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Complex linear differential equations with
solutions in weighted Dirichlet spaces and
derivative Hardy spaces

Qingze Lin and Huayou Xie

Abstract. In this article, by the use of nth derivative characterization, we obtain several some sufficient
conditions for all solutions of the complex linear differential equation

f (n) + An−1(z) f (n−1) + . . . + A1(z) f ′ + A0(z) f = An(z)

to lie in weighted Dirichlet spaces and derivative Hardy spaces, respectively, where A i(z)(i =
0, 1, . . . , n) are analytic functions defined in the unit disc. This work continues the lines of the
investigations by Heittokangas, et al. for growth estimates about the solutions of the above equation.

1 Introduction

Denote by D the open unit disc in the complex plane and by ∂D = {z ∶ ∣z∣ = 1} the unit
circle. Define H(D) as the space of all analytic functions on D.

In 1982, the complex second-order equation

f ′′ + A(z) f = 0,

where A(z) ∈ H(D), was investigated by Pommerenke [37]. By means of Carleson
measures, he showed some sufficient conditions on the analytic function A(z) such
that all solutions of the above equation lie in Hardy spaces. Later on, complex linear
differential equations of second and even higher orders on the unit disc attracted the
attention of many scholars. In 2000, Heittokangas [19] investigated the growth of the
solutions of the equation

f (n) + An−1(z) f (n−1) + . . . + A1(z) f ′ + A0(z) f = An(z)(1.1)

where n ≥ 2. He wished to find some sufficient conditions for the coefficients
A i(z)(i = 0, 1, . . . , n) such that all solutions of the (1.1) lie in some function
spaces (i.e., weighted Hardy spaces, Bloch type spaces and general function spaces
F(p, q, s)). In [25], two sufficient conditions for all solutions of (1.1) to lie in growth
spaces H∞α were presented by Huusko et al. Recall that for 0 < α < ∞, H∞α is the space
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consisting of all functions f ∈ H(D) such that

∥ f ∥H∞α ∶= sup
z∈D

∣ f (z)∣(1 − ∣z∣2)α < ∞.

Recently, (1.1) had been extensively studied in some other function spaces, such as
weighted Fock spaces [24], Morrey spaces [39] and Dirichlet–Morrey spaces [40].
In particular, for the case of An(z) = 0, a lot of works had been done by a number
of researchers. For instance, by means of sharp estimates of logarithmic derivatives,
Gundersen–Steinbart–Wang [17] showed that every solution f of the linear differen-
tial equation

f (n) + pn−1(z) f (n−1) + . . . + p1(z) f ′ + p0(z) f = 0

where p i(z) are polynomials and p0 ≠ 0, is entire of finite rational order. The related
problems in the unit disc were later considered by Chyzhykov et al. [5]. Indeed, they
investigated the impact of the increasing in coefficients on the growth of solutions of
the equation

f (n) + An−1(z) f (n−1) + . . . + A1(z) f ′ + A0(z) f = 0.(1.2)

Later on, Korhonen and Rättyä [26] continued the work of Chyzhykov et al. to show
a precise estimate for the growth of solutions of the (1.2). In [21], Heittokangas et al.
studied the growth relation between the coefficients and the solutions of the (1.2) in
weighted Bergman or Hardy spaces. Indeed, they show that when the coefficients
in the (1.2) belong to weighted Bergman or Hardy spaces, then all solutions are of
some finite orders of growth, measured according to the Nevanlinna characteristic.
For more related results, we refer the readers to [4, 15, 20, 27, 28, 42].

In this article, motivated by the above works, we are interested in studying the
sufficient conditions for all solutions of the (1.1) to lie in derivative Hardy spaces and
weighted Dirichlet spaces. Now, let’s recall their definitions.

Definition 1.1. Let 0 < p < ∞. The derivative Hardy space S p is a proper subspace
of Hardy space H2 and consists of f ∈ H(D) satisfying

∥ f ∥S p ∶= (∣ f (0)∣p + ∥ f ′∥H p)1/p = (∣ f (0)∣p + sup
0<r<1

1
2π ∫

2π

0
∣ f ′(re iθ)∣pdθ)

1/p

< ∞.

