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The errors of an inertial navigation system (INS) in response to gyros’ errors can be effectively
reduced by the rotation technique, which is a commonly used method to improve an INS’s
accuracy. A gyro’s error consists of a deterministic contribution and a stochastic contribution.
The compensation effects of gyros’ deterministic errors are clear now, but the compensation
effects of gyros’ stochastic errors are as yet unknown. However, the compensation effects
are always needed in a rotational inertial navigation system’s (RINS) error analysis and
optimization study. In this paper, the compensation effects of gyros’ stochastic errors, which
are modelled as a Gaussian white (GW) noise plus a first-order Markov process, are analysed
and the specific formulae are derived. During the research, the responses of an INS’s and a
RINS’s position error equations to gyros’ stochastic errors are first analysed. Then the com-
pensation effects of gyros’ stochastic errors brought by the rotation technique are discussed by
comparing the error propagation characteristics in an INS and a RINS. In order to verify the
theory, a large number of simulations are carried out. The simulation results show a good
consistency with the derived formulae, which can indicate the correctness of the theory.
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1. INTRODUCTION. The inertial navigation system (INS) is a very common
navigation systems. An INS can output comprehensive navigation information, such
as attitude, velocity and position (Xiong et al., 2011). The main component of an INS
is the inertial measurement unit (IMU) (Lai et al., 2012a), which consists of gyros and
accelerometers and supplies angular velocity and acceleration information. Since INS
is a dead-reckoning system, the position, velocity and attitude errors produced by
gyros’ errors and accelerometers’ errors spread over time (Lai et al., 2012b).
The rotation technique is an effective method to improve an INS’s accuracy, and

INS with the rotation technique is called a rotational inertial navigation system
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(RINS) (Ishibashi et al., 2006). In a RINS, the IMU is mounted on a rotary table,
which rotates the IMU back and forth to modulate the errors of gyros and accelero-
meters, so as to reduce the navigation errors (Yang andMiao, 2004; Qian et al., 2009).
RINSs are widely used in marine navigation, in systems such as the AN/WSN-7B
(Tucker and Levinson, 2000) and Mk 49 (Levinson et al., 1994). They can supply
accurate navigation information for several days. Recently, the rotation technique has
also been used in north-finding systems with Micro-electromechanical Systems
(MEMS) gyros (Iozan et al., 2012; Prikhodko et al., 2011).
The rotation scheme directly affects the navigation accuracy of the RINS (Yuan

et al., 2012). When designing a rotation scheme, there are two main principles to be
followed: one is to reduce the inherent errors of the IMU; the other is to prevent new
errors brought by the rotation. Therefore, in order to design a good rotation scheme, it
is important to know the compensation effects of all the IMU’s errors.
The IMU errors mainly consist of two parts, the deterministic and the

stochastic (El-Diasty and Pagiatakis, 2008). According to current research, the com-
pensation effects of the deterministic errors are clear (Ben et al., 2010), but
the compensation effects of the stochastic errors are as yet unknown. In this paper,
the compensation effects of gyros’ stochastic errors in a RINS are analysed and the
quantitative formulae are given. Actually, as a basic research on the RINS, the
analysis of this paper does not only give a reference to the design of the rotation
scheme, but also contributes to the error analysis and the optimization study of the
RINS (Dushman, 1962; Poor, 1992).
In order to achieve the goal, the propagation characteristics of gyros’ stochastic

errors both in an INS and in a RINS are needed. Hammon (1960; 1962) derived the
propagation formulae of gyros’ stochastic errors in an INS. The INS model he used is
simplified for short-term navigation. However, RINSs are usually used for long-term
navigation. So the propagation characteristics of gyros’ stochastic errors in a long-
term working INS and a long-term working RINS need to be analysed. Then the
compensation effects of gyros’ stochastic errors brought by the rotation technique
can be obtained by comparing the propagation characteristics in an INS and a RINS.
In this study, two points need to be stated:

1) The stochastic errors of gyros are modelled as Gaussian white (GW) noise and as
a first-order Markov process. The GW noise is used to express the high fre-
quency component of the stochastic errors, while the first-order Markov process
is for the low frequency component.

2) For a RINS the position accuracy is most concerned, so the propagation char-
acteristics of a gyros’ stochastic errors are analysed only for the longitude and
latitude results.

In the subsequent sections, we first introduce the method used for analysing the
stochastic error propagation characteristics in an INS. Then the INS’s and the RINS’s
position error equations response to gyros’ stochastic errors are derived respectively in
Sections 3 and 4. At the end, numerous simulations are devised to verify the proposed
theory.

2. METHODOLOGY. Since the INS’s error response to gyros’ stochastic
errors can be assumed to be a linear system, the impulse response method is adopted.

