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AN ABSTRACT ALGEBRAIC LOGIC STUDY OF DA COSTA’S LOGIC C1

AND SOME OF ITS PARACONSISTENT EXTENSIONS

HUGO ALBUQUERQUE AND CARLOS CALEIRO

Abstract. Two famous negative results about da Costa’s paraconsistent logic C1 (the failure
of the Lindenbaum–Tarski process [44] and its non-algebraizability [39]) have placed C1
seemingly as an exception to the scope of Abstract Algebraic Logic (AAL). In this paper we
undertake a thorough AAL study of da Costa’s logic C1. On the one hand, we strengthen the
negative results about C1 by proving that it does not admit any algebraic semantics whatsoever
in the sense of Blok and Pigozzi (a weaker notion than algebraizability also introduced in the
monograph [6]). On the other hand, C1 is a protoalgebraic logic satisfying a Deduction-
Detachment Theorem (DDT). We then extend our AAL study to some paraconsistent
axiomatic extensions of C1 covered in the literature. We prove that for extensions S such
as Cilo [26], every algebra in Alg∗(S) contains a Boolean subalgebra, and for extensions S
such as P1, P2, or P3 [16, 53], every subdirectly irreducible algebra in Alg∗(S) has cardinality
at most 3. We also characterize the quasivariety Alg∗(S) and the intrinsic variety V(S), with
S = P1, P2, and P3.

§1. Introduction. Paraconsistent logics were developed in the last century
as a direct challenge to the principle of explosion (valid in both classical and
intuitionistic logics) that from a contradiction anything follows. Concretely,
ex contradictione sequitur quodlibet is dropped, thus allowing for situations
where ϕ,¬ϕ �� �. The study of paraconsistency has emerged in order to
cope with inconsistency in a logical way, as motivated for instance by
paradoxes of self-reference, or more simply in order to reason soundly in
the presence of contradictory information. There are several competing
approaches to paraconsistency, most notably, discussive logics, adaptive
logics, relevance logics, and logics of formal inconsistency. For a historical
account of the development of paraconsistent logics and an overview of
some of its applications, ranging from philosophy to artificial intelligence,
we refer the reader to [2, 17, 34, 42, 46–49, 55].

Da Costa’s paraconsistent logic C1, and more generally da Costa’s
C-systems Cn, originally introduced in [18], constitute the seminal examples
of logics of formal inconsistency. The logics are defined axiomatically, by
weakening classical logic (CL) in such a way that the principle of explosion
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does not hold in general. However, distinctively, these logics are able to
express consistency internally, and enjoy a controlled form of explosion.
In C1, for instance, the consistency (or classicality) of a formula ϕ can be
expressed as ϕ◦ := ¬(ϕ ∧ ¬ϕ) and ϕ◦, ϕ,¬ϕ �� �.

A couple of papers soon followed the seminal work of da Costa in 1963,
namely [3, 25], which further developed these recent logical systems. Among
the first results about C1, one can emphasize the decidability of C1, the fact
that da Costa’s C-systems form a hierarchy of proper extensions, and the
fact that they are not complete w.r.t. finite matrices.1

Semantical investigations of da Costa’s C-systems were also present since
the beginning. Da Costa himself proposed the notion of Cn-algebras as
early as 1966 in [19], defined the notions of filters and ideals for Cn-algebras
in [20], and later in a collaboration with Sette also defined the notion of
C�-algebras in [27]. But perhaps the most successful semantics was the non-
truth-functional two-valued semantics developed by Alves and da Costa
in [22, 23] and establishing a completeness theorem for C1. The quest
for an algebraic counterpart for the logic C1 was yet to have one further
development with the so-called da Costa algebras investigated in [14, 52]
and generalizing the C1-algebras introduced in [19].

The definite reference on da Costa’s logic would finally arrive in
[21], where the theory of inconsistent formal systems is presented fully
developed and where several results from the previous papers mentioned are
compiled.

The next big advance on da Costa’s logic would appear in 1980
and tore apart any hope of algebraizing C1 according to the classical
Lindenbaum–Tarski process. Indeed, Mortensen proved in [44] that the
only congruence on the formula algebra compatible with the theorems
of C1 is the identity congruence, and as a consequence the Lindenbaum–
Tarski algebra Fm/�Fm(ThmC1) is isomorphic to the algebra of formulas
Fm. Still in the 80s, two further contributions to the study of da Costa’s
C-systems were published, namely [45, 54]. It is worth mentioning that
Mortensen’s paper [45] already contained material about the logics P1 and
P2, under the names C0.1 and C0.2, respectively. As to Urbas’ paper [54],
it provided several counterexamples for very simple properties which fail
in C1. Perhaps the most surprising one is that the consistency formula
itself, ϕ◦ := ¬(ϕ ∧ ¬ϕ), turns out not to be interderivable with the formula
¬(¬ϕ ∧ ϕ). These somehow odd properties made C1 a paradigmatic excep-
tion among non-classical logics, and in particular among paraconsistent
logics.

One last negative result was put forward in 1991, when Lewin, Mikenberg,
and Schwarze proved in [39] that C1 is not algebraizable according to

1The proof of the first fact is credited to Fidel in [21, Theorem 11], but was only published
in [30], and the proof of the latter fact is credited to Arruda in footnote 3 of [18] and [21,
Theorem 10].

https://doi.org/10.1017/bsl.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.36


AN ABSTRACT ALGEBRAIC LOGIC STUDY OF DA COSTA’S LOGIC C1 479

CL •

��
��
��
��
��
�

��
��

��
��

��
�

P2 •

��
��

��
��

��
� P1•

��
��

��
��

��
� P3•

Ciloe •

��
��

��
��

��
� Cibv• Cilow•

��
��
��
��
��
�

Cilae •

��
��

��
��

��
� Cilo• Cilaw•

��
��
��
��
��
�

C1 •

Figure 1. Extensions of C1 under study.

Blok and Pigozzi’s theory. This seemed to leave da Costa’s logic outside
of any standard attempt of algebraization. As a result, two alternative
algebraizations were proposed, namely behavioral algebraization [12, 13]
and possible-translations algebraization [9].

The motivation behind the present work is to study da Costa’s logic
from an Abstract Algebraic Logic (AAL) perspective. As we have seen,
C1 had already been subject to extensive research in the literature, but apart
from its famous non-algebraizability [39] and the side-remark on its non-
equivalentiality [36, pp. 425–426], a thorough AAL investigation of C1 is
still missing.

