-of-freedom oscillator may exhibit both VIV-like and
galloping-like responses, depending on the rotation rate value. This was previously
suggested by separate studies focusing either on low values of o (VIV-like responses;
Zhao et al. (2014b)) or on high values of o (galloping-like responses; Stansby &
Rainey (2001), Yogeswaran & Mittal (2011)).

Another visualization of the structural responses is proposed in figure 9(c) which
represents a map of the vibration region in the («, U*) domain. The map is based on
a combination of two- and three-dimensional simulation results. In this map, the area
of the parameter space where the cylinder exhibits oscillations of any amplitudes
is denoted by a grey background. In two regions, located around o = 4.5 and
identified by vertical white stripes superimposed over the grey background, vibrations
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FIGURE 9. (¢,b) Maximum amplitude of vibration in the (@) in-line and (b) cross-flow
directions and (c) vibration region, as functions of the rotation rate and reduced velocity.
In (c), the area where the cylinder exhibits oscillations of any amplitudes is denoted by
a grey background and delimited by plain black lines; the regions where vibrations are
predicted by three-dimensional simulations but not under two-dimensional flow assumption
are indicated by vertical white stripes superimposed over the grey background; the
large-amplitude vibration region (i.e. (Ey)max > (0.03) is indicated by horizontal, dark grey
stripes; black dotted lines represent iso-lines of the maximum amplitude of cross-flow
vibration; oblique red stripes denote the area where subharmonic components appear in
the responses; the value of the cross-flow force—displacement phase difference, within the
large-amplitude vibration region, is specified in orange and an orange dotted line denotes
the location of the phase difference jump (no jump occurs in the galloping-like response
region); the limits of the large-amplitude vibration regions identified for the cross-flow
oscillator (Bourguet & Lo Jacono 2014) and the in-line oscillator (Bourguet & Lo Jacono
2015) are indicated by blue dashed lines and green dashed-dotted lines, respectively.

are predicted by three-dimensional simulations but not under two-dimensional flow
assumption. The cylinder exhibits some oscillations for any values of U* in the ranges
of « values where the flow is unsteady in the rigidly mounted body case (§3). It
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is recalled that, in the rigidly mounted body case, the U2 regime is not captured
under two-dimensional flow assumption. The difference noted between the two- and
three-dimensional simulation results for U* < 3.5 around o = 4.5 (vertically striped
area) is thus expected. The region where the maximum amplitude of cross-flow
oscillation is larger than 0.03 is indicated by horizontal, dark grey stripes. This
region is referred to as large-amplitude vibration region in the following. The areas
of this region characterized by VIV-like and galloping-like responses, roughly below
and above o =2, are specified in the map. For comparison purpose, the limits of
the large-amplitude vibration regions previously identified for the cross-flow oscillator
(Bourguet & Lo Jacono 2014) and the in-line oscillator (Bourguet & Lo Jacono
2015) are also plotted. It should be noted that the definitions of the large-amplitude
vibration regions in these prior studies were slightly different and that the range of «
investigated was limited to o =3.5 and o =4, for the in-line and cross-flow oscillators,
respectively. However, the comparison reveals some major deviations between the
responses of the one- and two-degree-of-freedom oscillators. Such deviations have
been documented for non-rotating cylinder VIV (e.g. Gsell et al. 2019). The motion
of the cylinder in one direction may dramatically alter the orientation and magnitude
of the relative velocity seen by the body, and thus impact the forcing (and response)
in the perpendicular direction. In the present case, galloping-like responses appear at
much lower « for the two-degree-of-freedom oscillator than for the in-line oscillator,
which exhibits such responses only beyond a rotation rate close to 2.7. In the first
region located in the lower range of « values, the in-line oscillator is subjected to
VIV-like responses. The contrast is even more pronounced with the behaviour of the
cross-flow oscillator. Up to o ~ 4, within the area indicated in the map, it does not
exhibit galloping-like oscillations but only VIV-like responses. The in-line oscillator
remains steady from o &~ 2 to o & 2.7, which is another remarkable difference. The
other elements plotted in the map will be discussed later in the paper.

A more quantitative description of the structural responses is presented in the
following. In most cases, the vibrations are periodic and dominated by a single
frequency with some limited higher harmonic contributions, i.e. close to sinusoidal.
Some cases where other spectral components emerge will be examined at the end of
this section. The term vibration frequency refers to the dominant vibration frequency,
which is denoted by f, in the in-line direction and f; in the cross-flow direction. The
deviation between the vibration frequency and the natural frequency of the oscillator
(f) is measured, in each direction, via the frequency ratio, f* =f./f, and f =1, /f,.

The maximum amplitudes of the in-line and cross-flow responses, as well as the
cross-flow frequency ratio, are plotted in figure 10, as functions of U*, for each value
of «. For more clarity due to scale differences, the data collected for o < 2 and
«a > 2 are presented separately in figures 10(a,c,e) and 10(b,d,f), respectively; this
corresponds to the separation between the VIV-like and galloping-like responses. The
entire parameter space is covered by two-dimensional simulations and selected three-
dimensional simulation results are also reported for comparison purpose (circled blue
symbols).

In the in-line direction, the rotation induces a regular amplification of the
bell-shaped responses. It can be noted that a slow rotation already results in a
major enhancement of the maximum oscillation amplitude: close to 0.3 diameters
for o« = 0.5 versus 0.02 diameters for « =0. An increasing trend is also observed in
the cross-flow direction except in the lower range of o where the rotation causes a
slight reduction of the response amplitude. For a given («, U*) point in the VIV-like
response region, the cross-flow oscillation amplitude remains generally larger than
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FIGURE 10. (a-d) Maximum amplitude of vibration in the (a,b) in-line and (c,d)
cross-flow directions, and (e,f) cross-flow frequency ratio, as functions of the reduced
velocity, for (a,c,e) o <2 and (b,d,f) o > 2. In (e,f) black dashed, dotted and dashed-dotted
lines indicate typical frequen01es (normalized by the oscillator natural frequency) of flow
unsteadiness in the rigidly mounted cylinder case, for « =0 (Ul regime), o =4.5 (U2
regime) and o =5 (U3 regime), respectively. The three-dimensional simulation results are
denoted by circled blue symbols. The results obtained in the one-degree-of-freedom cases
(Bourguet & Lo Jacono 2014, 2015) for (a,c,e) e« =1 and (b,d,f) a =3 are also reported
(plain/dashed-dotted red lines for the in-line/cross-flow oscillators).
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the in-line amplitude, as in the absence of rotation. In the upper part of this region,
the peak amplitudes in both directions are approximately twice larger, i.e. around
1 body diameter, than the peak amplitude of cross-flow VIV for o = 0. Beyond
the transition region illustrated by the irregular response curves obtained for o = 2,
the galloping-like oscillation amplitudes continuously increase with «. In each point
of the galloping-like response region beyond U* = 7, the oscillation amplitude is
found to be larger in the in-line direction than in the cross-flow direction, i.e. the
opposite trend compared to the VIV-like response region. In the lower part of the
galloping-like response region (up to « = 4), successive steps can be identified in
the response curves. Comparable steps have been connected to wake pattern switch
in a previous work concerning a single-degree-of-freedom oscillator (Bourguet 2019).
They tend to vanish at higher rotation rates.