1070 PIN LV AND OTHERS VOL. 67

https://doi.org/10.1017/S0373463314000319 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000319


Assuming f (t) is the impulse response function of the INS, Rg(t1,t2) is the auto-
correlation function of gyros’ stochastic errors, e(t) is the navigation error produced
by gyros’ stochastic errors. According to the theory of the impulse response method,
the autocorrelation function of the navigation error can be derived as:

Rn(t1, t2) = E[e(t1)e(t2)] =
ðt2
0

ðt1
0
f (τ1)f (τ2)Rg(t1 − τ1, t2 − τ2)dτ1dτ2 (1)

where E [] is an averaging operator, t1,t2 are time variables, τ1,τ2 are integral variables.
Then the variance of the navigation error can be derived as:

Rn(t, t) =
ðt
0

ðt
0
f (τ1)f (τ2)Rg(t− τ1, t− τ2)dτ1dτ2 (2)

From Equation (2), it can be seen that the navigation error can be evaluated after
acquiring the autocorrelation function of gyros’ stochastic errors and the impulse
response function of the INS.

2.1. The Autocorrelation Function of a Gyro’s Stochastic Errors. The models
of Fibre Optic Gyros’ (FOGs’) stochastic errors are complex and generally not unique
(IEEE standard, 1998; Flenniken et al., 2005), but some typical models are usually
used. A simple model is assumed to consist of GW noise and first-order Markov
process. In discrete time, the model can be expressed as (El-Diasty and Pagiatakis,
2008):

gk = wk +mk (3)
where gk is a gyro’s discrete stochastic error, wk is the discrete GW noise with the
standard deviation (SD) denoted as qw and mk is the discrete first order Markov
process with the expression as:

mk = e−ΔT/Tmmk−1 + wmk (4)
where ΔT is the sample time, Tm is the correlation time, and wmk is a zero-mean
discrete GW noise with the SD denoted as qmw and called the driving GW noise.
The autocorrelation function of the GW noise can be written as:

Rw(t1, t2) = q2wΔT · δ(t1 − t2) (5)
where δ(x) is the unit impulse function.
The autocorrelation function of the first-order Markov process can be written as:

Rm(t1, t2) = σ2r e
− t2−t1| |/Tm (6)

where σ2r = q2mw/(2ΔT/Tm).
2.2. The Impulse Response Function of the INS. Usually there are three gyros in

an INS. In this section, the impulse response functions between the position error
and each gyro’s error are derived.
In this paper, the coordinate systems are defined as follows: the inertial coordinate

system is the reference coordinate for the inertial components and denoted by i; the
navigation coordinate system is chosen as the local East-North-Up (ENU) coordinate
and denoted by n; the body coordinate system is vehicle-carried and denoted by b.
The error state equation of the INS under the stationary state can be written
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as (Groves, 2013):

ψ̇E
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0
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(7)

where [ψE ψN ψU] represents the platform error angle projected on the n-frame,
[δvE δvN] represents the east velocity error and the north velocity error, [δL δλ]
represents the latitude error and the longitude error, [εx εy εz] represents gyros’
errors projected on the n-frame, ωie is the Earth’s rotation angular velocity, L is the
local latitude, R is the earth radius, g is the acceleration of gravity. Since the analysis is
for the stationary state, the b-frame is assumed to be coincident with the n-frame, then
[εx εy εz] equals to three gyros’ errors. The impulse response functions can be solved
from Equation (7), and the specific derived formulae are shown in Table 1.
In Table 1, ωs equals to g/R and is called the Schuler angular frequency, ωf equals

ωie sinL and is called the Foucault angular frequency. The subscript of fLX (t) means
that the impulse response function is between the latitude error and X-axis gyro’s
error. It can be found from Table 1 that fLX (t), fλX (t), fLY (t), fLZ (t) only con-
sist of sinusoidal components, and fλY (t), fλZ (t) consist of sinusoidal components and
constant components.

3. STOCHASTIC ERROR PROPAGATION IN A LONG-TERM
WORKING INS. In this section, the error propagation formulae of the GW
noise and the first-order Markov process in an INS are derived and simplified for long-
term navigation. As mentioned, only the position errors are considered.

Table 1. The impulse response functions between the position error and three gyros’ errors.

The latitude error The longitude error

X-axis gyro’s error fLX (t)=cos ωiet−cosωst cosωft fλX (t)= tan L sinωiet− (cosωs t sinωf t)/cos L
Y-axis gyro’s error fLY (t)=sin L sinωiet−cos ωst sin ωft fλY (t)= −cos L− sin L tan L cosωiet+