The main new result about da Costa’s logic established in this work is
the fact that C1 does not admit any algebraic semantics in the sense of
Blok and Pigozzi (Theorem 5.6), as originally defined in [6]. Since every
algebraizable logic possesses an algebraic semantics (in fact, every truth-
equational logic possesses an algebraic semantics), this result generalizes the
non-algebraizability of C1 established by Lewin, Mikenberg, and Schwarze
[39]. Although this fact may reinforce the belief that C1 is an exception to the
standard AAL methods, it satisfies nevertheless a wealth of properties within
the theory of protoalgebraic logics. Namely, the class Mod(C1) enjoys the
Filter Extension Property (FEP), the lattice of C1-filters of an arbitrary
algebra is distributive, and the join-semilattice of finitely generated C1-
theories is dually Brouwerian (Theorem 3.10).

The study of C1 eventually led us to consider the logic Cilo [24], a
paraconsistent extension of C1 introduced by da Costa, Béziau, and Bueno
in [24], and coined as Cilo in [16], as well as other paraconsistent axiomatic
extensions of C1 covered in the literature, including the algebraizable logics
P1, P2, and P3. The choice of which extensions of C1 to consider was mainly
guided by [16, Section 3.10] and is depicted in Figure 1, along with the
inclusion relations among them.

In particular, we will show that every algebra in Alg∗(Cilo) contains a
Boolean subalgebra (Proposition 9.10). Moreover, for S = P1,P2,P3, we
will prove that every non-trivial subdirectly Alg∗(S)-irreducible algebra
in Alg∗(S) has cardinality at most 3 (Theorems 11.9, 11.10, and 12.8 of
the Leibniz operator). We further classify these logics within the Leibniz
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hierarchy—the main classification of logics in AAL, which characterizes its
member classes in terms of algebraic properties enjoyed by the Leibniz
operator—and characterize the quasivariety Alg∗(S) and the intrinsic
variety V(S), with S = P1,P2,P3 (Propositions 11.11, 11.13, and 12.9 and
Corollaries 11.12, 11.14, and 12.10), although the results for Sette’s logic P1

were originally established in [50].
Finally, we correct a couple of claims found in the literature, namely:

• We prove that Cilo is not equivalential (Proposition 9.6), and hence not
algebraizable either, correcting [42, p. 183] and [16, p. 79].

• We provide new proofs for the algebraizability of P2 and P3. These logics
are among the 8k three-valued logics considered in [16, Fact 3.82] or
[17, Theorem 135]. However, the proofs of the cited results make use of
relations which may not be congruence relations.2

We decided to organize the paper in three parts.
In Part I of our study, we undertake a thorough investigation of the logic

C1 from an AAL perspective. We start by formally introducing da Costa’s
logic C1 in Section 3, as well as briefly reviewing the semantics put forward
in the literature for C1. In Section 3.1 we fully classify C1 within the Leibniz
and Frege hierarchies (both classifications were known in the literature,
but we compile these scattered results) and in Section 3.2 we state some
consequences of the Deduction-Detachment Theorem for C1. In Section 4
we provide two sets of congruence formulas for the logic C1. In Section 5.1
we study the class Alg∗(C1) and the intrinsic variety V(C1), and in Section
5.2 we prove that C1 admits no algebraic semantics in the sense of Blok and
Pigozzi.

In Part II we study logics S such that C1 ≤ S ≤ CL and consider two
general conditions upon S under which stronger algebraic results hold,
namely:

1. For every A, F ∈ F iSA and a, b ∈ A◦,3

〈a, b〉 ∈ �A(F ) ⇔ a ↔A b ∈ F.
2. S is finitary and finitely equivalential with a set of congruence formulas
�(x, y) = {x ↔ y,¬x ↔ ¬y}.

The abstract investigation ofAlg∗(S) under these assumptions paves the way
for the individual study of the envisaged axiomatic extensions of C1.

Part III is devoted to the individual detailed analysis of each of the
extensions of C1. We begin in Section 9 with Cilo. In Section 9.1 we
fully classify Cilo within the Leibniz hierarchy and in Section 9.2 we
investigate some algebraic properties of the class Alg∗(Cilo). In Section

2Using the notation ◦ (introduced on page 487), if one defines ϕ ≡ � whenever � (ϕ ↔
�) ∧ ϕ◦ ∧ �◦, as done in [16, Fact 3.81], reflexivity may not hold in general, and if one defines
ϕ ≡ � whenever � (ϕ ↔ �) ∧ (ϕ◦ → �◦), as done in [16, Fact 3.75] or [17, Theorem 134],
compatibility with the connectives does not seem to be trivial.

3See page 501.
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10 we consider the extension Cilow which allows us to prove that Cilo is
not equivalential. Finally, in Sections 11 and 12 we investigate P1, P2, and
P3. It is worth mentioning that Sette’s logic P1 had already been subject
to an AAL investigation in [50], but we present it here in the unified
setting of equivalential extensions of C1 with set of congruence formulas
�(x, y) = {x ↔ y,¬x ↔ ¬y}.

§2. Preliminaries. We adopt the standard terminology and notation
employed in Abstract Algebraic Logic (AAL), and refer the reader to [32]
for a recent and thorough treatment on the subject. We will here only
briefly introduce the AAL notions needed in the sequel. These often rely
on ground concepts from Universal Algebra and the theory of sentential
logics. Classical references on these subjects are [10, 56].

We trust the reader is acquainted with the notions of algebra, homomor-
phism, congruence, variety, and quasivariety. We ought however to fix some
notation. Given two algebrasA,B, we denote a homomorphism h fromA to
B simply by h : A→ B, and the least congruence on A containing a subset
X ⊆ A× A by ΘA(X ). The set of all congruences on A will be denoted by
CoA; and given a class of algebras K, the set of all congruences � ∈ CoA
such thatA/� ∈ Kwill be denoted by CoKA, and will be referred to as the set
of congruences of A relative to K, or simply the set K-relative congruences
of A.

Let A be an algebra. A subset B ⊆ A is a subuniverse of A, if it is closed
under the operations of A. That is, if for every n-ary operation symbol
f ∈ L and for every b1, ... , bn ∈ B , it holds that fA(b1, ... , bn) ∈ B . An
algebra B of the same similarity type as A is a subalgebra of A, fact which
we shall denote by B ≤ A, if B ⊆ A and for every operation symbol f ∈ L,
it holds that fB = fA�B . Clearly, if B is a subalgebra of A, then B is a
subuniverse of A. Given an algebra A and a subset X ⊆ A, the subuniverse
generated by X, which we shall denote by SgAL(X ), is the least subuniverse ofA
containing X.

Let A be an algebra. A congruence � ∈ CoA is compatible with a subset
F ⊆ A, if whenever 〈a, b〉 ∈ � and a ∈ F , then b ∈ F ; in other words, � does
not identify elements inside F with elements outside F. The least congruence
onA compatible with a given F ⊆ A is the identity congruence onA, hereby
denoted by idA, while the largest congruence onA compatible with F, which
always exists, is known as the Leibniz congruence of F, and is denoted by
�A(F ). The Leibniz congruence can be lifted to the powerset. Given C ⊆
P (A), the Tarski congruence of C is the largest congruence onA compatible
with every F ∈ C; that is,

∼
�A(C) :=

⋂
{�A(F ) : F ∈ C}.