Once the system symmetry is broken by the rotation, the in-line and cross-flow
vibration frequencies are generally the same, whereas f, = 2f, for « = 0. Such
frequency switch, previously noted for non-axisymmetric cross-sections (Naudascher
1987), relates to the alteration of the anti-symmetric nature of the wake and to
the associated modification of the in-line forcing frequency. To avoid redundant
information, only the cross-flow frequency ratio is presented in figure 10(ef).
Out of the large-amplitude vibration region, the response frequency remains close
to the frequency of flow unsteadiness in the rigidly mounted body case. The
typical frequencies identified in the Ul, U2 and U3 regimes (§3) are indicated by
discontinuous black lines. Within the large-amplitude vibration region, the response
frequency deviates both from these typical frequencies and from the oscillator natural
frequency (f; # 1 in general). It can be noted that the vibration frequency crosses
the natural frequency in the VIV-like response region while the galloping-like
responses always occur at a lower frequency. This observation is connected to
force—displacement phasing, as discussed in §4.3. The vibration frequency tends
to globally decrease as « is increased, which confirms the trend predicted by the
potential flow analysis proposed by Stansby & Rainey (2001). It reaches very low
values, close to f,/4 for « =5.5.

The three-dimensional simulation results reported in figure 10 show that the flow
three-dimensional transition has only a limited effect on the oscillator responses.
An element can, however, be noted: some deviations between the two- and
three-dimensional simulation results are observed down to o = 2. This indicates
that the transition occurs at a much lower value of « than in the rigidly mounted
body case (where the critical value is close to 3.7).

The shapes, magnitudes and frequencies of the two-degree-of-freedom oscillator
responses differ from those observed at the same o, in the single-degree-of-freedom
cases. This is visualized in figure 10, where the maximum amplitudes obtained for
the in-line and cross-flow oscillators, and the cross-flow oscillator frequency ratios
are represented by red lines, for « =1 and o = 3. The addition of a second degree
of freedom is accompanied by a pronounced amplification of the in-line oscillations,
in both the VIV-like and galloping-like response regions. In the cross-flow direction,
the switch from VIV-like to galloping-like responses for o =3 is associated with a
major reduction of the vibration frequency.

The synchronization between the in-line and cross-flow responses is monitored
via the phase difference @,, = ¢, — n¢,, where ¢, and ¢, are the phases of the
dominant spectral components of the in-line and cross-flow responses, and n is the
ratio of their frequencies, i.e. n =2 for « =0 and n =1 otherwise (e.g. Bourguet,
Karniadakis & Triantafyllou 2013). In the following, the phase difference is wrapped
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FIGURE 11. Phase difference between the dominant components of the in-line and
cross-flow responses as a function of the reduced velocity, within the large-amplitude
vibration region identified in figure 9(c), for (a) ¢ <2 and (b) o > 2. The ratio between
the frequencies of the dominant components of the in-line and cross-flow responses is
indicated in the plots. The three-dimensional simulation results are denoted by circled blue
symbols.

between 0° and 360°. For n = 2, the cylinder describes figure-eight trajectories and
moves upstream when reaching cross-flow oscillation maxima for @,, € 10°, 180°[ and
downstream for @,, € ]1180°, 360°[. These two types of trajectories were referred to
as counter-clockwise and clockwise, figure-eight orbits in previous works (Dahl et al.
2010). The cases ®,, =0° and ®,, =180° correspond to crescent-shaped trajectories.
For n = 1, the cylinder describes elliptical trajectories in the counter-clockwise
direction for &,, € ]10°, 180°[ and in the clockwise direction for @,, € [180°, 360°[.
For &,, =0° and ®,, = 180°, the trajectories are linear. The evolution of the phase
difference within the large-amplitude vibration region identified in figure 9(c) is
plotted in figure 11. In the absence of rotation, the cylinder exhibits counter-clockwise,
figure-eight orbits. Once the body rotates, the phase difference of the VIV-like
responses varies between 270° and 180° approximately, i.e. between clockwise
elliptical orbits and linear trajectories. In contrast, a single type of trajectories appears
in the galloping-like response region: the cylinder describes clockwise elliptical orbits,
since @,, ~ 270° in all cases. It is recalled that the forced rotation applied to the
cylinder is oriented in the opposite direction (counter-clockwise). The elliptical
orbits are referred to as counter-rotating. An elliptical trajectory, typical of the
galloping-like response region, is plotted in figure 12(a). Some slight variations about
this canonical shape may be encountered, in particular due to the emergence of
subharmonic components as discussed in the following. However, the global form
of the trajectory remains the same. These observations regarding response phasing
are confirmed by the three-dimensional simulation results (circled blue symbols in
figure 11). In the plot presented in figure 12(a), it can be noted that the orbits
issued from the two- and three-dimensional simulations are almost identical, even if
the flow is three-dimensional in the selected case (§4.2). Similar counter-rotating
orbits were reported in prior studies concerning galloping-like oscillations (Stansby &
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FIGURE 12. Typical trajectories of the rotating cylinder in the large-amplitude vibration
region: (a) (a, U*) = 4, 17), (b) (a, U*) = (4, 6) (period doubling), (¢) («, U*) =
(5, 6) (period quadrupling). The black lines represent two-dimensional simulation results
while the grey lines (in a,b) denote three-dimensional simulation results. Three dominant
frequency cycles are plotted in each case.

Rainey 2001; Yogeswaran & Mittal 2011). A quasi-steady analysis may suggest such
orientation of the elliptical trajectories, as briefly discussed in an Appendix.

As previously mentioned, the structural responses are close to sinusoidal in most
cases. Within the large-amplitude response region, the dominant vibration components
are often accompanied by higher harmonic contributions, the most significant being
those occurring at 2f, and 2f; in the galloping-like response region. Their magnitudes
remain limited, typically lower than 10% of the dominant component amplitudes. In
addition to these higher harmonic contributions, three other forms of multi-frequency
responses can be identified. They are the object of the last part of this section.
First, the symmetry breaking induced by the rotation leads to a switch of the in-line
vibration frequency, from f, = 2f, (¢ = 0) to f, =f,, as previously noted. However,
for low values of o (typically for @ < 1), both components may still appear in
the in-line response spectrum. Such phenomenon can be regarded as a persistence
of the symmetrical configuration behaviour and was also reported for the in-line
oscillator (Bourguet & Lo Jacono 2015). Second, the structural responses sometimes
exhibit significant subharmonic components, for example at half or a quarter of the
dominant frequency. Contrary to the multi-frequency vibrations mentioned in the first
point, these responses are observed in both the in-line and cross-flow directions. Third,
multi-frequency responses occur, in both directions, at the edge of the large-amplitude
vibration region where they involve incommensurable frequencies. The last two forms
of responses are further examined in the following.