(cos ωst cos ωft)/cos L
Z-axis gyro’s error fLZ (t)=cos L sinωiet fλZ (t)= − sin L+sin Lcosωiet
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3.1. The GW Noise Error Propagation Formulae. According to the analysis in
Section 2, the position errors response to gyros’ GW noises can be solved by plugging
the autocorrelation function of the GW noise (shown as Equation (5)) and the impulse
response functions (shown in Table 1) into Equation (2). In the following, the
longitude errors and the latitude errors response to three gyros’ GW noises will be
derived separately.
The variance of the longitude error response to the X-axis gyro’s GW noise can be

expressed as:

eswλX (t)2 =
ðt
0

ðt
0
fλX (τ1)fλX (τ2)Rw(t− τ1, t− τ2)dτ1dτ2

=
ðt
0

ðt
0
fλX (τ1)fλX (τ2)q2wΔTδ(τ1 − τ2)dτ1dτ2

= q2wΔT
ðt
0
fλX (τ1)2dτ1

(8)

where the subscript of eλX
sw stands for the longitude error response to the X-axis gyro’s

error, the superscript means that the error source is the gyro’s GW noise and the
analysis is for a “stationary” INS instead of a RINS.
Plugging the expression of fλX (τ1) from Table 1 into Equation (8), the expression of

eλX
sw(t)2 can be derived. Due to the complex integration computation, the derived

complete expression of eλX
sw(t)2 includes more than 100 sinusoidal items, which is too

long to be listed, so the expression of eλX
sw(t)2 needs to be simplified. When the formula

is for long-term navigation, some items can be omitted and the expression of eλX
sw(t)

can be simplified as follows:

eswλX (t) ≈ 0·5qw tanL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔT[2t+ t/ sin2 L− sin(2ωiet)/ωie − sin(2ωf t)/(2ωf sin

2 L)]
q

(9)
Since eλX

sw(t) is the standard deviation of the longitude error, it equals to the root mean
square error (RMSE) of longitude. Using the same approach, the RMSE of the
latitude response to the X-axis gyro’s GW noise can be derived as follows:

eswLX (t) ≈ qw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔT[3t/4+ sin(2ωf t)/(8ωf ) + sin(2ωiet)/(4ωie)]

q
(10)

The RMSE of the longitude response to the Y-axis gyro’s GW noise can be derived
as follows:

eswλY (t)≈qw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔT[sin(2ωf t)/(8 cos2 Lωf ) + t cos2 L+ t tan2 L/2+ t cos2 L/4−t sin2 L/2]

q
(11)

The RMSE of the latitude response to the Y-axis gyro’s GW noise can be derived as
follows:

eswLY (t) ≈ 0 · 5qw sinL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔT[2t+ t/ sin2 L− sin(2ωiet)/ωie − sin(2ωf t)/(2ωf sin

2 L)]
q

(12)
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The RMSE of the longitude response to the Z-axis gyro’s GW noise can be derived
as follows:

eswλZ(t) ≈ qw sinL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔT[3ωiet− 4 sin(ωiet) + sin(2ωiet)/2]/(2ωie)

p
(13)

The RMSE of the latitude response to the Z-axis gyro’s GW noise can be derived as
follows:

eswLZ(t) ≈ qw cosL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔT[ωiet− sin(2ωiet)/2]/(2ωie)

p
(14)

Through Equations (9) to (14), it can be seen that the RMSE of the latitude and the
longitude increases proportional to qw

ffiffiffiffiffiffiffi
ΔT

√
and approximately proportional to

ffiffi
t

√
.

3.2. The Error Propagation Formulae of the First-order Markov Process.
According to the autocorrelation function of the first-order Markov process (shown
as Equation (6)), the variance of the longitude error response to the X-axis gyro’s first-
order Markov process can be expressed as:

esmλX (t)2 =
ðt
0

ðt
0
fλX (τ1)fλX (τ2)Rm(t− τ1, t− τ2)dτ1dτ2

=
ðt
0

ðt
0
fλX (τ1)fλX (τ2)σ2r e− τ2−τ1| |/Tmdτ1dτ2

(15)

where the superscript of eλX
sm means that the error source is the gyro’s first-order

Markov process and the analysis is for an INS. In Equation (15), since τ1 and τ2 are the
integral variables, during the equation simplification both conditions including τ25 τ1
and τ15 τ2 need to be considered. When τ25 τ1, Equation (15) transforms to:

esmλX (t)2 =
ðt
0

ðτ2
0

fλX (τ1)fλX (τ2)σ2r e−(τ2−τ1)/Tmdτ1dτ2 (τ2 5 τ1)

= σ2r

ðt
0

ðτ2
0

fλX (τ1)eτ1/Tmdτ1fλX (τ2)e−τ2/Tmdτ2 (τ2 5 τ1)
(16)

When τ15 τ2,Equation (15) transforms to:

esmλX (t)2 =
ðt
0

ðτ1
0

fλX (τ1)fλX (τ2)σ2r e−(τ1−τ2)/Tmdτ2dτ1 (τ1 5 τ2)

= σ2r

ðt
0

ðτ1
0

fλX (τ2)eτ2/Tmdτ2fλX (τ1)e−τ1/Tmdτ1 (τ1 5 τ2)
(17)

Combining the simplification results under the condition τ25 τ1 and the condition
τ15 τ2, Equation (15) transforms to:

esmλX (t)2 = 2σ2r

ðt
0

ðτ2
0

fλX (τ1)eτ1/Tmdτ1fλX (τ2)e−τ2/Tmdτ2 (18)