Given a class of algebrasK, we denote byQK andVK the least quasivariety
containing K and the least variety containing K, respectively, and we denote
by I, P, PS, S, and H the isomorphism, direct product, subdirect product,
subalgebra, and homomorphic image operators, respectively. Recall that a
trivial algebra is one with a single element universe, and observe that every
quasivariety (and hence every variety as well) contains all trivial algebras.
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We assume the reader is familiar with the notion of subdirectly irreducible
algebra, as well as Birkhoff’s famous result characterizing varieties in terms
of their subdirectly irreducible elements [5, Theorem 2]. Namely, if K is
a variety, then K = IPS(Ks.i.), where Ks.i. denotes the set of subdirectly
irreducible elements ofK—see for instance [10, Corollary 9.7] or [4, Theorem
3.44].

A generalization of Birkhoff’s result for quasivarieties will be needed in
Section 9.2. Given a class of algebrasK, an algebraA is subdirectly irreducible
relative to K, or is subdirectly K-irreducible, if for every subdirect embedding
α : A→

∏
i∈I Ai , with {Ai : i ∈ I } ⊆ K, there exists i ∈ I such that �i ◦ α :

A→ Ai is an isomorphism. Quasivarieties can also be characterized in terms
of their relative subdirectly irreducible elements—this fact is not so well-
known as its particular case for varieties, but a proof can be found in [11,
Corollary 6] or [35, Theorem 3.1.1]; in the latter reference the original result
is credited to Mal’cev [41]. Consequently, if K is a quasivariety, then K =
IPs(Kr.s.i.), where Kr.s.i. denotes a set of subdirectly K-irreducible elements
of K.

By a (sentential) logic we understand a structural consequence relation
on FmL, where FmL denotes the universe of the free algebra of terms Fm
generated by a denumerable set of variables Var over an algebraic language
L. It is common practice to denote by S an arbitrary logic, i.e., the set of all
rules of S, and by Γ �S ϕ or 〈Γ, ϕ〉 ∈ �S , with Γ ∪ {ϕ} ⊆ FmL, one such
particular rule. We abbreviate ∅ � ϕ simply by � ϕ, and the facts ϕ �S �
and � �S ϕ by ϕ ��S �. The relation identifying such pairs of formulas is
called the interderivability relation.

Let S be a logic. A logic S ′ (in the same language of S) is an extension
of S, if �S ⊆ �S′ , a fact which we will denote simply by S ≤ S ′. Now, let
L′ be a language such that L ⊆ L′. A logic S ′ in the language L′ is an
expansion of S, if for every set of L-formulas Γ ∪ {ϕ} ⊆ FmL, Γ �S ϕ ⇒
Γ �S′ ϕ; in case the converse implication also holds, that is for every set
of L-formulas Γ ∪ {ϕ} ⊆ FmL we have Γ �S ϕ ⇔ Γ �S′ ϕ, the logic S ′ is
called a conservative expansion of S, and the logic S is called the L-fragment
of S ′.

The sets of formulas which are �S-closed are called S-theories. The set of
all S-theories is denoted by Th(S) and the least S-theory, whose elements
are called S-theorems, is denoted by ThmS . A logic S is called inconsistent if
ThmS = FmL. The notion of S-theory turns out to be an instance of a more
general notion, applicable to arbitrary algebras. Given an algebra A, an S-
filter of A is a subsetF ⊆ A such that, for every homomorphism h : Fm → A
and every Γ ∪ {ϕ} ⊆ FmL, if Γ �S ϕ and h(Γ) ⊆ F , then h(ϕ) ∈ F . We
denote the set of all S-filters of A by F iSA. As claimed, F iSFm = Th(S).
The least S-filter of A containing X ⊆ A is denoted by FgAS(X ), and the
least S-theory containing Γ ⊆ FmL is denoted by CnS(Γ).

Although the Leibniz and Tarski congruences were defined for arbitrary
sets and families of sets, respectively, we shall usually consider them over S-
filters and families of S-filters, respectively. The next auxiliary lemma relates
the notions of logical filter, Leibniz congruence, and subalgebra.
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Lemma 2.1. Let S be a logic, A an algebra, and B a subalgebra of A. For
every F ∈ F iSA,

1. F ∩ B ∈ F iSB;
2. �A(F )�B⊆ �B(F ∩ B).

An L-equation is a pair of formulas 〈ϕ,�〉 ∈ FmL × FmL, usually
abbreviated as ϕ ≈ �. We denote the set of all L-equations by EqL. Given
a class of algebras K, the equational consequence relation relative to K is the
relation �K ⊆ P (EqL) × EqL defined by

Π �K ϕ ≈ � iff ∀A ∈ K ∀h : Fm → A
∀� ≈ 	 ∈ Π h(�) = h(	) ⇒ h(ϕ) = h(�).

It is common practice to abbreviate �{A} simply by �A.
A matrix model of S is a pair 〈A, F 〉 such that F ∈ F iSA. We denote

the class of all matrix models of a logic S by Mod(S). A matrix model
〈A, F 〉 ∈ Mod(S) is called reduced if �A(F ) = idA. We denote the class of
all reduced matrix models by Mod∗(S).

Two classes of algebras are usually considered in AAL as naturally, and
intrinsically, associated with a logic. These are obtained as follows:

Alg∗(S) :=
{
A : ∃F ∈ F iSA such that �A(F ) = idA}, (1)

Alg(S) :=
{
A : ∃C ⊆ F iSA such that

∼
�A(C) = idA}.

It turns out thatAlg(S) = PSAlg
∗(S) [33, Theorem 2.23]. When one wishes

to associate with a logic S an “algebraic counterpart” which is necessarily a
variety, a third class of algebras is often considered, defined by

V(S) := V
(
Fm/

∼
�Fm

(
Th(S)

))
.

It can be proved that V(S) is in fact the least variety containing Alg∗(S),
i.e., V(S) = VAlg∗(S), and it is called the intrinsic variety of S.

2.1. The Leibniz and Frege hierarchies. The main classification of senten-
tial logics in AAL is the so-called Leibniz hierarchy, characterizing logics
by means of algebraic properties of the Leibniz operator.4 For instance,
the Leibniz operator (over the S-filters of an arbitrary algebra A) of
an algebraizable logic S is an isomorphism between the lattice of S-
filters of A and the lattice of Alg∗(S)-relative congruences of A, which
furthermore commutes with inverse images of homomorphisms. In [39], the
non-algebraizability of C1 was established by exhibiting an algebra A where
the Leibniz operator over the C1-filters of A was not injective.