The area of the parameter space where the responses include subharmonic
components is indicated by oblique red stripes in the map presented in figure 9(c).
This area, located in the galloping-like response region, covers a wide range of o
values but a relatively narrow band of U* values, from 5 to 8, approximately. Within
this area, components at f,/2 and f;/2, and in some cases components at f,/4 and
fy/4, are found to develop, with variable magnitudes. They lead to period doubling
or quadrupling compared to the structural responses observed outside this area. Two
typical trajectories illustrating the period doubling and quadrupling phenomena are
plotted in figure 12(b,c). In these two examples, the amplitudes of the subharmonic
components occurring in the in-line direction at f,/2, represent 7% and 5 % of the
dominant component amplitude, respectively. The emergence of such multi-frequency
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oscillations is corroborated by the three-dimensional simulation results (grey line
in figure 12b). Subharmonic components were not observed in previous works
concerning rotating cylinders mounted on one-degree-of-freedom oscillators (Bourguet
& Lo Jacono 2014, 2015; Bourguet 2019). The response subharmonic components
are associated with subharmonic components in the span-averaged flow quantities and
forcing, which do not pre-exist in the rigidly mounted body case (e.g. figure 8c¢).
Such components thus appear to be a product of the coupled flow—structure system.
The subharmonic components occurring in the structural responses and associated
span-averaged forcing should not be confused with the possible subharmonic nature
of the flow three-dimensional patterns.

Outside the large-amplitude vibration region, in the ranges of « values associated
with the three unsteady flow regimes described in § 3, the cylinder exhibits oscillations
at the frequency of flow unsteadiness in the rigidly mounted body case (figure 10e,f).
The evolution of these oscillations at the edge of the large-amplitude vibration region
is examined for o =35, which corresponds to the U3 regime. Three typical trajectories
of the cylinder, outside, at the edge of, and within the large-amplitude vibration region
are plotted in figure 13(a—c). All the results considered in this analysis are issued from
three-dimensional simulations. The irregular orbit observed in the intermediate case
suggests a combination of incommensurable frequency components. The evolution of
the frequency spectrum of the cross-flow response fluctuation, as a function of U*
around the frontier of the large-amplitude vibration region, is presented in figure 13(d).
The low-frequency component that occurs at the typical frequency of the U3 regime
(blue dashed-dotted line) is found to coexist, over a range of U* values, with a
new, high-frequency component. This new component emerges close to the oscillator
natural frequency (red dashed line) and its amplitude rapidly increases with U*. The
frequencies of these two components are, in general, incommensurable. Their spectral
amplitudes, as well as the maximum amplitude of vibration, are plotted as functions
of U* in figure 13(e). It can be noted that the low-frequency component, i.e. the trace
of the rigidly mounted body wake on the structural responses, rapidly vanishes inside
the large-amplitude vibration region. Such phenomenon was previously reported at
the onset of non-rotating cylinder VIV (e.g. Khalak & Williamson 1999). Here, focus
was placed on the U3 regime. A comparable analysis could be repeated for the Ul
and U2 regimes. It would lead to similar observations concerning the combination of
incommensurable vibration components, regardless the VIV- or galloping-like nature
of the responses.

The principal features of the structural responses can be summarized as follows. The
in-line and cross-flow vibrations of the two-degree-of-freedom oscillator clearly differ
from their one-degree-of-freedom counterparts, in terms of amplitudes and frequencies,
but also sometimes, in terms of response nature. Within the parameter space under
study, the two-degree-of-freedom oscillator exhibits both VIV-like and galloping-like
responses. VIV-like responses develop for o < 2. They are enhanced by the imposed
rotation, up to approximately 1 body diameter in each direction, i.e. twice the peak
amplitude of cross-flow VIV for o = 0. The shape of the body trajectory varies in
this region of the parameter space. Beyond o = 2 and up to the largest value of
o considered here (o = 5.5), the cylinder is subjected to galloping-like responses.
Their growth rate tends to increase with «. Amplitudes larger than 20 body diameters
and very low frequencies (f,/4) are reached. In contrast to the VIV-like responses,
the amplitudes of the galloping-like oscillations are generally larger in the in-line
direction than in the cross-flow direction. A single trajectory shape is encountered:
elliptical orbits with opposite sense compared to the imposed rotation. Among the
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FIGURE 13. Focus on the structural responses at the edge of the large-amplitude vibration
region, for « = 5: (a—c) cylinder trajectories for (a) («, U*) = (5, 2.125), (b) («, U*) =
(5,2.625) and (¢) (o, U*)=(5,2.875); (d) frequency spectrum (spectral amplitude) of the
cross-flow response fluctuation over a range of reduced velocities; (e) spectral amplitudes
of the vibration components and maximum amplitude of vibration, in the cross-flow
direction, as functions of the reduced velocity. Three oscillation cycles are represented in
(a,c). In (b), three low-frequency cycles (i.e. close to 40 high-frequency cycles) are plotted.
In (d), a blue dashed-dotted line indicates the frequency of flow unsteadiness in the rigidly
mounted cylinder case (U3 regime) and a red dashed line denotes the oscillator natural
frequency. In (d,e), a plain grey line indicates the limit of the large-amplitude vibration
region. The results are issued from three-dimensional simulations.

different forms of multi-frequency vibrations identified, the emergence of subharmonic
components, which lead to period doubling or quadrupling, appears to be specific to
the galloping-like response region. In the following, these observations are connected
to flow dynamics and fluid forcing.

4.2. Flow physics

The spatio-temporal properties of the flow are examined in this section. Particular
attention is paid to their alteration compared to the rigidly mounted body case and
to the possible synchronization between flow dynamics and body motion.

Outside the large-amplitude vibration region identified in §4.1 (figure 9c¢), the main
properties of the flow are similar to those described in the rigidly mounted body case:
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FIGURE 14. Instantaneous iso-surfaces of spanwise vorticity in the elastically mounted
body case, in four typical points of the large-amplitude vibration region: (a) («, U*) =
(2,6.5) (w,==+£0.3), (b) (a, U")=(3,10) (w,=%£0.24), (¢) (o, U*)=(4,17) (w,=%£0.14)
and (d) (o, U*) = (5, 22) (w, = £0.1). Positive/negative vorticity values are plotted in
yellow/blue. The black lines at each end of the cylinder represent its trajectory. In (c,d),
two instants of the oscillation cycle are plotted. Part of the computational domain is
shown.

the flow is unsteady in the same ranges of « values, with similar frequencies and
spatial structures. In the following, focus is placed on the large-amplitude vibration
region.