In particular, for any f (z) = ∑∞n=0 anzn ∈ H(D), it holds that ∥ f ∥2
S2 = ∣ f (0)∣2 +

∑∞n=1 n2∣an ∣2. In 1978, Roan [38] started on the investigations for the boundedness
of composition operators on derivative Hardy spaces. Related problems were also
investigated by MacCluer [35]. After their works, Contreras and Hernández–Díaz [6]
made a systematic work on the boundedness, compactness, complete continuity, and
weak compactness of weighted composition operators on derivative Hardy spaces.
Recently, Lin, et al. [32] showed the boundedness of Volterra type operators on
derivative Hardy spaces. Other intriguing issues about derivative Hardy spaces have
been studied, including linear isometries [36], invariant subspace problems [7, 8, 29,
32], order boundedness of weighted composition operators [31, 33] and so forth. For
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Complex linear differential equations 3

more results about the derivative Hardy spaces, we refer the readers to [2, 9, 16, 18, 22,
23] and the references therein.

For 0 < p < ∞ and −1 < α < ∞, the weighted Bergman space Ap
α consists of all f ∈

H(D) such that

∥ f ∥p
Ap

α
∶= ∫

D

∣ f (w)∣pdAα(w) < ∞

where dA(w) = (1/π)dxd y is the normalized Lebesgue area measure on D and
dAα(w) = (1 + α)(1 − ∣w∣2)α dA(w) is the weighted Lebesgue measure (See [10] or
[43] for more information about Bergman spaces).

Definition 1.2. For 0 < p < ∞ and −1 < α < ∞, the weighted Dirichlet space D
p
α

consists of all f ∈ H(D) such that

∥ f ∥Dp
α
∶= (∣ f (0)∣p + ∫

D

∣ f ′(w)∣pdAα(w))
1/p

< ∞.

It is obvious that for any f ∈ H(D), f ∈Dp
α if and only if f ′ ∈ Ap

α . When p < α + 1,
the weighted Dirichlet space D

p
α coincides with the weighted Bergman space Ap

α−p
with equivalent norms. If p > α + 2, the weighted Dirichlet space Dp

α is contained in
the essentially bounded space H∞ (see [41, Theorem 4.2]).

In 1999, Wu [41] gave the Carleson measure characterization for the weighted
Dirichlet spaceDp

α when p ≥ α + 1. In addition, he provided a sufficient and necessary
condition, in terms of Carleson measures, for boundedness of multiplication opera-
tors on such weighted Dirichlet spaces. Related studies also appeared in the work of
Arcozzi–Rochberg–Sawyer [3]. Continuing their researches, Girela and Peláez [12]
obtained complete characterizations, in terms of Carleson measures, of conditions
that enable the weighted Dirichlet spaces D

p
α to be embedded into the Lebesgue

spaces Lq(dμ) for q > p > 0, where dμ is a positive Borel measure on D. Later, the
characterizations of boundedness and compactness of multiplication operators and
some integration operators on weighted Dirichlet spaces were obtained in [11, 30].
See [13] and [14] for related studies about weighted Dirichlet spaces.

Now, we state our main results. Theorems 1.1 and 1.2 show two sufficient conditions
for all solutions of the (1.1) to lie in weighted Dirichlet spaces. Theorems 1.3 and 1.4
show two sufficient conditions for all solutions of the (1.1) to lie in derivative Hardy
spaces.

Theorem 1.1. Let 0 < p < ∞ and α > −1. Let n be a positive integer and A i ∈ H(D),
i = 0, 1, . . . , n. Assume that the following statements hold:

C1 ∶= ∫
D

∣∫
z

0
∫

ξ1

0
. . .∫

ξn−2

0
An(ξn−1)dξn−1 . . . dξ1∣

p

dAα(z) < ∞,

C2 ∶= ∫
D

⎛
⎜
⎝

n−1
∑
m=1

∫
z

0
∫

ξ1

0
. . .∫

ξm−1

0

∣∑m
k=1 A(m−k)

n−k (ξm)∣

(1 − ∣ξm ∣2)
α+2

p
dξm . . . dξ1

⎞
⎟
⎠

p

dAα(z)
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and

C3 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫D (∫
z

0 ∫
ξ1

0 . . . ∫
ξn−2

0
∣A0(ξn−1)∣

(1−∣ξn−1 ∣2)
α+2−p

p
dξn−1 . . . dξ1)

p

dAα(z),

if p < α + 2;