We next introduce the main classes of logics belonging to the Leibniz
hierarchy. However, since their characterizations in terms of the algebraic

4When we consider the map assigning to each subsetF ⊆ A its Leibniz congruence�A(F ),
and restrict its domain to the set of S-filters of A, we refer to the map �A : F iSA→ CoA
as the Leibniz operator on A.
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properties of Leibniz operator will not be used in the sequel, we have chosen
to define them here in a manner that will suit our purposes better.

Definition 2.2. A logic S is:

(i) protoalgebraic if there exists a set of formulas �(x, y) ⊆ FmL
satisfying

∅ �S �(x, x), (R)

x, �(x, y) �S y, (MP)

(ii) equivalential if there exists a set of formulas �(x, y) ⊆ FmL satisfying
(R), (MP) and for every n-ary function symbol f ∈ L,

�(x1, y1) ∪ ··· ∪ �(xn, yn) �S �
(
f(x1 ... xn), f(y1 ... yn)

)
, (RP)

(iii) truth-equational if there exists a set of equations �(x) ⊆ EqL such
that

∀〈A, F 〉 ∈ Mod∗(S) ∀a ∈ A a ∈ F ⇔ ∀� ≈ 	 ∈ �(x) �A(a)

= 	A(a),

(iv) weakly algebraizable if it is protoalgebraic and truth-equational,
(v) algebraizable if it is equivalential and truth-equational.

In case the set of congruence formulas in item (ii) is finite, the underlying
logic is called finitely equivalential, and if the logic is furthermore truth-
equational, it is called finitely algebraizable.

We shall make use of an equivalent formulation of truth-equationality also
established by Raftery in [51, Proposition 22]. A logic S is truth-equational
if and only if there exists a set of equations �(x) ⊆ EqL such that

∀〈A, F 〉 ∈ Mod(S) F = {a ∈ A : �A(a) ⊆ �A(F )},

where �A(a) = {�A(a) ≈ 	A(a) : � ≈ 	 ∈ �(x)}. Notice that condition (iii)
is the particular case of the condition above for reduced S-models.

Parallel to the Leibniz hierarchy, the Frege hierarchy classifies sentential
logics according to some replacement properties, which can also be expressed
by the congruentiality of the Frege relation (either over the S-theories of
the underlying logic or over the S-filters of arbitrary algebras). The Frege
relation of F ⊆ A on A (relative to S) is defined by

�AS(F ) :=
{
〈a, b〉 ∈ A× A : FgAS(F, a) = FgAS(F, b)

}
.

Notice that unlike the Leibniz congruence �A(F ), the equivalence relation
�AS(F ) is not necessarily a congruence on A. The relation �FmS (∅) is called
the interderivability relation on A, and traditionally 〈ϕ,�〉 ∈ �FmS (∅) is
abbreviated by ϕ ��S �, as we have seen already on page 482.

The Frege hierarchy comprises four classes of logics, which we next
introduce.
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Definition 2.3. A logic S is:

(i) self-extensional, if �FmS (∅) ∈ CoFm,
(ii) Fregean, if for every T ∈ Th(S), �FmS (T ) ∈ CoFm,
(iii) fully self-extensional, if for every A, �AS(∅) ∈ CoA,
(iv) fully Fregean, if for every A and every F ∈ F iSA, �AS(F ) ∈ CoA.

2.2. Parameterized sets of congruence formulas. The notion of (param-
eterized) sets of congruence formulas is a cornerstone of the theory of
protoalgebraic logics and will play a prominent role in the present work. In
particular, the subtle difference between having parameters or not will be
crucial in our study of axiomatic extensions of C1. We next compile some
auxiliary facts concerning (parameterized) sets of congruence formulas
which we will be used in the sequel.

Throughout the rest of the section, let x, y ∈ Var be two fixed distinct
variables, and z an arbitrary possibly infinite sequence of variables (distinct
from x and y). In particular, Δ(x, y, z) ⊆ FmL denotes a set of formulas in
the variables x, y and possibly variables z. For ease of notation, we will use
c1, c2, c3, ... to denote the elements of c, and simply write c ∈ A if all the
elements are in A.

Definition 2.4. Let S be a logic, A an algebra, and F ∈ F iSA. A set of
formulas Δ(x, y, z) ⊆ FmL is a set of parameterized congruence formulas for
S, if for every A, every F ∈ F iSA, and every a, b ∈ A,

〈a, b〉 ∈ �A(F ) ⇔ ∀c ∈ A ΔA(a, b, c) ⊆ F .

In case Δ(x, y) ⊆ FmL has no parameters, it is called a set of congruence
formulas for S.

The parameters are the variables z, which by no means need be in
finite number. But if we pick a formula � ∈ Δ(x, y, z), then we can write
�(x, y, z1, ... , zn), with z1, ... , zn occurring in z. For the sake of notation
easiness, when the context is understood we sometimes write simply Δ
instead of Δ(x, y, z), or Δ(x, y).

We shall need yet another important notation. Given a set of formulas
Δ(x, y, z) ⊆ FmL, let

Δ〈x, y〉 :=
⋃{

Δ(x, y, 
) : 
 ∈ FmL
}
.

The main characterization of a set of parameterized congruence formulas
(in fact the original definition for the case without parameters [28, Definition
I.10]; for the case with parameters, see [32, Exercise 6.28]) is the following:

Theorem 2.5. A set of formulas Δ(x, y, z) ⊆ FmL is a set of parameterized
congruence formulas for S if and only if the following conditions hold:

∅ �S Δ〈x, x〉, (p-R)
Δ〈x, y〉 �S Δ〈y, x〉, (p-Sym)

Δ〈x, y〉 ∪ Δ〈y, z〉 �S Δ〈x, z〉, (p-Trans)
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x,Δ〈x, y〉 �S y, (p-MP)

Δ〈x1, y1〉 ∪ ··· ∪ Δ〈xn, yn〉 �S Δ
〈
f(x1, ... , xn), f(y1, ... , yn)

〉
(p-Re)

for every n-ary function symbol f ∈ L.

Conditions (p-Sym) and (p-Trans) actually follow from the three
remaining conditions (see [32, Corollary 6.61]), but their presence helps
us understand the intuition behind the terminology “congruence formulas.”

As it turns out, Definition 2.4 captures two classes of logics within the
Leibniz hierarchy. Indeed, the existence of a set of parameterized congruence
formulas characterizes protoalgebraic logics, while the existence of a set of
congruence formulas without parameters characterizes equivalential logics
(see [32, Theorem 6.57 and Definition 6.63]).

The next technical result will be used in Section 10 to prove that the logic
Cilow is not equivalential. The auxiliary lemma is taken from Jansana’s AAL
lecture notes [37, Exercise 4.36, p. 89].

Lemma 2.6. If Δ(x, y, z) and Δ′(x, y, z ′) are two sets of parameterized
congruence formulas for S, then Δ〈x, y〉 ��S Δ′〈x, y〉.

