No CrossRef data available.
Article contents
Complex linear differential equations with solutions in weighted Dirichlet spaces and derivative Hardy spaces
Published online by Cambridge University Press: 06 January 2025
Abstract
In this article, by the use of nth derivative characterization, we obtain several some sufficient conditions for all solutions of the complex linear differential equation $$ \begin{align*}f^{(n)}+A_{n-1}(z)f^{(n-1)}+\ldots+A_1(z)f'+A_0(z)f=A_n(z) \end{align*} $$
$A_i(z) (i=0,1,\ldots ,n)$ are analytic functions defined in the unit disc. This work continues the lines of the investigations by Heittokangas, et al. for growth estimates about the solutions of the above equation.
MSC classification
- Type
- Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society
Footnotes
Q.L. is supported by STU Scientific Research Initiation Grant (No. NTF24015T)
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10001.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10002.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10003.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10004.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10005.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10006.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10007.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10008.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10009.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10010.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10011.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10012.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10013.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10014.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250125094100554-0009:S0008439525000013:S0008439525000013_inline10015.png?pub-status=live)