∫D (∫
z

0 ∫
ξ1

0 . . . ∫
ξn−2

0 ∣A0(ξn−1)∣ (log 2
1−∣ξn−1 ∣2 )

p−1
p dξn−1 . . . dξ1)

p

dAα(z),

if p = α + 2;

∫D (∫
z

0 ∫
ξ1

0 . . . ∫
ξn−2

0 ∣A0(ξn−1)∣ dξn−1 . . . dξ1)
p

dAα(z),
if p > α + 2.

are two positive constants satisfying C2 + C3 < 1/d, where d > 0 is sufficiently large and
is only related to n, p. Then all solutions of the (1.1) lie in D

p
α .

Theorem 1.2. Let 0 < p < ∞ and α > −1. Let n be a positive integer and A i ∈ H(D),
i = 0, 1, . . . , n. Assume that the following statements hold:

K1 ∶= ∫
D

∣An(z)∣p(1 − ∣z∣2)pn−pdAα(z) < ∞,

K2 ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫D ∣A0(z)∣p(1 − ∣z∣2)pn−α−2dAα(z), if p < α + 2;

∫D ∣A0(z)∣p(1 − ∣z∣2)pn−p (log 2
1−∣z∣2 )

p−1
dAα(z), if p = α + 2;

∫D ∣A0(z)∣p(1 − ∣z∣2)pn−pdAα(z), if p > α + 2,

and

K3 ∶=
n−1
∑
i=1

∥A i∥p
H∞n−i

are two positive constants satisfying K2 + K3 < 1/c, where c > 0 is sufficiently large and
is only related to n, p. Then all solutions of the (1.1) lie in D

p
α .

Theorem 1.3. Let 0 < p < ∞. Let n be a positive integer and A i ∈ H(D), i =
0, 1, . . . , n. Assume that the following statements hold:

C1 ∶= sup
0<r<1

1
2π ∫

2π

0
∣∫

re iθ

0
∫

ξ1

0
. . .∫

ξn−2

0
An(ξn−1)dξn−1 . . . dξ1∣

p

dθ < ∞,

C2 ∶= sup
0<r<1

1
2π ∫

2π

0

⎛
⎜
⎝

n−1
∑
m=1

∫
re iθ

0
∫

ξ1

0
. . .∫

ξm−1

0

∣∑m
k=1 A(m−k)

n−k (ξm)∣
(1 − ∣ξm ∣2)1/p dξm . . . dξ1

⎞
⎟
⎠

p

dθ

and

C3 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup0<r<1
1

2π ∫
2π

0 (∫
re iθ

0 ∫
ξ1

0 . . . ∫
ξn−2

0
∣A0(ξn−1)∣

(1−∣ξn−1 ∣2)
1−p

p
dξn−1 . . . dξ1)

p

dθ ,

if 0 < p < 1;
sup0<r<1

1
2π ∫

2π
0 (∫

re iθ

0 ∫
ξ1

0 . . . ∫
ξn−2

0 ∣A0(ξn−1)∣p dξn−1 . . . dξ1) dθ ,
if 1 ≤ p < ∞.
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are two positive constants satisfying C2 + C3 < 1/d, where d > 0 is sufficiently large and
is only related to n, p. Then all solutions of the (1.1) lie in S p .

Theorem 1.4. Let 0 < p < ∞. Let n be a positive integer and A i ∈ H(D), i =
0, 1, . . . , n. Assume that the following statements hold:

K1 ∶= ∫
∂D
(∫

S(ξ)
∣An(z)∣2(1 − ∣z∣2)2n−4dA(z))

p/2
dm(ξ) < ∞,

K2 ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫∂D (∫S(ξ) ∣A0(z)∣2(1 − ∣z∣2)2(n−1− 1
p )dA(z))

p/2
dm(ξ), if 0 < p < 1;

∫∂D (∫S(ξ) ∣A0(z)∣2(1 − ∣z∣2)2n−4dA(z))
p/2

dm(ξ), if 1 ≤ p < ∞,

and

K3 ∶=
n−1
∑
i=1

min{∥A i∥p
H∞n−i

,∫
∂D
(∫

S(ξ)
∣A i(z)∣2(1 − ∣z∣2)2(n− j−1− 1

p )dA(z))
p/2

dm(ξ)}

are two positive constants satisfying K2 + K3 < 1/c, where c > 0 is sufficiently large and
is only related to n, p. Then all solutions of the (1.1) lie in S p .