Proposition 2.7. Let S be an equivalential logic. If Δ ⊆ FmL is a set
of parameterized congruence formulas for S, then for every substitution � :
Fm → Fm(x, y) leaving x, y unchanged and replacing any other variable z
with �z ∈ {x, y}, �Δ ⊆ FmL(x, y) is a set of congruence formulas for S.

Proof. Let Δ(x, y, z) ⊆ FmL be a set of parameterized congruence
formulas for S and Δ′(x, y) be a set of congruence formulas (without
parameters) for S. Notice that Δ′ must exist by hypothesis. It follows
by Lemma 2.6 that Δ〈x, y〉 ��S Δ′(x, y). It follows by structurality that
�Δ〈x, y〉 ��S Δ′(x, y), bearing in mind that � leaves x, y unchanged and
replaces any other variable z with �z ∈ {x, y}. Thus �Δ〈x, y〉 ⊆ FmL(x, y)
is also a set of congruence formulas (without parameters) for S. �

2.3. Algebraic semantics. The notion of algebraic semantics was origi-
nally introduced in [6] (assuming S is finitary, K a quasivariety, and �(x)
finite), and was further investigated per se in [8]. We choose here to make
explicit its dependence on the set of equations �, following the more works
[7, 51]. More recent developments on algebraic semantics can be found in
[43].

Definition 2.8. Let S be a logic and �(x) ⊆ EqL. A class of algebras K is
a �-algebraic semantics for S if for every Γ ∪ {ϕ} ⊆ FmL,

Γ �S ϕ ⇔ �(Γ) �K �(ϕ). (ALG1)

Despite the fact that no characterization of Definition 2.8 in terms of the
Leibniz operator is known, there is a close relation between the notion of
algebraic semantics and the Leibniz hierarchy. Indeed, algebraizable logics
were originally defined (apart from finitariness issues) as those logics S
for which there exist a class of algebras K, a set of equations in at most
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one variable �(x) ⊆ EqL, and a set of formulas in at most two variables
�(x, y) ⊆ FmL, such that

Γ �S ϕ ⇔ �(Γ) �K �(ϕ), (ALG1)

x ≈ y ��K �
(
�(x, y)

)
(ALG2)

for every Γ ∪ {ϕ} ⊆ FmL. It is thus clear by the definitions involved that
every algebraizable logic has an algebraic semantics, which in this case is
called an equivalent algebraic semantics.

The next result, whose proof can be found in [51, Corollary 6], will be
used for establishing that C1 admits no algebraic semantics (Theorem 5.6).
We state it here for the particular case of protoalgebraic logics.

Proposition 2.9. If a protoalgebraic logic S has a �-algebraic semantics,
then �(T ) ⊆ �Fm(T ) for every T ∈ Th(S).

Part I. Da Costa’s logic C1.
In the first part of our work we deal exclusively with the logic C1

and the related family of logics Cn, with n ≥ 1. Our main goals are to
classify C1 within the Leibniz and Frege hierarchies, collect some algebraic
consequences of the fact that C1 admits a Deduction-Detachment Theorem
(Theorem 3.10), present a set of parameterized congruence formulas for C1

(Theorem 4.3), and prove that C1 does not admit any algebraic semantics
whatsoever in the sense of Blok and Pigozzi (Theorem 5.6).

§3. The logic C1. In this section we introduce the logic C1 alongside with
the family of logics Cn, with n ≥ 1. We then proceed to classify C1 within
the Leibniz and Frege hierarchies and state some algebraic consequences of
the Deduction-Detachment Theorem for C1.

Throughout the present work we assume fixed the language

L = 〈∧,∨,→,¬〉,

where ∧,∨,→ are binary operation symbols and ¬ is a unary operation
symbol. We shall also consider two unary non-primitive connectives ϕ◦ :=
¬(ϕ ∧ ¬ϕ) and ∼ϕ := ¬ϕ ∧ ϕ◦, and one binary non-primitive connective
ϕ ↔ � := (ϕ → �) ∧ (� → ϕ), with ϕ,� ∈ FmL. The traditional Hilbert-
style axiomatics for C1 is presented in the next definition, as given in [21, pp.
498–499].

Definition 3.1. The logic C1 is induced by the following Hilbert-style
axioms and inference rule:

� ϕ → (� → ϕ), (Ax1)

� (ϕ → �) →
((
ϕ → (� → 
)

)
→ (ϕ → 
)

)
, (Ax2)

� (ϕ ∧ �) → ϕ, (Ax3)
� (ϕ ∧ �) → �, (Ax4)

� ϕ →
(
� → (ϕ ∧ �)

)
, (Ax5)
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� ϕ → (ϕ ∨ �), (Ax6)
� � → (ϕ ∨ �), (Ax7)

� (ϕ → 
) →
(

(� → 
) →
(
(ϕ ∨ �) → 


))
, (Ax8)

� ϕ ∨ ¬ϕ, (Ax9)

� ¬¬ϕ → ϕ, (Ax10)

� �◦ →
(

(ϕ → �) →
(
(ϕ → ¬�) → ¬ϕ

))
, (Ax11)

� (ϕ◦ ∧ �◦) → (ϕ ∧ �)◦, (Ax12)
� (ϕ◦ ∧ �◦) → (ϕ ∨ �)◦, (Ax13)
� (ϕ◦ ∧ �◦) → (ϕ → �)◦, (Ax14)
ϕ,ϕ → � � �. (MP)

By definition, C1 is obviously a finitary logic, also called a deductive
system in the literature. The schemata (Ax1)–(Ax8) axiomatize positive
intuitionistic propositional logic (IL+), and hence C1 is an (axiomatic)
extension of IL+. Also, classical propositional logic (CL) is an extension of
C1, axiomatized relatively to it by the principle of contradiction ¬(ϕ ∧ ¬ϕ).

The logic C� is axiomatized by the schemata (Ax1)–(Ax10) and inference
rule (MP). It is the weakest among all of da Costa’s C-systems. Let5

ϕ(1) := ϕ◦ and ϕ(n) := ϕ(n–1) ∧ (ϕ(n–1))◦ for n > 1.

The logic Cn, with n ≥ 1, is the least extension of C� closed under the
following additional axiom schemata:

� �(n) →
(

(ϕ → �) →
(
(ϕ → ¬�) → ¬ϕ

))
, (Ax11n)

� (ϕ(n) ∧ �(n)) → (ϕ ∧ �)(n), (Ax12n)

� (ϕ(n) ∧ �(n)) → (ϕ ∨ �)(n), (Ax13n)

� (ϕ(n) ∧ �(n)) → (ϕ → �)(n). (Ax14n)

For n = 1, the logic just defined coincides with the logic C1 in Definition
3.1. Da Costa proved in [18, Théorème 7] (the proof is credited to A. I.
Arruda) that his C-systems form a hierarchy of proper extensions, i.e.,

C� < ··· < Cn+1 < Cn < ··· < C1 .