After plugging fλX (t) (shown in Table 1) into Equation (18), the simplified result for
long-term navigation is as follows:

esmλX (t) ≈
σrTmωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm(1+ sin2 L+ ω2

sT2
m sin2 L)t

q
(1+ ω2

ieT2
m)(1+ ω2

s T2
m) cosL

(19)
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Using the same approach, the RMSE of the latitude response to the X-axis gyro’s
first-order Markov process can be derived as follows:

esmLX (t) ≈
σrT2

mωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm[3t/T2

m + ω2
s t+ T2

mω
2
sω

2
iet+ ω2

s sin(2ωiet)/(2ωie)]
q

(1+ ω2
ieT2

m)(1+ ω2
s T2

m)
(20)

The RMSE of the longitude response to the Y-axis gyro’s first-order Markov
process can be derived as follows:

esmλY (t)

≈
σrTmωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm[T2

mω
2
s (4ω2

ieT2
m cos2 L+ 2 cos2 L+ sin2 L tan2 L)t+ 4t+ t/(2 cos2 L)]

q
(1+ ω2

ieT2
m)(1+ ω2

s T2
m)

(21)
The RMSE of the latitude response to the Y-axis gyro’s first-order Markov process

can be derived as follows:

esmLY (t) ≈
σrTmωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm(1+ sin2 L+ ω2

s T2
m sin2 L)t

q
(1+ ω2

ieT2
m)(1+ ω2

s T2
m)

(22)

The RMSE of the longitude response to the Z-axis gyro’s first-order Markov
process can be derived as follows:

esmλZ(t)

≈
σr sinL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3+5ω2

ieT2
m+2ω4

ieT4
m)Tmt+Tm[sin(2ωiet)/2−4 sin(ωiet)](1+ω2

ieT2
m)/ωie]

q
1+ ω2

ieT2
m

(23)
The RMSE of the latitude response to Z-axis gyro’s first-order Markov process can

be derived as follows:

esmLZ(t) ≈
σr cosL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3
mω

2
iet+ Tmt− Tm sin(2ωiet)/(2ωie) − T2

m sin2(ωiet)
q

1+ ω2
ieT2

m

(24)

From Equations (19) to (24), it can be seen that the RMSEs of the latitude
and the longitude increase proportional to σr and approximately proportional to

ffiffi
t

√
.

Moreover, the RMSEs also increase with Tm.

4. STOCHASTIC ERROR PROPAGATION IN A LONG-TERM
WORKING RINS. In this section, the error propagation formulae of gyros’
stochastic errors in a RINS are derived. Before the derivation, the principle of
the rotation technique will be introduced first. In a RINS, the IMU is mounted on
a rotary table. The rotary table coordinate system is defined to be fixed with the rotary
table and denoted by r. The errors of the three gyros are denoted by εr=[εx εy εz],
the rotation rate of the rotary table is denoted by ωc. Then to a single-axis RINS
whose rotation axis is coincided with the IMU’s Z-axis, the projection of εr on the
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n-frame can be expressed by (Zhang et al., 2012):

εn = Cn
bC

b
r ε

r

= Cn
b

cosωct −sinωct 0

sinωct cosωct 0

0 0 1

2
664

3
775

εx

εy

εz

2
664

3
775

= Cn
b

εxcosωct− εysinωct

εxsinωct+ εycosωct

εz

2
664

3
775

(25)

where Cb
n is the transition matrix from the b-frame to the n-frame, Cr

b is the transition
matrix from the r-frame to the b-frame. During one rotation period, if the vehicle’s
attitude remains the same, Cb

n is a constant matrix and the errors of the two horizontal
gyros are modulated to sine functions. Since bias errors are constant values, according
to Equation (25), their accumulations are zero after one period and will not affect the
navigation accuracy.
However, it can be seen that only the horizontal gyros’ errors can be modulated

when the Z-axis rotation scheme is used. Since the compensation effects of all three
gyros’ errors need to be analysed, a Z-axis rotation scheme is used to analyse the
compensation effects of the X- and Y-axis gyros’ errors, and a Y-axis rotation scheme
is used for the Z-axis gyro’s errors.

4.1. The GW Noise Error Propagation Formulae. In order to analyse the
error propagation characteristics of gyros’ GW noises in a RINS, the autocorrelation
function of GW noise after rotation needs to be solved first. Assuming that w(t) is the
time domain expression of GW noise and Rw(t1,t2) is the autocorrelation function.
After being multiplied by cos(ωct), the autocorrelation function of GW noise
transforms to:

Rc
w(t1, t2) = E{[w(t1) cos(ωct1)] · [w(t2) cos(ωct2)]}

= E[w(t1)w(t2)] · E[cos(ωct1) cos(ωct2)]
= Rw(t1, t2) cos(ωct1) cos(ωct2)

(26)

After being multiplied by sin(ωct), the autocorrelation function of GW noise
transforms to:

Rs
w(t1, t2) = E{[w(t1) sin(ωct1)] · [w(t2) sin(ωct2)]}

= E[w(t1)w(t2)] · E[sin(ωct1) sin(ωct2)]
= Rw(t1, t2) sin(ωct1) sin(ωct2)

(27)

Assuming that the GW noises of the three gyros have the same variance and are
mutually independent, the variance of the longitude error response to the X-axis
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projection of gyros’ GW noises can be expressed as:

erwλX (t)2 =
ðt
0

ðt
0
fλX (τ1)fλX (τ2)[Rc

w(t− τ1, t− τ2) + Rs
w(t− τ1, t− τ2)]dτ1dτ2

=
ðt
0

ðt
0
fλX (τ1)fλX (τ2)q2wΔTδ(τ1 − τ2){cos[ωc(t− τ1)] cos[ωc(t− τ2)]

+ sin[ωc(t− τ1)] sin[ωc(t− τ2)]}dτ1dτ2

= q2wΔT
ðt
0
fλX (τ1)2{cos2[ωc(t− τ1)] + sin2[ωc(t− τ1)]}dτ1

= q2wΔT
ðt
0
fλX (τ1)2dτ1

(28)

where the superscript of eλX
rw(t) means that the error source is the gyro’s GW noise and

the analysis is for a RINS. Comparing Equation (28) with Equation (8), it can be seen
that the two equations equal each other. For the other error propagation channels
analysed in Section 3, the same result can be obtained through similar derivation.
It can be concluded that the rotation technique has no compensation effect for the
position error produced by the gyros’ GW noises. So error propagation formulae of
the GW noise for an INS, which are shown as Equations (9) to (14), also apply to
a RINS.

4.2. The First-order Markov Process Error Propagation Formulae. Assume
that m(t) is the time domain expression of a first-order Markov process and Rm(t1,t2)
is the autocorrelation function. Similar to that for GW noise, after being multiplied
by cos(ωct) the autocorrelation function of the first-order Markov process
transforms to:

Rc
m(t1, t2) = Rm(t1, t2) cos(ωct1) cos(ωct2) (29)

After being multiplied by sin(ωct), the autocorrelation function transforms to:

Rs
m(t1, t2) = Rm(t1, t2) sin(ωct1) sin(ωct2) (30)

We assume that the first-order Markov processes of three gyros have the same
variance and correlation time, and their driven white noises are mutually independent.
Then the variance of the longitude error response to the X-axis projection of gyros’
first-order Markov processes can be expressed as:

ermλX (t)2 =
ðt
0

ðt
0
fλX (τ1)fλX (τ2)[Rc

m(t− τ1, t− τ2) + Rs
m(t− τ1, t− τ2)]dτ1dτ2

=
ðt
0

ðt
0
fλX (τ1)fλX (τ2)σ2r e− τ2−τ1| |/Tm cos[ωc(t− τ1)] cos[ωc(t− τ2)]dτ1dτ2

+
ðt
0

ðt
0
fλX (τ1)fλX (τ2)σ2r e− τ2−τ1| |/Tm sin[ωc(t− τ1)] sin[ωc(t− τ2)]dτ1dτ2

(31)

1077COMPENSATION EFFECTS OF GYROS ’ STOCHASTIC ERRORSNO. 6

https://doi.org/10.1017/S0373463314000319 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463314000319


Similar to the derivation process of Equation (18), Equation (31) can be deduced to:

ermλX (t)2 = 2σ2r

ðt
0

ðτ2
0

fλX (τ1) cos[ωc(t− τ1)]eτ1/Tmdτ1fλX (τ2) cos[ωc(t− τ2)]e−τ2/Tmdτ2

+ 2σ2r

ðt
0

ðτ2
0

fλX (τ1) sin[ωc(t− τ1)]eτ1/Tmdτ1fλX (τ2) sin[ωc(t− τ2)]e−τ2/Tmdτ2

(32)

After plugging fλX(t) into Equation (32), the simplified result for long-term
navigation is as follows:

ermλX (t) ≈
σrTmωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm(1+ sin2 L+ ω2

s T2
m sin2 L)t

q
(1+ ω2

ieT2
m)(1+ ω2

sT2
m) cosL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ω2

ieT
2
m

1+ ω2
ieT2

m + ω2
cT2

m/5

s

= esmλX (t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ ω2
ieT

2
m

1+ ω2
ieT2

m + ω2
cT2

m/5

s (33)

Using the same approach, the RMSE of the latitude response to the X-axis
projection of gyros’ first-order Markov processes can be derived as follows:

ermLX (t) ≈
σrT2

mωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm[3t/T2

m + ω2
s t+ T2

mω
2
sω

2
iet+ ω2

s sin(2ωiet)/(2ωie)]
q

(1+ ω2
ieT2

m)(1+ ω2
sT2

m)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ω2

cT2
m/2

p
= esmLX (t)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ω2

cT2
m/2

q (34)

The RMSE of the longitude response to the Y-axis projection of gyros’ first-order
Markov processes can be derived as follows:

ermλY (t)