The structure of this article is organized as follows.
In Section 2, we collect some preliminary lemmas that will be used throughout the

article. In Section 3, we prove our main results.
Throughout this article, for any two positive functions f (x) and g(x), we write

f ≲ g if f ≤ cg holds, where c is a positive constant independent of the variable x. We
write f ≈ g whenever f ≲ g ≲ f . Moreover, the value of “c” may vary from line to line
but will remain independent of the main variables.

2 Preliminaries

First, we need the following two lemmas, which will be used frequently later.

Lemma 2.1. [9] Suppose that N is a positive integer and bn ≥ 0 for n = 1, 2, . . . , N.
Then

(
N
∑
n=1

bn)
p

≤
N
∑
n=1

bp
n , 0 < p ≤ 1

and

(
N
∑
n=1

bn)
p

≤ N p−1 (
N
∑
n=1

bp
n) , 1 ≤ p < ∞.

Lemma 2.2. [43, Theorem 4.28] Suppose p > 0, α > −1, n ≥ 0, and f ∈ H(D). Then

∥ f ∥Ap
α
≈

n−1
∑
i=0

∣ f (i)(0)∣p + ∫
D

∣ f (n)(z)∣p(1 − ∣z∣2)n pdAα(z).

Moreover, we need to use the following equivalent norms of H p :
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Lemma 2.3. [1, p. 125] Suppose 0 < p < ∞ and f ∈ H p . Then

∥ f ∥p
H p ≈

n−1
∑
i=0

∣ f (i)(0)∣p + ∫
∂D
(∫

S(ξ)
∣ f (n)(z)∣2(1 − ∣z∣2)2n−2dA(z))

p/2
dm(ξ).

Next, the growth estimates of elements in S p andD
p
α are given in the following two

lemmas, respectively.

Lemma 2.4. (see [32, 33]) If 1 ≤ p < ∞, then for any f ∈ S p , it holds that ∣ f (z)∣ ≤
π∥ f ∥S p , z ∈ D. If 0 < p < 1, then for any f ∈ S p ,

∣ f (z)∣ ≲ ∥ f ∥S p

(1 − ∣z∣2)1/p−1 , ∀z ∈ D.

Lemma 2.5. [41] Let 0 < p < ∞ and α > −1. If f ∈Dp
α , then

(1) ∣ f (z)∣ ≲
∥ f ∥

D
p
α

(1−∣z∣2)
α+2−p

p
, whenever p < α + 2;

(2) ∣ f (z)∣ ≲ (log 2
1−∣z∣2 )

p−1
p ∥ f ∥Dp

α
, whenever p = α + 2;

(3) ∣ f (z)∣ ≤ ∥ f ∥Dp
α
, whenever p > α + 2.

In addition, we have to use the following growth estimates for the n-th order
derivative function.

Lemma 2.6. Let 0 < p < ∞,α > −1 and n be a positive integer. If f ∈Dp
α , then

∣ f (n)(z)∣ ≲
∥ f ∥Dp

α

(1 − ∣z∣2)
2+α

p +n−1
, z ∈ D.

Proof. For any z ∈ D, by [34, Lemma 2.1], we know

∣ f (n−1)(z)∣p ≲ ∫Dr(z) ∣ f (w)∣pdAα(w)
(1 − ∣z∣2)2+α+(n−1)p ≲ ∫D ∣ f (w)∣pdAα(w)

(1 − ∣z∣2)2+α+(n−1)p .

Letting f = g′ yields

∣g(n)(z)∣p ≲ ∫D ∣g′(w)∣pdAα(w)
(1 − ∣z∣2)2+α+(n−1)p ,

which is the desired result. ∎

By Lemma 2.3, it is not difficult to obtain the following result.