The logic C� is not the infimum of the family of logics {Cn : n ≥ 1}, although
the notation may suggest it. For more details on this issue, see [15].

The following auxiliary facts about C1 will be used exhaustively in the
sequel. See [26, Theorems 2.1.6, 2.1.8, 2.1.13, and 2.1.14].

5The definition of Cn here presented reproduces [26, Definition 2.2.1] instead of the original

definition [18, p. 3792], because ϕ

n times︷︸︸︷
◦ ··· ◦ ∈ ThmC1 , for n ≥ 2, in light of Lemma 3.2.20.
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Lemma 3.2.

1. �C1 ϕ ↔ ϕ.
2. ϕ ↔ � �C1 � ↔ ϕ.
3. ϕ ↔ �,� ↔ 
 �C1 ϕ ↔ 
.
4. ϕ ↔ �, 
 ↔ � �C1 (ϕ ∧ 
) ↔ (� ∧ �).
5. ϕ ↔ �, 
 ↔ � �C1 (ϕ ∨ 
) ↔ (� ∨ �).
6. ϕ ↔ �, 
 ↔ � �C1 (ϕ → 
) ↔ (� → �).
7. �◦, ϕ → � �C1 ¬� → ¬ϕ.
8. ϕ◦, �◦, ϕ ↔ � �C1 ¬ϕ ↔ ¬�.
9. �C1 ϕ → ϕ.

10. ϕ → �,� → 
 �C1 ϕ → 
.
11. ϕ → � �C1 (ϕ ∧ 
) → (� ∧ 
).
12. ϕ → � �C1 (ϕ ∨ 
) → (� ∨ 
).
13. ϕ → � �C1 (ϕ → 
) → (� → 
).
14. ϕ → � �C1 (
 ∧ ϕ) → (
 ∧ �).
15. ϕ → � �C1 (
 ∨ ϕ) → (
 ∨ �).
16. ϕ → � �C1 (
 → ϕ) → (
 → �).
17. ϕ◦ �C1 (¬ϕ)◦.
18. �C1 (ϕ◦)◦.

Several semantics have been put forward in the literature for the logic C1,
namely, behavioral semantics [12, 13], possible-translations semantics [9],
and the so-called da Costa algebras investigated in [14, 52] and generalizing
the C1-algebras introduced by da Costa himself in [19]. Da Costa’s proposal
has the drawback (from an AAL point of view) of changing the underlying
language of the class of algebras associated with C1. One further semantics
for C1 can be found in the literature, developed by da Costa and Alves in
[23], and which will be very useful in the sequel. We next introduce da Costa
and Alves’s two-valued semantics for the logic C1 and state the completeness
result w.r.t. this non-truth-functional semantics.

Definition 3.3. A bivaluation of C1 is a map v : Fm → {0, 1} such that:

• v(ϕ) = 0 ⇒ v(¬ϕ) = 1,
• v(¬¬ϕ) = 1 ⇒ v(ϕ) = 1,
• v(�◦) = v(ϕ → �) = v(ϕ → ¬�) = 1 ⇒ v(ϕ) = 0,
• v(ϕ → �) = 1 ⇔ v(ϕ) = 0 or v(�) = 1,
• v(ϕ ∧ �) = 1 ⇔ v(ϕ) = 1 and v(�) = 1,
• v(ϕ ∨ �) = 1 ⇔ v(ϕ) = 1 or v(�) = 1,
• v(ϕ◦) = v(�◦) = 1 ⇒ v

(
(ϕ ∧ �)◦

)
= v

(
(ϕ ∨ �)◦

)
= v

(
(ϕ → �)◦

)
=

1.

A bivaluation of C1 is a model of a formula ϕ ∈ FmL if v(ϕ) = 1, and it is
a model of a set of formulas Γ ⊆ FmL if v() = 1, for every  ∈ Γ.

Theorem 3.4 (da Costa). For every Γ ∪ {ϕ} ⊆ FmL, Γ �C1 ϕ if and only
if every bivaluation v of C1 which is a model of Γ is also a model of ϕ.
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Figure 2. The algebra A of [39] and its C1-filters.

Given a bivaluation v of C1, we have [23, Theorem 2]:

v(∼ϕ) = 1 ⇔ v(ϕ) = 0.

In fact, the connective ∼behaves like classical negation.

3.1. Classification of C1 within the Leibniz and Frege hierarchies. The
classification of C1 (or more generally, of da Costa’s C-systems Cn) within
the Leibniz and Frege hierarchies is scattered along the literature, sometimes
appearing as mere observations, and most often without explicit proofs.
The notorious exception is the non-algebraizability of C1 established in
[39]. We next compile these scattered results and fully classify the logic
C1 within the Leibniz hierarchy, which since the non-algebraizability result
of Lewin, Mikenberg, and Schwarze in 1991, has been enlarged with two
further classes of logics (namely, the classes of weakly algebraizable [29] and
truth-equational logics [51]).

The protoalgebraicity of C1 was left as an open question in [16, p. 81]
(perhaps because the condition said to characterize protoalgebraicity in [16,
p. 81] is in fact equivalent to weak algebraizability), but was later observed
to hold in [9, p. 2]. Indeed, it follows by manipulation of axioms (Ax1),
(Ax2), and rule (MP) in Definition 3.1, or at once by Lemma 3.2.11, that
�(x, y) = {x → y} complies with Definition 2.2 (i).

Proposition 3.5. C1 is protoalgebraic.

Proposition 3.5 immediately prompts the question of whether C1 is
furthermore equivalential. The answer this time is negative, as first observed
in [36, pp. 425–426], and also mentioned in [32, Example 6.77]. The proof
uses as a counterexample the five-element algebra of [39] depicted in Figure 2
(Table 1).

Proposition 3.6. C1 is not equivalential.

Proof. Consider the algebra A = 〈A,∧A,∨A,→A,¬A, 0A, 1A〉 with uni-
verse A = {0, a, b, 1, u}, whose lattice operations are given by Figure 2 and
with the truth-tables of ¬A and →A given by Table 2, respectively. Consider
moreover the subalgebraB with universeB = {0, a, b, 1}. It is clear thatA ∈
Alg∗(C1), since for instance F := {a, 1, u} witnesses 〈A, F 〉 ∈ Mod∗(C1).
Now, fix G := F ∩ B = {a, 1} ∈ F iC1B. It is not difficult to check that
〈a, 1〉 ∈ �B(G). Then�B(G) �= idB , and therefore 〈B, G〉 /∈ Mod∗(C1). We
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F ∈ F iC1 (A) �A(F )

A A× A
{1, u} idA
{a, 1, u} idA
{b, 1, u} idA

Table 1. The algebra A of [39] and the Leibniz congruences of its C1-filters.