≈
σrTmωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm[T2

mω
2
s (4ω2

ieT2
m cos2 L+ 2 cos2 L+ sin2 L tan2 L)t+ 4t+ t/(2 cos2 L)]

q
(1+ ω2

ieT2
m)(1+ ω2

s T2
m)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 0.75ω2

cT2
m

p
= esmλY (t)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 0.75ω2

cT2
m

q
(35)

The RMSE of the latitude response to the Y-axis projection of gyros’ first-order
Markov processes can be derived as follows:

ermLY (t) ≈
σrTmωs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tm(1+ sin2 L+ ω2

s T2
m sin2 L)t

q
(1+ ω2

ieT2
m)(1+ ω2

s T2
m)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ω2

ieT
2
m

1+ ω2
ieT2

m + ω2
cT2

m/5

s

= esmLY (t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ ω2
ieT

2
m

1+ ω2
ieT2

m + ω2
cT2

m/5

s (36)
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The RMSE of the longitude response to the Z-axis projection of gyros’ first-order
Markov processes can be derived as follows:

ermλZ(t)

≈
σr sinL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(3+ 5ω2

ieT2
m + 2ω4

ieT4
m)Tmt+Tm[sin(2ωiet)/2−4 sin(ωiet)](1+ ω2

ieT2
m)/ωie]

q
(1+ ω2

ieT2
m)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ω2

cT2
m

p
= esmλZ(t)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ω2

cT2
m

q
(37)

The RMSE of the latitude response to the Z-axis projection of gyros’ first-order
Markov processes can be derived as follows:

ermLZ(t) ≈
σr cosL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T3
mω

2
iet+ Tmt− Tm sin(2ωiet)/(2ωie) − T2

m sin2(ωiet)
q

(1+ ω2
ieT2

m)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ω2

cT2
m

p
= esmLZ(t)/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ ω2

cT2
m

q (38)

Equations (33) to (38) show the error propagation formulae of gyros’ first-order
Markov processes in a RINS and the relations with the formulae for an INS. It can
be seen that the rotation technique has good compensation effects for the position
error produced by gyros’ first-order Markov processes. The longitude and latitude
accuracy improvement are different for each axis gyro, but the improvements are all
approximately proportional to the rotation rate ωc and the correlation time Tm.

4.3. The RINS Rotation Scheme. In the above analysis, the rotation scheme is
simplified for convenience. Actually, a real rotation scheme is more complicated. Take
the rotation scheme of AN/WSN-7B as an example: the IMU rotates back and forth
through four positions (−45°, −135°, +45°, +135°), the dwell time in each position is
five minutes and the rotation rate between two positions is 20°/s (Tucker and
Levinson, 2000). There are two factors in the rotation scheme:

1) The first factor is the rotation mode. It can be seen that the IMU periodically
rotates among four positions instead of rotating continuously. There are two
main reasons: one is to reduce the errors introduced by the rotation, such as the
dynamic error of the IMU and the wobble error of the rotary table; the other is
to avoid the use of slip rings so as to improve the system reliability as well as to
reduce the cost.

2) The other factors are the dwell time and the rotation time, which together
determine the rotation period. When choosing the rotation period, its effects on
the IMU’s errors and the rotation errors should be carefully considered.

In the analysis of Sections 4.1 and 4.2, the continuous rotation mode is adopted for
simplicity. When the four-position rotation mode is used, some qualitative analysis
can be made as follows:

1) Since the frequency of the GW noises is much higher than the rotation, the
conclusions obtained under the condition of the continuous rotation mode also
apply to the condition of the four-position rotation mode.
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2) Since gyros’ first-order Markov processes are low-frequency noises, the position
errors spread faster when the rotary table dwells than when the rotary table
rotates. That is to say, in an actual RINS, the compensation effects of gyros’
first-order Markov processes are lower than the derived results of section 4.2.

5. SIMULATION AND DISCUSSION. In this section, some simulations
are carried out to verify the compensation effects of gyros’ stochastic errors brought
by the rotation technique. Since the rotation mode and the rotation period are the two
main factors in the rotation scheme of a RINS, both their impacts on the compensation
effects will be tested. Some basic simulation conditions are set as follows:

1) The initial longitude, latitude and altitude are assumed to be [110° 20°
500 m]. The INS and the RINS are assumed to be stationary. The sample time is
one second, and the total simulation time is 36 hours.

2) In order to test the derived formulae, the GW noises and the first-order Markov
processes are added to each gyro’s signal separately.