Lemma 2.7. Let 0 < p < ∞ and n be a non-negative integer. If f ∈ S p , then

∣ f (n)(z)∣ ≲ ∥ f ∥S p

(1 − ∣z∣2)1/p+n−1 , z ∈ D.
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3 The proof of the main results

Proof of Theorem 1.1 Assume that f is a solution of (1.1), then

f (n)r (z) +
n−1
∑
j=0

B j(z) f ( j)
r (z) = Bn(z), z ∈ D,(3.1)

where fr(z) = f (rz), B j(z) = B j(z, r) = rn− j A j(rz), j = 0, . . . , n − 1, Bn(z) =
rn An(rz), 0 ≤ r < 1.

By using the equation

f (z) = ∫
z

0
f ′(ξ)dξ + f (0)

n − 1 times, we get

f ′r (z) = ∫
z

0
∫

ξ1

0
. . .∫

ξn−2

0
f (n)r (ξn−1)dξn−1 . . . dξ1 +

n−2
∑
j=0

f ( j+1)
r (0)

j!
z j

= ∫
z

0
∫

ξ1

0
. . .∫

ξn−2

0

⎛
⎝

Bn(ξn−1) −
n−1
∑
j=0

B j(ξn−1) f ( j)
r (ξn−1)

⎞
⎠

dξn−1 . . . dξ1

+
n−2
∑
j=0

f ( j+1)
r (0)

j!
z j .

Combining this with Lemma 2.1, we obtain

∥ fr∥p
D

p
α
= ∫

D

∣ f ′r (z)∣pdAα(z) + ∣ fr(0)∣p

= ∫
D

∣ ∫
z

0
∫

ξ1

0
. . .∫

ξn−2

0

⎛
⎝

Bn(ξn−1) −
n−1
∑
j=0

B j(ξn−1) f ( j)
r (ξn−1)

⎞
⎠

dξn−1 . . . dξ1

+
n−2
∑
j=0

f ( j+1)
r (0)

j!
z j∣

p

dAα(z) + ∣ fr(0)∣p

≲ ∫
D

∣∫
z

0
∫

ξ1

0
. . .∫

ξn−2

0
Bn(ξn−1)dξn−1 . . . dξ1∣

p

dAα(z)

+ ∫
D

'''''''''''
∫

z

0
∫

ξ1

0
. . .∫

ξn−2

0

n−1
∑
j=1

B j(ξn−1) f ( j)
r (ξn−1)dξn−1 . . . dξ1

'''''''''''

p

dAα(z)

+ ∫
D

∣∫
z

0
∫

ξ1

0
. . .∫

ξn−2

0
B0(ξn−1) fr(ξn−1)dξn−1 . . . dξ1∣

p

dAα(z)

+ ∫
D

'''''''''''

n−2
∑
j=0

f ( j+1)
r (0)

j!
z j
'''''''''''

p

dAα(z) + ∣ fr(0)∣p

= I1 + I2 + I3 + I4 + I5 .
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Let us first discuss I2. From [25, Lemma 12], we have

I2 = ∫
D

'''''''''''
∫

z

0
∫

ξ1

0
. . .∫

ξn−2

0

n−1
∑
j=1

j−1

∑
i=0
(−1)i( j − 1

i
)( f ′r ⋅B

(i)
j )( j−i−1)(ξn−1)dξn−1 . . . dξ1

'''''''''''

p

× dAα(z)

As

∫
ξn−1−( j−i−1)

0
∫

ξn−( j−i−1)

0
. . .∫

ξn−2

0
( f ′r ⋅B

(i)
j )

( j−i−1)
(ξn−1)dξn−1 . . . dn−( j−i−1)

= ∫
ξn−1−( j−i−1)

0
∫

ξn−( j−i−1)

0
. . .∫

ξn−3

0
[( f ′r ⋅B

(i)
j )

( j−i−2)
(ξn−2) − ( f ′r ⋅B

(i)
j )

( j−i−2)
(0)]

× dξn−2 . . . dn−( j−i−1)