A myriad of unsteady wake patterns are encountered in the large-amplitude vibration
region. They may considerably deviate from those depicted in the rigidly mounted
body case. Instantaneous visualizations of the flow (iso-surfaces of spanwise vorticity)
past the rotating cylinder in four typical points of the large-amplitude vibration region
are proposed in figure 14. These points cover wide ranges of vibration amplitudes
and frequencies. In each plot, the trajectory of the body is indicated by black
lines at its ends. As generally observed in the large-amplitude vibration region, the
responses are close to sinusoidal, with only limited higher harmonic contributions.
The cases where the response spectra include subharmonic or incommensurable
frequency components will be addressed later in this section. The flows visualized in
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FIGURE 15. Frequency spectra (spectral amplitudes) of the span-averaged and midspan
values of the cross-flow component of flow velocity fluctuation in the wake, in the four
cases visualized in figure 14: (a) (o, U*) = (2, 6.5), (b) («, U*) = (3, 10), (¢) (o, U") =
(4, 17) and (d) (a, U*) = (5, 22). The signals are sampled at (x, y) = (10, 0) for (a—c)
and (x, y) = (20, 0) for (d). The spectral amplitudes are normalized by their maximum
value. The frequencies are normalized by the dominant frequency of cross-flow vibration
(fy). The integer multiples of f, are indicated by blue dashed lines and f,/2 by a red
dotted line. Typical frequencies of the Ul (¢ =0), U2 (e« =4.5) and U3 (¢ =5) regimes,
identified in the rigidly mounted body case, are denoted by green lines.

figure 14 are all three-dimensional, including for o = 2 (figure 14a). As suggested
by the slight differences noted between the structural responses issued from two- and
three-dimensional simulations (figure 10), the three-dimensional transition occurs at
much lower o once the body oscillates. Within the large-amplitude vibration region,
even beyond the three-dimensional transition, the flow is dominated by the formation
of spanwise vortices. Such persistence of the two-dimensional structure would suggest
a limited impact of the three-dimensional transition on the system behaviour — this is
actually the case as reported in §4.1.

In order to quantify the frequency content of the flow and clarify the question
of flow-body synchronization, the spectra of the cross-flow component of flow
velocity fluctuation, downstream of the vibrating cylinder, are plotted in figure 15,
for each case visualized in figure 14. The sampling point is located at (x, y) = (10, 0)
or (x, y) = (20, 0), depending on the vibration amplitudes. To detect the possible
subharmonic nature of the three-dimensional flow pattern, two spectra are plotted in
each case: one based on the time series of the span-averaged value of flow velocity
and another based on the time series of its midspan value. The spectral amplitudes
are normalized by their maximum value. The frequencies are normalized by the
frequency of cross-flow vibration (f,). In all cases, the peaks of the span-averaged
velocity spectrum occur at the vibration frequency and integer multiples of this
frequency (blue dashed lines). No other significant spectral contribution appears in
the fluctuations of the span-averaged velocity. Flow unsteadiness and body motion are
thus synchronized, i.e. the lock-in condition is established. It should be mentioned
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that the coincidence of body motion and flow velocity spectra is a synchronization
criterion that is disconnected from the number of vortices shed per oscillation cycle.
Such synchronization is the driving mechanism of VIV but is not generally expected
for galloping oscillations (Paidoussis et al. 2010). It is found to persist for both
VIV-like and galloping-like responses in the present configuration, as also reported
in previous works concerning rotating cylinders mounted on single-degree-of-freedom
oscillators (Bourguet & Lo Jacono 2015; Bourguet 2019). Within the large-amplitude
vibration region, the vibration frequency may depart from the oscillator natural
frequency but also from the frequency of flow unsteadiness in the rigidly mounted
body case (figure 10). Under the lock-in condition, flow unsteadiness therefore
deviates from the typical frequencies of the Ul, U2 and U3 regimes described in §3
(green lines in figure 15).

In some cases, a subharmonic component of the body displacement appears in the
midspan velocity spectrum but not in the span-averaged velocity and vibration spectra.
This phenomenon is illustrated in figure 15(a) where the midspan signal spectrum
exhibits a peak at f,/2 (red dotted line). Such spectra emphasize the subharmonic
structure of some three-dimensional flow patterns.

In the above mentioned studies where the lock-in condition was also established,
a nomenclature based on the number of spanwise vortices shed per body oscillation
cycle was proposed to designate the unsteady flow patterns. Following this nomen-
clature, the structures of the flows depicted in figure 14(a,c) could be referred to as
IT and X patterns, respectively. Due to the very large number of vortices formed per
cycle in the galloping-like response region — more than 20 in the higher ranges of «
and U* — and to their irregular evolutions (with dislocations, merging phenomena), no
attempt is made here to draw a map based on this nomenclature. A general trend, also
noted in prior studies (e.g. Williamson & Roshko 1988; Bourguet & Lo Jacono 2015),
can, however, be identified. The number of vortices shed per cycle, equal to two in the
VIV-like response region as in the Ul regime, tends to increase in the galloping-like
response region, when the vibration amplitude increases and the frequency decreases.
It is recalled that a maximum of two spanwise vortices form per wake period in
the rigidly mounted body case (figure 5). In a previous work, the switch between
adjacent vortex shedding patterns as U* is varied, i.e. the addition or subtraction of
one spanwise vortex, was connected to the successive steps occurring in the response
amplitude curves (Bourguet 2019). Such phenomenon is also observed in the present
case, in the lower part of the galloping-like response region (figure 10b,d). It tends to
disappear in the higher range of «, where many vortices form per cycle. This suggests
a lower influence of the addition/subtraction of one vortex when the wake pattern
already contains a large number of vortices.

As described in § 4.1, the structural response spectra sometimes include subharmonic
or incommensurable frequency components. The typical behaviour of the flow in
such cases is examined for two examples in figures 16 and 17, which represent, as
previously, instantaneous visualizations and flow velocity spectra. The case considered
in figures 16(a) and 17(a) is characterized by a pronounced subharmonic vibration
component occurring at f,/2 (figure 12b). This subharmonic behaviour, also predicted
under two-dimensional flow assumption, differs from that observed in figure 15(a),
which relates to the three-dimensional nature of the flow. In the present case, the
subharmonic component appears in the spectrum of the span-averaged flow velocity
(red dotted line in figure 17a). All the peaks of the velocity spectra (span-averaged
and midspan signals) occur at integer multiples of this subharmonic frequency: flow
and body motion are still synchronized. The subharmonic structure of the flow can
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FIGURE 16. Same as figure 14 in two other points of the parameter space: (a) a case
where the responses exhibit subharmonic components, (¢, U*) = (4, 6), (w, = £0.3)
and (b) a case located at the edge of the large-amplitude vibration region where two
incommensurable frequency components coexist, («, U*) = (5, 2.75), (w,==0.03). In (b),
a dashed line indicates a short-wavelength, streamwise pattern.
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FIGURE 17. Same as figure 15 in the two cases visualized in figure 16: (a) («, U*) =
(4,6) and (b) (o, U*) =(5,2.75). In (b), the low frequency of the structural vibration and
its integer multiples are indicated by orange dashed-dotted lines; half of the low frequency
of vibration is represented by a red dotted line; the high frequency of vibration is denoted
by a blue dashed line.

be visualized in figure 16(a). Indeed, the vortices shed in the wake exhibit some
slight variations from one dominant frequency cycle to the other (undulated versus
relatively straight vorticity tubes).