5.1. Simulations of Position Errors Response to Gyros’ GWNoises. According to
the analysis in Sections 3 and 4, the error propagation formulae of the GW noise for
an INS are the same as the formulae for a RINS, so Equations (9) to (14) show the
RMSEs of the longitude and the latitude produced by each gyro’s GW noise both in
an INS and in a RINS. In order to test the effects of the rotation technique, the
simulations are designed as follows: the GW noise with the SD set as 0·005°/h is added
to each axis gyro’s value in an INS and in a RINS; in the RINS, the period of rotation
is set to 20 minutes, the rotation mode is chosen as continuous rotation and four-
position rotation respectively. The RMSEs of the longitude and latitude are shown as
Figures 1 to 6. In the figures, the “calculated values” are obtained through the derived
formulae, while the “simulation results” are the statistical results of the 100 simulated
navigation results.
From Figures 1 to 6, it can be observed that the calculated results, the simulation

results of the INS and the simulation results of the RINS adopting the continuous

Figure 1. The RMSEs of the longitude response to the X-gyro’s GW noise.
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Figure 2. The RMSEs of the latitude response to the X-gyro’s GW noise.

Figure 3. The RMSEs of the longitude response to the Y-gyro’s GW noise.

Figure 4. The RMSEs of the latitude response to the Y-gyro’s GW noise.
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rotation mode show good consistency, indicating the correctness of the derived
formulae. Besides, the calculated results also show a good consistency with the
simulation results of the RINS adopting the four-position rotation mode, so it can be
concluded that the theoretical analysis can apply to an actual rotation scheme.
Through further observation, there exist more oscillations in the simulation curves

than the derived ones. The oscillations are caused by the Schuler frequency com-
ponents existing in the derived complete expressions. In this paper, we mainly focus on
the overall trend of the position error, which is the major factor of the position
accuracy. Since the Schuler frequency components have little effect on the overall
trend and the complete expressions are complicated, the Schuler frequency com-
ponents are abandoned during the expression simplification.

5.2. Simulations of Position Errors’ Response to Gyros’ First-order Markov
Processes. Equations (19) to (24) show the RMSEs of the longitude and the latitude
produced by each gyro’s first-order Markov process in an INS, and Equations (33) to
(38) are for a RINS. In order to test the usability of the derived formulae, the
simulation conditions are set as follows: a first-order Markov process is added to
each axis gyro’s value in an INS and a RINS. Its correlation time is 3600 seconds and

Figure 6. The RMSEs of the latitude response to the Z-gyro’s GW noise.

Figure 5. The RMSEs of the longitude response to the Z-gyro’s GW noise.
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SD is 0·01°/h; in the RINS, the rotation period is set as 40 minutes, 20 minutes,
10 minutes, 5 minutes, 1 minute, 30 seconds, 10 seconds and 1 second respectively.
Besides, for the rotation period with 40 minutes, 20 minutes, 10 minutes and
5 minutes, both the continuous rotation mode and the four-position rotation mode
are considered; for the rotation period of 1 minute, 30 seconds, 10 seconds and
1 second, only the continuous rotation mode is considered, since the above rotation
periods are short and not suitable for the four-position rotation mode.
The simulation results are shown as Tables 2 and 3, which are the statistical results

of 100 simulations. Figures 7 to 12 show the RMSE curves of the simulated INS and
the simulated RINS with the rotation period as 20 minutes.
From Figures 7 to 12, it can be observed that the trends of the calculated results are

consistent with the simulation results. The final RMSEs of the position are shown in
Tables 2 and 3 and the following conclusions can be drawn:

1) The simulation results of the RINS adopting the continuous rotation mode show
good consistency with the calculated values except for the one with the rotation
period as one second. It indicates that the derived formulae are valid in most
ranges of rotation periods. However, when the rotation period reaches the
sample time, the rotation technique fails because of insufficient samples.

2) Comparing the simulation results of the RINS adopting the four-position rota-
tion mode with the calculated values, it can be seen that the RMSEs of the simu-
lation results are larger than the calculated ones. However, the difference
decreases as the rotation period decreases. When the rotation period is
20 minutes, the RMSEs of the simulated results are about 1·3 times the cal-
culated ones, which is accurate enough for the analysis of the compensation
effects in the RINS.

6. CONCLUSIONS. In this paper, the compensation effects of gyros’
stochastic errors achieved by the rotation technique in a RINS are discussed. During
the research, the position errors of an INS and a RINS response to gyros’ stochastic
errors, which are modelled as GW noise plus first-order Markov process, are analysed.
The error propagation formulae are derived, as shown in Equations (9) to (14), (19) to
(24) and (33) to (38). A variety of different simulation conditions were designed to test
the formulae. Through the theoretical analysis and the simulation results, the
following conclusions can be made:

1) The rotation technique has no compensation effect for the position error
produced by gyros’GW noises. In a RINS, the error propagation characteristics

Table 2. The final RMSEs of the position response to gyros’ first-order Markov process in the INS.

error source

RMSEs of the longitude (nmiles) RMSEs of the latitude (nmiles)

calculated values simulation results Calculated values simulation results

X-gyro 1·34 1·35 3·56 3·38
Y-gyro 4·53 4·16 1·34 1·21
Z-gyro 1·99 1·97 3·28 3·58
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of gyros’GW noises to the position error are the same with the characteristics in
an INS, shown as Equations (9) to (14).