= B(i)
j (ξn−1−( j−i−1)) f ′r (ξn−1−( j−i−1)) −

j−i−2

∑
t=0

(B(i)
j f ′r )

(t)
(0)

t!
ξt

n−1−( j−i−1) ,

then

I2 = ∫
D

'''''''''''

n−1
∑
j=1

j−1

∑
i=0
(−1)i( j − 1

i
)

× ∫
z

0
∫

ξ1

0
. . .∫

ξn−2−( j−i−1)

0

⎡⎢⎢⎢⎢⎣
B(i)

j (ξn−1−( j−i−1)) f ′r (ξn−1−( j−i−1))

−
j−i−2

∑
t=0

(B(i)
j f ′r )

(t)
(0)

t!
ξt

n−1−( j−i−1)

⎤⎥⎥⎥⎥⎦
dξn−1−( j−i−1) . . . dξ1

'''''''''''

p

dAα(z).

We relabel the indices as follows:

j = n − k, i = m − k.

It follows that

I2 =∫
D

'''''''''''

n−1
∑
m=1

∫
z

0
∫

ξ1

0
. . .∫

ξm−1

0
[

m
∑
k=1
(−1)m−k(n − k − 1

m − k
)B(m−k)

n−k (ξm)]

× f ′r (ξm)dξm . . . dξ1 −
n−1
∑
j=1

j−1

∑
i=0

j−i−2

∑
t=0

(−1)i( j − 1
i
)
(B(i)

j f ′r )
(t)

(0)
(n − j + i + t)!

zn− j+i+t
'''''''''''

p

dAα(z)

≲∫
D

∣
n−1
∑
m=1

∫
z

0
∫

ξ1

0
. . .∫

ξm−1

0
[

m
∑
k=1

B(m−k)
n−k (ξm)] f ′r (ξm)dξm . . . dξ1∣

p

dAα(z)

+ ∫
D

''''''''''''''''

n−1
∑
j=1

j−1

∑
i=0

j−i−2

∑
t=0

(B(i)
j f ′r )

(t)
(0)

(n − j + i + t)!
zn− j+i+t

''''''''''''''''

p

dAα(z)

=I21 + I22 .
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By Lemma 2.6, we have

I21 ≤∫
D

(
n−1
∑
m=1

∫
z

0
∫

ξ1

0
. . .∫

ξm−1

0
∣

m
∑
k=1

B(m−k)
n−k (ξm)∣ ∣ f ′r (ξm)∣ dξm . . . dξ1)

p

dAα(z)

≲∥ fr∥p
D

p
α
∫
D

⎛
⎜
⎝

n−1
∑
m=1

∫
z

0
∫

ξ1

0
. . .∫

ξm−1

0

∣∑m
k=1 B(m−k)

n−k (ξm)∣

(1 − ∣ξm ∣2)
α+2

p
dξm . . . dξ1

⎞
⎟
⎠

p

dAα(z)

≲∥ fr∥p
D

p
α
C2 .

On the other hand, we have

I4 + I22 = sup
z∈D

⎛
⎜⎜⎜
⎝

'''''''''''

n−2
∑
j=0

f ( j+1)
r (0)

j!
z j
'''''''''''

p

+

''''''''''''''''

n−1
∑
j=1

j−1

∑
i=0

j−i−2

∑
t=0

(B(i)
j f ′r )

(t)
(0)

(n − j + i + t)!
zn− j+i+t

''''''''''''''''

p⎞
⎟⎟⎟
⎠

≤ C f < ∞.

Using Lemma 2.5 again, we have

I3 ≲ ∫
D

(∫
z

0
∫

ξ1

0
. . .∫

ξn−2

0
∣B0(ξn−1)∣ ∣ fr(ξn−1)∣ dξn−1 . . . dξ1)

p

dAα(z)

≲ ∥ fr∥p
D

p
α
C3 ,

where

C3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫D (∫
z

0 ∫
ξ1

0 . . . ∫
ξn−2

0
∣B0(ξn−1)∣

(1−∣ξn−1 ∣2)
α+2−p

p
dξn−1 . . . dξ1)

p

dAα(z),

if p < α + 2;

∫D (∫
z

0 ∫
ξ1

0 . . . ∫
ξn−2

0 ∣B0(ξn−1)∣ (log 2
1−∣ξn−1 ∣2 )

p−1
p dξn−1 . . . dξ1)

p

dAα(z),

if p = α + 2;

∫D (∫
z

0 ∫
ξ1

0 . . . ∫
ξn−2

0 ∣B0(ξn−1)∣ dξn−1 . . . dξ1)
p

dAα(z)
if p > α + 2.