¬A

u 1
1 0
a b

b a

0 1

→A u 1 a b 0

u u u a b 0
1 u 1 a b 0
a u 1 1 b b

b u 1 a 1 a

0 u 1 1 1 1

Table 2. Truth-tables of the connectives ¬A and →A.

conclude that the class Mod∗(C1) is not closed under submatrices, and hence
C1 cannot be equivalential (see for instance [32, Theorem 6.73]). �

We are left to see whether C1 is truth-equational. But, in fact, this was
implicitly established in [39]—implicitly, simply because truth-equational
logics had not yet been defined in 1991. Indeed, the five-element algebra
A exhibited in [39] (and reproduced in Figure 2) is such that the Leibniz
operator on A over the C1-filters is not injective. Recall that Raftery proved
that the Leibniz operator is completely order-reflecting (and hence, injective)
on arbitrary algebras for truth-equational logics [51]. It follows at once that:

Proposition 3.7. C1 is not truth-equational.

Having in mind Definition 2.2(iv), it follows at once that C1 is not weakly
algebraic. Indeed, Font’s [32, Example 6.122.9] generalizes that “neither of
the logic Cn is weakly algebraizable.”

As a matter of fact, by direct inspection of Table 2, one sees that truth
is not even implicitly definable6 in the class Mod∗(C1), which is a weaker
condition than equational definability of truth in the class Mod∗(C1).

Propositions 3.5–3.7 settle the classification of the logic C1 within the
Leibniz hierarchy. As to the Frege hierarchy, the logic C1 falls outside its
scope, as first shown by da Costa and Guillaume as early as in [25].

Proposition 3.8. C1 is not self-extensional.

Proof. For instance, ϕ → ϕ ��C1 � → �, but the matrix model
〈A, {1, u}〉 ∈ Mod(C1), withA given as in Figure 2, and any homomorphism
h : Fm → A such that h(ϕ) = u and h(�) = 1 witness ¬(ϕ → ϕ) ��C1

¬(� → �). �

6Truth is implicitly definable in a class of matrices M, if whenever 〈A, F 〉, 〈A, G〉 ∈M , then
F = G .
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It is worth mentioning that it was precisely the non-self-extensionality of
C1 that motivated the first algebraic studies about this paraconsistent logic.

So far we have only seen one positive result about C1, namely that it is
protoalgebraic. This fact will be the ground upon which Sections 3.2 and 4
will be built on.

3.2. The Deduction-Detachment Theorem for C1. Protoalgebraic logics
are characterized by possessing a weak form of the Deduction-
Detachment Theorem (DDT), the so-called Parameterized Local
Deduction-Detachment Theorem (PLDDT). Some famous bridge theorems
in AAL establish correspondences between stronger versions of the PLDDT
and purely algebraic properties. For instance, for finitary logics, the LDDT
(a non-parameterized version of the PLDDT) corresponds to the Filter
Extension Property (FEP) of the class of matrix models of the underlying
logic, while, again for finitary logics, the DDT (a non-local and non-
parameterized version of the PLDDT) corresponds to the property of the
lattice of finitely generated filters being dually Brouwerian.

It is easy to check that logic C1 admits a “classical” DDT witnessed by one
single formula with no parameters. In fact, any finitary logic in the language
L having (Ax1) and (Ax2) among its axioms and (MP) as its only inference
rules satisfies the classical DDT (see [32, Theorem 3.72]).

Proposition 3.9. For every Γ ∪ {ϕ,�} ∈ FmL,

Γ, ϕ �C1 � ⇔ Γ �C1 ϕ → �. (DDT)

That is, {p → q} is a DD set for the logic C1.

As a consequence of Proposition 3.9, the class Mod(C1) has the FEP.7

We compile this and other algebraic properties of the logic C1 in the next
result, all of which are consequences of more general AAL results for finitary
protoalgebraic logics having a DD set—see [32, Theorems 6.24 and 6.28 and
Corollary 6.30].

Theorem 3.10.

1. For every A, the join-semilattice of the finitely generated C1-filters of A
is dually Brouwerian.

2. The logic C1 is filter-distributive.
3. The class Mod(C1) has the FEP.

An observation which will be used in the sequel is that every axiomatic
extension of C1 enjoys the FEP.

The DDT lifts to arbitrary algebras given an underlying protoalgebraic
logic—see [32, Theorem 3.81]. Once applied to the logic C1, we obtain that
for every A and every X ∪ {a, b} ⊆ A,

b ∈ FgAC1
(X, a) ⇔ a →A b ∈ FgAC1

(X ).

7Given a logic S, we say that the class Mod(S) has the filter extension property (FEP), if
for every matrix 〈A, F 〉 ∈ Mod(S), every submatrix 〈B, G〉 of it, and every G ′ ∈ F iSB such
that G ′ ⊇ G , there exists F ′ ∈ F iSA such that F ′ ⊇ F and G ′ = F ′ ∩ B .
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A consequence of this fact is a characterization of the Frege relation for the
logic C1. We omit the easy proof.

Proposition 3.11. For every A, F ∈ F iC1A, and a, b ∈ A,

〈a, b〉 ∈ �AC1
(F ) ⇔ a ↔A b ∈ F.

Proposition 3.11 shows us that the classical characterization of the Leibniz
congruence of a CL-filter defines the Frege relation of a C1-filter. This relation
is not necessarily a congruence, for C1 is not (fully) self-extensional.

§4. Parameterized congruence formulas for C1. Our goal in this section is
to provide a set of parameterized congruence formulas for the logic C1. In
fact, we shall provide two such sets, namely in Proposition 4.1 and Theorem
4.3. While the former is a rather trivial one, the latter is fairly complex and
will be needed in the sequel.

Since C1 is protoalgebraic, but not equivalential (recall Propositions 3.5
and 3.6), we know a priori that C1 admits a set of parameterized congruence
formulas, but no set of congruence formulas without parameters. The first
set of parameterized congruence formulas we provide for C1 is rather trivial,
but will be useful in our analysis.

Proposition 4.1. The set

Δ(x, y, z) :=
{

(x, z) ↔ 
(y, z) : 
(w, z) ∈ FmL

}
is a set of parameterized congruence formulas for the logic C1.

Proof. Conditions (p-R), (p-Sym), and (p-Trans) follow by Lemma
3.2.1–3, respectively. Taking 
(w, z) = w, we have x ↔ y = 
(x, z) ↔

(y, z) ∈ Δ(x, y, z) ⊆ Δ〈x, y〉, so clearly x,Δ〈x, y〉 �C1 y, that is, Δ
satisfies (p-MP). Finally, notice that

⋃n
i=1 Δ〈xi , yi〉 �C1 Δ

〈
f(x1, ... , xn),

f(y1, ... , yn)
〉

holds by extensivity, for every n-ary function symbol f ∈ L,
given our choice of Δ. Therefore, Δ satisfies (p-Re). It follows by Theorem
2.5 that Δ(x, y, z) is a set of parameterized congruence formulas for the
logic C1. �

The second set of parameterized congruence formulas for C1 we consider,
on the opposite, is quite complex. In order to establish it we need an auxiliary
lemma.