A case located at the edge of the large-amplitude vibration region, where two
incommensurable vibration components coexist, is considered in figures 16(b)
and 17(b). In the spectra, the low frequency of vibration, which occurs close to
the U3 regime frequency (first green line), and its integer multiples are indicated by
orange dashed-dotted lines. The high frequency of vibration, close to the oscillator
natural frequency, is denoted by a blue dashed line. As shown in figure 13(e), the
high-frequency component dominates the response spectrum at this value of U* and
that is why it is used to normalize the frequencies in the present plot. Here again, flow
unsteadiness and body motion are synchronized since the peaks of the span-averaged
flow velocity spectrum coincide with the two incommensurable vibration frequencies.
The midspan velocity spectrum exhibits a comparable shape but an additional peak
can be noted close to half of the low frequency of vibration (red dotted line) and to
a lesser extent close to three times this subharmonic frequency. Such subharmonic
component in the local signal could be regarded as a persistent trace of the U3 regime,
which is characterized by a subharmonic, three-dimensional pattern (figure 8c). In
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FIGURE 18. Some properties of the flow as functions of the rotation rate and reduced
velocity. The unsteady flow region is denoted by a grey background and delimited by plain
black lines. The regions where the flow is found to be unsteady via three-dimensional
simulations but steady via two-dimensional simulations, are indicated by vertical white
stripes. The large-amplitude vibration region is denoted by horizontal, dark grey stripes.
Oblique blue stripes denote the area where the flow undergoes three-dimensional transition.
The light red arrow indicates a general trend along which an increasing number of vortices
are shed per body oscillation cycle. The six cases examined in figures 14-17 are indicated
by black dots.

the wake, the combination of the incommensurable spectral components is associated
with irregular flow structures (figure 160). Among these irregular structures, some
elements can, however, be identified. In particular, a streamwise pattern with a short
wavelength of 3.5 body diameters approximately, appears in some regions (dashed
line in the figure). Such pattern seems to be linked to the high frequency of vibration.
This aspect could be further investigated through spectral or proper orthogonal
decomposition analysis (e.g. Bourguet & Triantafyllou 2016).

The different examples examined above cover typical behaviours of the flow—
structure system. The synchronization between flow unsteadiness and body motion,
based on the coincidence of their spectra, is confirmed by the other two- and
three-dimensional simulation results, over the entire parameter space and regardless
the VIV- or galloping-like nature of the responses. Flow—body synchronization is
corroborated by the analysis of fluid forces (§4.3).

A map gathering some properties of the flow is presented in figure 18. The
area where the flow is unsteady, which coincides with the region where the
body exhibits oscillations of any amplitudes in figure 9(c), is denoted by a grey
background. The two zones around o = 4.5 where the flow and the body remain
steady under two-dimensional flow assumption are indicated by vertical white stripes.
The large-amplitude vibration region is denoted by horizontal, dark grey stripes, as in
the structural response map. With the appearance of these large-amplitude vibrations,
the flow is found to be unsteady over the entire range of « values investigated, which
is not the case for the rigidly mounted body (S1 and S2 regimes; figure 6). The six
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examples examined in figures 14—17 are denoted by black dots. The general trend
concerning the connection between the number of vortices shed per oscillation cycle
and the response amplitude/frequency is visualized by a light red arrow. Along this
arrow, the vibration amplitude (frequency) increases (decreases) while the number of
vortices increases.

The area of the parameter space where the flow undergoes three-dimensional
transition is indicated by oblique blue stripes in the map. In the rigidly mounted
body case, the transition occurs close to o = 3.7 (§3). The critical value of « is
systematically reduced once the body vibrates, a trend also observed when the body
oscillates in the streamwise direction only (Bourguet & Lo Jacono 2015). In the
present case, the transition is encountered down to o & 2, i.e. at the lower edge of
the galloping-like response region. The flow remains two-dimensional in the VIV-like
response region as in the Ul regime. The frontier between two- and three-dimensional
flows is tortuous in the lower range of U*, while the critical rotation rate is close
to 2.75 for U* > 10. As shown in figures 14 and 16, the three-dimensional flows
developing around the vibrating cylinder exhibit more or less regular spanwise
structures. Distinct wavelengths often emerge in the spanwise direction, sometimes
only over a portion of the oscillation cycle, as can be observed in figure 14(d). In
this example ((«, U*) = (5, 22)), a well-defined wavelength close to 2 body diameters
appears when the body moves upstream but the spanwise structure of the flow
becomes irregular as it moves downstream. A wide range of spanwise wavelengths,
from 1 to 5 body diameters approximately, are encountered in the large-amplitude
vibration region. As also noted in previous works concerning comparable systems
(e.g. Bourguet 2019), different wavelengths can spontaneously appear; no monotonic
variation has been identified in the parameter space or as a function of the vibration
amplitude or frequency. A similar observation can be made concerning the harmonic
or subharmonic nature of the three-dimensional flow pattern. In a prior study focusing
on the three-dimensional transition in the wake of a cylinder forced to rotate and
oscillate in the in-line direction, the abrupt changes in flow structure under slight
modifications of the oscillation amplitude/frequency were connected, in the linear
stability framework, to the competition between different unstable modes (Lo Jacono
et al. 2018). A comparable mechanism could explain the unpredictable properties of
the three-dimensional flow structure in the present system.

To summarize, in the VIV-like response region, the flow is close to that observed
in the Ul regime in the rigidly mounted body case, i.e. two-dimensional with two
spanwise vortices shed per cycle. In contrast, when the cylinder exhibits galloping-like
responses, the flow, still dominated by spanwise vortices, is subjected to a profound
reconfiguration, in terms of unsteadiness, frequency content, vortex shedding pattern
and three-dimensionality. Regardless the variety of the flow structures appearing in
the parameter space and the nature of the responses (VIV- or galloping-like), the
oscillating cylinder and the flow are found to remain synchronized in all cases. The
next section aims at shedding some light on fluid forcing.

4.3. Fluid forces

The occurrence of flow-induced vibrations that resemble the typical galloping
oscillations encountered for non-axisymmetric bodies raises the question of the
quasi-steady nature of the forcing mechanism. The term quasi-steady refers to a
possible decoupling between the typical time scales of flow unsteadiness and body
motion. The persistence of the lock-in condition in the galloping-like response region
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seems to contradict such quasi-steady vision. However, both may sometimes be
compatible as illustrated by a previous work focusing on a rotating cylinder free to
oscillate with a single degree of freedom, in an arbitrary direction (Bourguet 2019).
In this case, a quasi-steady modelling of fluid forcing was found to provide a rough
estimate of galloping-like responses over a certain range of vibration directions. A
comparable quasi-steady analysis has been carried out in the present configuration and
the principal results are reported in the Appendix. It appears that the galloping-like
responses of the two-degree-of-freedom oscillator are not expected based on such
quasi-steady approach: the interaction with flow unsteadiness cannot be neglected.
This observation does not necessarily imply that body motion and flow unsteadiness
are synchronized; this is, however, the case here.

A description of fluid forces and their evolution once the body oscillates is proposed
in this section. It is articulated as follows: force statistics are examined as a first
step and additional features, including force spatio-temporal patterns and phasing, are
analysed in a second part.