Consequently,

∥ fr∥p
D

p
α
≲ C1 + I22 + I4 + I5

1 − d(C2 + C3)
< ∞,

which gives that f ∈Dp
α as r → 1−. This completes the proof. ∎

Proof of Theorem 1.2 Assume that f is a solution of (1.1), then we have

f (n)r (z) +
n−1
∑
j=0

B j(z) f ( j)
r (z) = Bn(z), z ∈ D,

where fr(z) = f (rz), B j(z) = B j(z, r) = rn− j A j(rz), j = 0, . . . , n − 1, Bn(z) =
rn An(rz), 0 ≤ r < 1.
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By Lemmas 2.1 and 2.2, we have

∥ fr∥p
D

p
α
≈∫

D

∣ f (n)r (z)∣p(1 − ∣z∣2)pn−pdAα(z) +
n−1
∑
k=0

∣ f (k)
r (0)∣p

=∫
D

'''''''''''
Bn(z) −

n−1
∑
j=0

B j(z) f ( j)
r (z)

'''''''''''

p

(1 − ∣z∣2)pn−pdAα(z) +
n−1
∑
k=0

∣ f (k)
r (0)∣p

≤∫
D

⎛
⎝
∣Bn(z)∣ + ∣B0(z) fr(z)∣ +

n−1
∑
j=1

∣B j(z) f ( j)
r (z)∣

⎞
⎠

p

(1 − ∣z∣2)pn−pdAα(z)

+
n−1
∑
k=0

∣ f (k)
r (0)∣p

≲∫
D

∣Bn(z)∣p (1 − ∣z∣2)pn−pdAα(z) + ∫
D

∣B0(z) fr(z)∣p (1 − ∣z∣2)pn−pdAα(z)

+
n−1
∑
j=1

∫
D

∣B j(z) f ( j)
r (z)∣

p
(1 − ∣z∣2)pn−pdAα(z) +

n−1
∑
k=0

∣ f (k)
r (0)∣p

= I1 + I2 + I3 + I4 .

Applying Lemma 2.5 leads to

I2 ≲

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∥ fr∥p
D

p
α
∫D ∣B0(z)∣p(1 − ∣z∣2)pn−α−2dAα(z), if p < α + 2;

∥ fr∥p
D

p
α
∫D ∣B0(z)∣p(1 − ∣z∣2)pn−p (log 2

1−∣z∣2 )
p−1

dAα(z), if p = α + 2;
∥ fr∥p

D
p
α
∫D ∣B0(z)∣p(1 − ∣z∣2)pn−pdAα(z) if p > α + 2.

On the other hand,

I3 ≤
n−1
∑
j=1

(sup
z∈D

∣B j(z)∣p(1 − ∣z∣2)p(n− j))∫
D

∣ f ( j)
r (z)∣

p
(1 − ∣z∣2)p j−pdAα(z)

≤
n−1
∑
j=1

∥B j∥p
H∞n− j

∥ fr∥p
D

p
α
.

Consequently, I3 ≲ K3∥ fr∥p
D

p
α
. It follows from the assumption that

∥ fr∥p
D

p
α
≲ K1 + I4

1 − c(K2 + K3)
< ∞,

for 0 ≤ r < 1. Letting r → 1− gives that f ∈Dp
α . This completes the proof. ∎

Remark 3.1. Although the sufficient condition in Theorems 1.1 and 1.2 is more
complicated, in fact, we can illustrate the feasibility of that sufficient condition by
some examples. Let us consider the complex second-order equation

f ′′ + A(z) f = 0.
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Fix a constant-valued function A(z) = k(k ∈ R) satisfying the condition

∫
D

∣A0(z)∣p(1 − ∣z∣2)pdAα(z) < 1
c

.