2) The rotation technique has good compensation effect on the position error
produced by gyros’ first-order Markov processes. Adopting the continuous
rotation scheme, the quantitative formulae are derived as Equations (33) to (38),
and it is proved that the compensation effect improves as the rotation period
decreases. When an actual rotation mode (such as the four-position rotation
mode) is adopted, the compensation effect is lower than the derived formulae.
However, the derived formulae are accurate enough to analyse the compensation
effects brought by the rotation technique.

Currently, two types of RINSs, including a fibre optic gyro (FOG) -based RINS
and a micro electro mechanical system (MEMS) gyro based RINS, are being designed
in the authors’ department. The theoretical results of this paper have been applied to
the design phase: firstly, since the position errors of the RINS produced by gyros’
stochastic errors can be quantitatively predicted, the derived formulae were used to
guide the type selection of gyros according to the expected navigation accuracy;
secondly, static experiments of the selected gyros were carried out and gyros’

Table 3. The final RMSEs of the position response to the gyro’s first-order Markov process in the RINS.

Error
source

Rotation
period

RMSEs of the longitude (nmiles) RMSEs of the latitude (nmiles)

Calculated
values

Simulation results

Calculated
values

Simulation results

Continuous
rotation

4-position
rotation

Continuous
rotation

4-position
rotation

X-gyro 40 minutes 3·18×10−1 3·95×10−1 9·18×10−1 5·28×10−1 5·66×10−1 9·65×10−1

20 minutes 1·62×10−1 1·72×10−1 2·28×10−1 2·66×10−1 2·52×10−1 3·00×10−1

10 minutes 8·18×10−2 7·58×10−2 9·68×10−2 1·33×10−1 1·22×10−1 1·47×10−1

5 minutes 4·12×10−2 4·09×10−2 4·80×10−2 6·68×10−2 5·83×10−2 7·19×10−2

1 minute 8·19×10−3 7·49×10−3 – 1·33×10−2 1·18×10−2 –

30 seconds 4·09×10−3 3·68×10−3 – 6·68×10−3 6·22×10−3 –

10 seconds 1·36×10−3 1·12×10−3 – 2·22×10−3 2·01×10−3 –

1 second 1·36×10−4 1·26 – 2·22×10−4 3·36 –

Y-gyro 40 minutes 5·51×10−1 5·96×10−1 9·92×10−1 3·18×10−1 3·81×10−1 8·52×10−1

20 minutes 2·77×10−1 3·02×10−1 3·49×10−1 1·63×10−1 1·61×10−1 2·24×10−1

10 minutes 1·39×10−1 1·15×10−1 1·85×10−1 8·18×10−2 1·11×10−1 1·03×10−1

5 minutes 6·94×10−2 6·66×10−2 8·55×10−2 4·09×10−2 4·37×10−2 4·42×10−2

1 minute 1·39×10−2 1·35×10−2 – 8·20×10−3 7·65×10−3 –

30 seconds 6·94×10−3 5·78×10−3 – 4·10×10−3 5·34×10−3 –

10 seconds 2·31×10−3 2·27×10−3 – 1·37×10−3 1·29×10−3 –

1 second 2·31×10−4 3·86 – 1·37×10−4 1·10 –

Z-gyro 40 minutes 2·10×10−1 2·13×10−1 2·45×10−1 3·46×10−1 3·57×10−1 3·96×10−1

20 minutes 1·05×10−1 1·22×10−1 1·30×10−1 1·74×10−1 2·01×10−1 2·38×10−1

10 minutes 5·27×10−2 5·44×10−2 5·99×10−2 8·69×10−2 8·40×10−2 1·07×10−1

5 minutes 2·63×10−2 3·27×10−2 3·31×10−2 4·35×10−2 5·19×10−2 5·63×10−2

1 minute 5·27×10−3 5·09×10−3 – 8·70×10−3 8·16×10−3 –

30 seconds 2·63×10−3 2·86×10−3 – 4·35×10−3 3·96×10−3 –

10 seconds 8·78×10−4 1·00×10−3 – 1·45×10−3 1·86×10−3 –

1 second 8·78×10−5 1·82 – 1·45×10−4 3·47 –
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Figure 8. The RMSEs of the latitude response to the X-gyro’s first-order Markov process.

Figure 9. The RMSEs of the longitude response to the Y-gyro’s first-order Markov process.

Figure 7. The RMSEs of the longitude response to the X-gyros first-order Markov process.
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Figure 11. The RMSEs of the longitude response to the Z-gyro’s first-order Markov process.

Figure 12. The RMSEs of the latitude response to the Z-gyro’s first-order Markov process.

Figure 10. The RMSEs of the latitude response to the Y-gyro’s first-order Markov process.
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stochastic errors were analysed, and then the theoretical results of this paper were used
during the design of the two RINSs’ rotation schemes. The theoretical results have
potential application in the design of other INSs and RINSs.
Although the theoretical results of this paper serve as an important reference for the

design of a rotation scheme, it should be stated that there are still many other factors
to consider, such as the compensation effects of IMU’s other errors and the errors
introduced by the rotation.
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