The time-averaged values of the in-line and cross-flow force coefficients are
plotted in figure 19, as functions of U*, for each rotation rate. For more clarity, as
in the structural response plots, the data collected for o < 2 (VIV-like responses)
and o > 2 (galloping-like responses) are presented separately. As previously,
two-dimensional simulation results are plotted over the entire parameter space and
selected three-dimensional simulation results are reported for comparison purpose
(circled blue symbols). The structural vibrations are accompanied by a deviation of the
time-averaged force coefficients from the values observed in the rigidly mounted body
case (black dashed lines in figure 19). In both directions the deviation is generally
positive. Bell-shaped evolutions, comparable to those reported for the vibration
amplitudes, are observed in the VIV-like response region. In the galloping-like
response region, two principal trends can be identified over the range of U* values
investigated. The time-averaged force coefficients exhibit a sharp amplification at the
onset of the large-amplitude vibrations. In particular, it appears that the amplification
of the mean in-line force can counterbalance the reduction induced by the rotation,
that is observed in the rigidly mounted cylinder case. In this case, C, is negative
for « =4 (figure 7a) while it may reach 3.3 once the body vibrates. During this
sharp amplification and up to U* ~ 10, the values of C, and C, obtained for the
different rotation rates are often mixed, i.e. not ordered as functions of «. In contrast,
at higher reduced velocities, the amplification ceases and the time-averaged force
coefficients present relatively constant or even decreasing evolutions as functions of
U*. In addition, they are clearly ordered by increasing values of «. Slight differences
can be noted between the two- and three-dimensional simulation results but the trends
of the mean force evolutions remain similar. This confirms the observations based on
the structural responses, concerning the limited influence of the flow three-dimensional
transition. Considering the differences appearing between the structural responses of
the two-degree-of-freedom oscillator and their one-degree-of-freedom counterparts
(figure 10) deviations are also expected for C, and C,. They are illustrated in
figure 19 where the mean force coefficients observed in the one-degree-of-freedom
cases, for « =1 and o =3, are represented by plain and dashed-dotted red lines. The
passage from one to two degrees of freedom can, in particular, result in a dramatic
amplification of the mean in-line force (o =3; figure 19b).

The bell-shaped evolutions of the mean force coefficients and their amplification
at the edge of the large-amplitude vibration region suggest a possible connection
with the structural response magnitudes, at least over a portion of the parameter
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FIGURE 19. Time-averaged (a,b) in-line and (c,d) cross-flow force coefficients, as
functions of the reduced velocity, for (a,c) ¢ < 2 and (b,d) o > 2. In each plot, the
time-averaged values of the force coefficient in the rigidly mounted cylinder case are
indicated by black dashed lines. The three-dimensional simulation results are denoted by
circled blue symbols. The results obtained in the one-degree-of-freedom cases (Bourguet &
Lo Jacono 2014, 2015) for (a,c) « =1 and (b,d) =3 are also plotted (plain/dashed-dotted
red lines for the in-line/cross-flow oscillators).

space. Such connection was previously reported for non-rotating bodies (Khalak &
Williamson 1999). In order to clarify this aspect for the present system, the deviation
of C, from its value in the rigidly mounted body case (denoted by the superscript
rigidy js plotted as a function of the maximum amplitude of cross-flow vibration
in figure 20(a). The maximum amplitude of cross-flow vibration is employed as a
measurement of the response magnitude; the analysis could equally be carried out
with the in-line vibration amplitude. Both two- and three-dimensional simulation
results are reported in the plot. Following the distinct trends identified in figure 19,
the data set is separated in two groups represented in blue colour for U* < 10 and in
red colour for U* > 10. For the first group, a connection can indeed be noted between
the amplification of the time-averaged force and the vibration magnitude. In contrast,
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FIGURE 20. Deviation of the time-averaged in-line force coefficient from the value
reached in the rigidly mounted cylinder case, as a function of (a) the maximum amplitude
of cross-flow vibration and (b) the time-averaged value of the norm of the relative velocity
seen by the moving body. The symbols are coloured in blue for U* < 10 and red for
U* > 10. Both two-dimensional and three-dimensional simulation results are represented.

for the second group the data points are more dispersed. In the higher range of U*
of the galloping-like response region, the time-averaged force amplification does not
seem to simply follow the growth of the response magnitude. As a typical example,
for « =5.5, C, is found to regularly decrease while the vibration amplitude increases.
A previous work concerning the VIV of a non-rotating cylinder explored the joint
amplification of the mean in-line force and magnitude of the relative flow velocity
seen by the moving body (Gsell er al. 2019). This relative velocity can be expressed
as V'={l — ¢, —¢, 0}". In figure 20(b), the mean force deviation is represented as
a function of the time-averaged value of the relative velocity norm. In this plot, the
red data points tend to collapse on a curve with increasing trend, while the blue ones
are dispersed. As a result, the amplification of the time-averaged force coefficient
appears to be mainly connected (i) to the vibration amplitude in the VIV-like response
region and in the lower-U* range of the galloping-like response region, and (ii) to
the relative velocity magnitude in the higher-U* range of the galloping-like response
region. Further analysis shows that the switch between these two distinct trends seems
to occur when the vibration frequency reaches a threshold located around 0.06-0.07.
The connection appearing between the mean force evolution and the relative velocity
at low frequencies could suggest a transition towards a quasi-steady behaviour. Such
transition is not observed in the present case: the quasi-steady prediction of fluid
forces is not more accurate in the higher range of U* (lower frequencies) than in the
lower range of U* (higher frequencies). Here the in-line force coefficient has been
studied but the connections described above also apply in the cross-flow direction.

The force coefficient spectra peak at the same frequencies as the structural response
spectra and/or at integer multiples of these frequencies. This observation corroborates
the persistence of flow—body synchronization. Force temporal evolutions and force—
displacement phasing will be further discussed in the following.

The r.m.s. values of the force coefficient fluctuations are represented in figure 21 as
functions of U*, for each rotation rate. The principal observations that can be made
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FIGURE 21. The r.m.s. value of the force coefficient fluctuation in the (a,b) in-line and
(c,d) cross-flow directions, as a function of the reduced velocity, for (a,c) ¢ <2 and (b,d)
« > 2. The three-dimensional simulation results are denoted by circled blue symbols. The
results obtained in the one-degree-of-freedom cases (Bourguet & Lo Jacono 2014, 2015)
for (a,c) « =1 and (b,d) o =3 are also plotted (plain/dashed-dotted red lines for the
in-line/cross-flow oscillators).

based on these plots are comparable to those reported for the time-averaged force
coefficients. They include deviations from the rigidly mounted body case values and
from those previously documented for single-degree-of-freedom oscillators, as well as
a limited impact of the flow three-dimensional transition. It can also be noted (not
shown here) that the amplification of force coefficient fluctuations follows the same
trends as those identified for the time-averaged forces: depending on the region of
the parameter space, it appears to be connected to the vibration amplitude or to the
relative flow velocity.