If k < 0, we can easily find that the solution to the equation f ′′ + k f = 0 has a solution
base { f1 , f2}, where

f1(z) = e
√
−kz and f2(z) = e−

√
−kz .

If k > 0, then the equation f ′′ + k f = 0 has a solution base { f1 , f2}, where

f3(z) = cos(kz) and f4(z) = sin(kz).

It can be seen that f1 , f2 , f3 and f4 belongs to the weighted Dirichlet spaces Dp
α(p >

α + 2).
On the other hand, if we consider the equation f (n) = 0, then it is easy to know

that all solutions of this equation are

f (z) = a0 + a1z + a2z2 + a3z3 + . . . + an−1zn−1 .

Obviously, f ∈Dp
α .

Proof of Theorem 1.3 The proof can be accomplished by using Lemmas 2.1, 2.4,
and 2.7, and the similar proof of Theorem 1.1. ∎

Proof of Theorem 1.4 The proof can be accomplished by using Lemmas 2.3, 2.4
and 2.7, and the similar proof of Theorem 1.2. ∎

The following two corollaries provide some stronger sufficient conditions making
the solutions of the 1.1 lie in weighted Dirichlet spaces.

The first one is a variant of Theorem 1.1.

Corollary 3.2. Let 0 < p < ∞ and α > −1. Let n be a positive integer and A i ∈ H(D),
i = 0, 1, . . . , n. Assume that the following statements hold:

C1 ∶= ∫
D

∣∫
z

0
∫

ξ1

0
. . .∫

ξn−2

0
An(ξn−1)dξn−1 . . . dξ1∣

p

dAα(z) < ∞,

C2 ∶= ∫
D

⎛
⎜
⎝

n−1
∑
m=1

∫
z

0
∫

ξ1

0
. . .∫

ξm−1

0

∣∑m
k=1 A(m−k)

n−k (ξm)∣

(1 − ∣ξm ∣2)
α+2

p
dξm . . . dξ1

⎞
⎟
⎠

p

dAα(z),

and

O3 ∶= ∫
D

⎛
⎝∫

z

0
∫

ξ1

0
. . .∫

ξn−2

0

∣A0(ξn−1)∣
(1 − ∣ξn−1∣2)

α+2+p
p

dξn−1 . . . dξ1
⎞
⎠

p

dAα(z)

are two positive constants satisfying C2 + O3 < 1/d, where d > 0 is sufficiently large and
is only related to n, p and the growth of functions in the weighted Dirichlet spaces. Then
all solutions of the (1.1) lie in D

p
α .
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The second one is a variant of Theorem 1.2.

Corollary 3.3. Let 0 < p < ∞ and α > −1. Let n be a positive integer and A i ∈ H(D),
i = 0, 1, . . . , n. Assume that the following statements hold:

K1 ∶= ∫
D

∣An(z)∣p(1 − ∣z∣2)pn−pdAα(z) < ∞,

Q2 ∶= ∫
D

∣A0(z)∣p(1 − ∣z∣2)pn−p−α−2dAα(z),

and

Q3 ∶=
n−1
∑
i=1

∫
D

∣A i(z)∣p(1 − ∣z∣2)p(n−i)−(2+α)dAα(z)

are two positive constants satisfying Q2 + Q3 < 1/c, where c > 0 is sufficiently large and
is only related to n, p. Then all solutions of the (1.1) lie in D

p
α .

Remark 3.4. Actually, in the proof of Theorem 1.2, by Lemma 2.6, we have

I3 ≲ ∥ fr∥p
D

p
α

n−1
∑
j=1

∫
D

∣B j(z)∣p (1 − ∣z∣2)p(n− j)−(2+α)dAα(z) ≤ Q3∥ fr∥p
D

p
α
.

It is worth noting that the condition Q3 in the above corollary is stronger than the
condition K3 in Theorem 1.2, which can be obtained by applying [43, Proposition
4.13]

∣ f (z)∣(1 − ∣z∣2)p(n−i) ≲ ∫
D

∣ f (w)∣p(1 − ∣w∣2)p(n− j)−(2+α)dAα(w)

for any f ∈ H(D).

Acknowledgements The authors are grateful to the reviewer for his (or her) helpful
comments.
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