Additional features of fluid forcing are examined on the basis of in-line force
time series. Four cases, previously visualized in figures 14 and 15, are considered
in figure 22. These cases are located within the large-amplitude vibration region
and cover wide ranges of oscillation amplitudes and frequencies. The cases where
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the structural response spectra include subharmonic or incommensurable frequency
components are not depicted here but they would lead to comparable observations.
For each case in figure 22, the time series of C, is represented together with the time
series of in-line displacement fluctuation (upper plot). These time series illustrate
the above mentioned sychronization between force and displacement. For periodic
vibrations as those observed here and in the absence of structural damping, the phase
difference between the force coefficient and displacement components occurring at
the dominant vibration frequency can take two values. It is equal to 0° when the
dominant vibration frequency is lower than the natural frequency and 180° when the
dominant vibration frequency is larger than the natural frequency (e.g. Bourguet &
Lo Jacono 2015). This phase difference is denoted by ¥, in the in-line direction
and V¥, in the cross-flow direction. Once the system symmetry is broken by the
rotation and f, = f;, i.e. over the entire large-amplitude vibration region except near
o = 0, the in-line and cross-flow phase differences are the same. In the four cases
examined in figure 22, force and displacement are in phase (¥, =¥, =0°). The value
of ¥, within the large-amplitude vibration region is specified in orange in the map
reported in figure 9(c). In this map, an orange dotted line indicates the location of
the phase difference jump occurring when the vibration frequency passes through the
value of the natural frequency. The phase difference jump observed in the VIV-like
response region does not persist in the galloping-like response region, where force
and displacement are found to by always in phase.

The time series of the sectional force coefficient at midspan point (C,, at z = 12)
are found to be almost identical to C, signals despite the three-dimensional nature
of the flows under study (upper plots of figure 22). Such superposition suggests
that the magnitude of the spanwise fluctuations of the force is negligible compared
to the amplitude of its temporal variations. This contrasts with the observations
made in the rigidly mounted cylinder case (figure 8). This trend is confirmed by
the lower plots of figure 22 which represent the time series of the fluctuations of
C,s about C,. The fluctuations are one or more orders of magnitude lower than the
temporal oscillations of C,. This phenomenon is generally verified in both directions
across the large-amplitude vibration region. It corroborates the persistence of a
dominant two-dimensional structure of the flow, which was also noted on the basis of
instantaneous visualizations in § 4.2 (figure 14). In spite of their low amplitudes, the
fluctuations of C,; about C, provide some insights into the spatio-temporal structures
of the three-dimensional flows. They confirm the variability of the spanwise pattern
regularity, as well as the variability of the wavelengths that spontaneously emerge. The
patterns depicted in figure 22(a,b) are both particularly regular but they differ by their
spanwise wavelengths (2 versus 1 body diameters). They also differ by the presence
of a subharmonic component in the first one, which was previously identified on the
basis of flow velocity spectra (figure 15a). In the second one, the fluctuations of the
local force occur at the vibration frequency. The patterns represented in figure 22(c,d)
are less regular. As also mentioned in §4.2, well-defined wavelengths sometimes
appear over a portion of the oscillation cycle. This is visualized in figure 22(d),
where a relatively distinct wavelength close to 2 diameters is observed when the
cylinder moves upstream, for example around ¢ = 150.

In this section, focus was placed on the alteration of fluid force properties, relative
to the rigidly mounted body case, and on their evolution in the VIV-like and galloping-
like response regions. The principal findings of this work are summarized hereafter.


https://doi.org/10.1017/jfm.2020.403

https://doi.org/10.1017/jfm.2020.403 Published online by Cambridge University Press

897 A31-34 R. Bourguet

(a) U\Zi 10 —
2 5 —m G 2=12) ]
@) o I AIAA A A A A --&
S s VTVVTY
02 &
Z 0 I
02 ©
0 50 100 150 200 250
(b) w3 10f — ]
g - Cu=12)
E g
ST V'V
0.2 =
01 ©
z 0 [
01 .8
= —02 ©
= = = r E—— = = = e —03
0 50 100 150 200 250
() ux 20F — 5
g 101 22\ /) N /2 ) LN\ |- Coe=12)]
D 0 L/ ) 4 . y . 4 ; 4 —— i
& —10 . N \ y J O
L 8
b4 0o |
9]
0 50 100 150 200 250
(d) wd r — ]
a B el L7777 L7 -= Coz=12)
@) 0Fr B -- i I

FIGURE 22. Selected times series of the (top) in-line force coefficient (C,), sectional force
coefficient at midspan (C,; at z=12) and displacement fluctuation, and (bottom) fluctuation
of the sectional in-line force coefficient about its span-averaged value, in four typical
points of the large-amplitude vibration region, previously visualized in figures 14 and 15:
(a) (a,U*)=(2,6.5), (b) (x, U*)=(3,10), (¢) (o, U*)=(4,17) and (d) («, U*) = (5, 22).
In the bottom plot of each panel, a dashed-dotted line indicates the midspan point where
C,s (represented in the top plot) is sampled.
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5. Conclusion

The flow-induced vibrations of an elastically mounted circular cylinder, free to
oscillate in the in-line and cross-flow directions and forced to rotate about its axis,
have been explored at a Reynolds number equal to 100, on the basis of two- and
three-dimensional simulation results. Reduced velocities up to U* =25 and a wide
range of rotation rates, « € [0, 5.5], have been considered.

Within this range of «, a variety of flow regimes are encountered in the rigidly
mounted body case. They persist in the elastically mounted body case, when the
cylinder exhibits vibrations of low amplitudes or no vibration. In particular, three
unsteady flow regimes, characterized by different two- and three-dimensional spatial
structures and frequencies, develop for @ < 1.8 and o € [4.15, 5.15]. The flow is
steady otherwise.

Over the entire range of o investigated, including in the regions where the flow
remains steady in the rigidly mounted body case, there is always an interval of
U* where the elastically mounted cylinder is found to vibrate. The in-line and
cross-flow vibrations of the two-degree-of-freedom oscillator depart from their
one-degree-of-freedom counterparts, in terms of amplitudes and frequencies, but
also sometimes, in terms of response nature. The associated fluid forces also differ.
Within the parameter space under study, the cylinder is subjected to two distinct types
of vibrations which resemble the two forms of responses usually reported for bluff
bodies, i.e. VIV and galloping oscillations.

VIV-like responses. Up to o = 2 approximately, the structural responses remain
comparable to the VIV observed for a non-rotating circular cylinder. They occur
under flow—body synchronization (lock-in) and their amplitudes present bell-shaped
evolutions as functions of U*. The vibrations are, however, amplified by the imposed
rotation as they can reach 1 body diameter in each direction, which represents
twice the peak amplitude of cross-flow VIV for o = 0. The symmetry breaking
induced by the rotation causes a switch of the in-line vibration frequency which
becomes equal to the cross-flow response frequency. The shape of the body trajectory
substantially varies, from figure-eight orbits to linear and elliptical trajectories. The
elliptical trajectories, referred to as counter-rotating, are oriented in the opposite
sense compared to the imposed rotation. Within the vibration window, the oscillation
frequency generally crosses the oscillator natural frequency. This coincides with
a jump of force—displacement phase difference. The emergence of the VIV-like
responses is associated with an amplification of fluid forces, which is found to be
closely connected to the vibration amplitude. In this region of the parameter space,
the flow is two-dimensional and characterized by the formation of two alternating
spanwise vortices per oscillation cycle. It is thus close to that observed in the first
unsteady regime in the rigidly mounted body case.

Galloping-like responses. Beyond o« = 2, the structural responses resemble the
galloping oscillations generally encountered for non-axisymmetric bodies, i.e. their
amplitudes tend to grow unboundedly with U*. The response growth rate is found to
increase with o and amplitudes larger than 20 body diameters are observed. Contrary
to the VIV-like responses, the amplitudes of the galloping-like oscillations are larger in
the in-line direction than in the cross-flow direction. The cylinder principally describes
counter-rotating elliptical orbits. Slight variations about this canonical shape can be
noted, in particular due to the emergence of subharmonic components, which lead
to period doubling or quadrupling. Among the different forms of multi-frequency
vibrations identified, this phenomenon appears to be specific to the galloping-like
response region. The galloping-like oscillation frequency remains lower than the
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natural frequency and may reach very low values, close to a quarter of f,. In this
context, force and displacement are always in phase. Force amplification is found
to follow two distinct trends depending on the value of the reduced velocity. In the
lower range of U*, it relates to the vibration amplitude, as for the VIV-like responses.
At higher values of U*, it is mainly connected to the magnitude of the relative flow
velocity seen by the moving body.

In spite of their similarities with galloping oscillations, the present responses are
not expected on the basis of a quasi-steady modelling of fluid forcing, i.e. based
on the evolution of the mean flow at each step of body motion. This suggests that
the interaction with flow unsteadiness cannot be neglected. It is shown that flow
unsteadiness and body motion remain synchronized: the lock-in condition persists
for the galloping-like responses. Within this region of the parameter space, the flow
undergoes a major reconfiguration compared to the regimes described in the rigidly
mounted body case. A myriad of novel spatio-temporal structures are uncovered.
The wake remains dominated by spanwise vortices, as in the VIV-like response
region. However, the number of vortices shed per cycle tends to increase as the
vibration amplitude increases and the frequency decreases. This number can be larger
than 20. The flow three-dimensional transition is found to occur down to a rotation
rate close to 2, versus 3.7 for the rigidly mounted body. Beyond the transition,
a great variability is observed in the regularity and wavelengths of the spanwise
patterns, which sometimes include three-dimensional subharmonic contributions. It is
nonetheless shown that the three-dimensional transition has only a minor influence
on the system behaviour.
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Appendix. Quasi-steady analysis

The quasi-steady approach consists in predicting the structural responses on the
basis of the fluid forces measured when the body moves at a constant velocity. In the
following, the approach involving the coupled, unsteady flow—structure system, which
is employed in the rest of the paper, is referred to as the unsteady simulation approach.
The analysis reported here is carried out for o = 3. This rotation rate was also
considered in a previous quasi-steady analysis concerning a single-degree-of-freedom
oscillator (Bourguet 2019). For this value of «, the present two-degree-of-freedom
oscillator exhibits typical, galloping-like responses (figure 9).

Additional simulations where the cylinder is forced to translate at a constant
velocity within a uniform current have been performed for o =3, in order to quantify
the evolution of the forces. A sketch of the configuration is presented in figure 23.
To avoid confusion with the results concerning the elastically mounted body and
indicate that the cylinder moves at a constant velocity, the superscript ¢ is added to
the physical variables. The velocity components are thus denoted by {; and ¢ and
the force coefficients by C} and Cj. '
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FIGURE 23. Sketch of the physical configuration considered in the quasi-steady analysis.

To illustrate the evolution of fluid forcing when the cylinder moves at constant
velocity, the deviations of the time-averaged force coefficients from the values
measured in the rigidly mounted body case (i.e. for i = {7 =0, denoted by the

superscript ") are plotted in figure 24(a,b), as functions of g;)f and é;. It appears
that the mean in-line force tends to decrease when g'; is increased while the mean
cross-flow force tends to increase with g The evolution of E; suggests that the

body is pushed upwards (increasing y) by the mean flow as {xc increases (i.e. the
body accelerates downstream or decelerates upstream) and downwards (decreasing y)
as ¢ decreases (i.e. the body accelerates upstream or decelerates downstream). For
periodic responses occurring at low frequency (f < 1), force and displacement are in
phase. Therefore, the above mechanism predicts that the cylinder will move upwards
while accelerating downstream (or decelerating upstream) and downwards while
accelarating upstream (or decelerating downstream). The body is thus expected to
describe clockwise trajectories. This orientation is actually observed on the basis of the
unsteady simulation results (figure 11). A comparable analysis can be proposed based
on the evolution of the in-line force as the body moves in the cross-flow direction.

The evolutions of the body velocity components issued from the unsteady simulation
approach for two values of the reduced velocity, U* = 14 and U* = 24, are
superimposed on the plots in figure 24(a,b). The associated evolutions of the force
coefficients predicted by the quasi-steady approach are represented in figure 24(c,d)
and compared to the results issued from the unsteady simulations. In the quasi-steady
approach, the values of C, and C, are estimated by C and C collected along the
curves depicted in figure 24(a,b). For both values of U, large deviations can be
noted between the quasi-steady and unsteady approaches.

To clarify whether the quasi-steady approach can be employed to estimate the
structural responses, additional simulations where the fluid force coefficients on the
right-hand side of the dynamics equations (2.1) are approximated via quasi-steady
modelling have been carried out for @« = 3. For each value of U*, the dynamics
equations (2.1) are integrated in time as in the unsteady approach but here the force
coefficients C, and C, are not issued from the unsteady flow simulation. Instead,
the values of C, and C, are replaced, at each time step, by the values of 6; and

6; issued from the maps plotted in figure 24(a,b), at the corresponding velocities

(C¢=1¢, and £ =1,).
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FIGURE 24. Quasi-steady evolution of fluid forcing, for o« = 3: (a,b) deviations of the
time-averaged (a) in-line and () cross-flow force coefficients from the values reached in
the rigidly mounted cylinder case as functions of the body (constant) in-line and cross-
flow velocity components; (c,d) cross-flow versus in-line force coefficients issued from
the quasi-steady and unsteady simulation approaches, for (¢) U*=14 and (d) U*=24. In
(a,b), plain lines denote the evolutions of the cylinder velocity components issued from
the unsteady simulation approach, for U* =14 and U* =24.

The maximum amplitudes of the in-line and cross-flow responses and the cross-flow
response frequency ratio, issued from the quasi-steady and unsteady simulation
approaches, are compared in figure 25. The quasi-steady approach predicts the
occurrence of significant oscillations over a narrow window around U* = 14. However,
the main features of the responses issued from the unsteady approach are not captured.
It can be noted that the differences appearing between the forces issued from the
quasi-steady and unsteady approaches in figure 24(c,d) are comparable for U* = 14
and U* =24. The contrasted behaviours depicted in figure 25 cannot be anticipated
from these previous plots.

Contrary to the observations reported for a single-degree-of-freedom oscillator
(Bourguet 2019), where the quasi-steady approach was found to predict the emergence
of galloping-like oscillations in some cases (i.e. over a specific range of vibration
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FIGURE 25. Quasi-steady prediction of the structural responses, for o =3: (a¢) maximum
amplitudes of the in-line and cross-flow vibrations and (b) dominant cross-flow vibration
frequency normalized by the oscillator natural frequency, as functions of the reduced
velocity. The results issued from the unsteady simulation approach are also reported for
comparison purpose.

plane angles), it fails in the present configuration. The galloping-like responses are
not expected based on the evolution of the mean flow and associated forcing.
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