Lemma 4.2.

1. (¬� ∧ ϕ◦) → (¬� ∧ �◦), (¬ϕ ∧ �◦) → (¬ϕ ∧ ϕ◦), ϕ ↔ � �C1 ¬ϕ ↔
¬�.

2. ϕ ↔ �,ϕ◦ ↔ �◦ �C1 ¬ϕ ↔ ¬�.
3. ϕ ↔ �,¬ϕ ↔ ¬� �C1 ϕ

◦ ↔ �◦.
4. ϕ ↔ � �C1 (¬ϕ ↔ ¬�) ↔ (ϕ◦ ↔ �◦).

Proof. The proof uses da Costa’s completeness Theorem 3.4.
1. Let v : Fm → {0, 1} be a bivaluation such that v(¬ϕ ↔ ¬�) = 0 and

assigning 1 to all the premises of our claim. Then, v(¬ϕ) �= v(¬�). Assume

https://doi.org/10.1017/bsl.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.36


494 HUGO ALBUQUERQUE AND CARLOS CALEIRO

without loss of generality that v(¬ϕ) = 0 and v(¬�) = 1. Since v(ϕ ↔
�) = 1, either v(ϕ) = v(�) = 0 or v(ϕ) = v(�) = 1. In the first case, it
follows that v(¬ϕ) = v(¬�) = 1, contradicting our assumption. So, v(ϕ) =
v(�) = 1. Next, notice that since v(¬ϕ) = 0, v(ϕ◦) = 1. Since moreover
v(¬�) = 1, it follows v(¬� ∧ ϕ◦) = 1. Finally, notice that ¬� ∧ �◦ =∼�,
and since v(�) = 1, it must be the case v(∼�) = 0. Thus v

(
(¬� ∧ ϕ◦) →

(¬� ∧ �◦)
)

= 0, and we reach a contradiction.
2. Just notice that ϕ◦ ↔ �◦ �C1 (¬� ∧ ϕ◦) → (¬� ∧ �◦) and ϕ◦ ↔
�◦ �C1 (¬ϕ ∧ �◦) → (¬ϕ ∧ ϕ◦), applying Lemma 3.2.16 with 
 = ¬� and

 = ¬ϕ respectively. The result now follows by item 1.

3. Let v : Fm → {0, 1} be a bivaluation such that v(ϕ◦ ↔ �◦) = 0 and
v(ϕ ↔ �) = v(¬ϕ ↔ ¬�) = 1. Then, v(ϕ◦) �= v(�◦). Assume without loss
of generality that v(ϕ◦) = 0 and v(�◦) = 1. So it must be the case v(ϕ) =
1, otherwise v(ϕ◦) = 1. It follows by assumption that v(�) = 1 as well.
Similarly, it must be the case v(¬ϕ) = 1, otherwise v(ϕ◦) = 1. It follows
by assumption that v(¬�) = 1 as well. So, v(�◦) = v(ϕ → �) = v(ϕ →
¬�) = 1. It follows by definition of bivaluation that v(ϕ) = 0. Thus v(ϕ◦) =
1, and we reach an absurdity.

4. It follows by Proposition 3.9 over items 2 and 3. �
Compare Lemma 3.2.8 with Lemma 4.2.2. The latter provides a weaker

condition in order to establish ¬ϕ ↔ ¬�, and it will be used exhaustively
throughout the rest of the work.

We still need a couple of auxiliary definitions before stating the main result
of this section. For every m ∈ � and every ϕ ∈ FmL, let8

¬mϕ := ¬ ··· ¬︸ ︷︷ ︸
m times

ϕ.

In particular, ¬0ϕ = ϕ and ¬1ϕ = ¬ϕ. Let us also define

Φ0(x, y) =
{
x ↔ y

}
,

Φ1(x, y, z1) =
{
¬m1(x ∗1 z1) ↔ ¬m1(y ∗1 z1) :

∗1 ∈ {∧,∨,→}, m1 ∈ �
}
,

Φ2(x, y, z1, z2) =
{
¬m2

(
¬m1(x ∗1 z1) ∗2 z2

)
↔

¬m2
(
¬m1(y ∗1 z1) ∗2 z2

)
:

∗1, ∗2 ∈ {∧,∨,→}, m1, m2 ∈ �
}
,

...

Φn(x, y, z1, z2, ... , zn) =
{
¬mn

(
··· ¬m2(¬m1(x ∗1 z1) ∗2 z2) ··· ∗n zn

)
↔

¬mn
(
··· ¬m2(¬m1(y ∗1 z1) ∗2 z2) ··· ∗n zn

)
:

∗1, ... , ∗n ∈ {∧,∨,→}, m1, ... , mn ∈ �
}
,

8We adopt here the notation employed in [26, p. 16].

https://doi.org/10.1017/bsl.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.36


AN ABSTRACT ALGEBRAIC LOGIC STUDY OF DA COSTA’S LOGIC C1 495

and

Ψ0(x, y) =
{
x ↔ y

}
,

Ψ1(x, y, z1) =
{
¬m1(z1 ∗1 x) ↔ ¬m1(z1 ∗1 y) :

∗1 ∈ {∧,∨,→}, m1 ∈ �
}
,

Ψ2(x, y, z1, z2) =
{
¬m2

(
¬m1(z1 ∗ x) ∗2 z2

)
↔

¬m2
(
¬m1(z1 ∗ y) ∗2 z2

)
:

∗1, ∗2 ∈ {∧,∨,→}, m1, m2 ∈ �
}
,

...

Ψn(x, y, z1, z2, ... , zn) =
{
¬mn

(
··· ¬m2(¬m1(z1 ∗1 x) ∗2 z2) ··· ∗n zn

)
↔

¬mn
(
··· ¬m2(¬m1(z1 ∗1 y) ∗2 z2) ··· ∗n zn

)
:

∗1, ... , ∗n ∈ {∧,∨,→}, m1, ... , mn ∈ �
}
.

We are now ready to state the main result of this section.

Theorem 4.3. For every A, F ∈ F iC1A, and a, b ∈ A,

〈a, b〉 ∈ �A(F ) ⇔ ∀n ∈ � ∀m ∈ � ∀c1, ... , cn ∈ A,
ΦAn (¬ma,¬mb, c1, ... , cn) ⊆ F,
ΨAn (¬ma,¬mb, c1, ... , cn) ⊆ F.

Proof. For the sake of simplicity, define the relation R ⊆ A× A by

〈a, b〉 ∈ R⇔ ∀n ∈ � ∀m ∈ � ∀c1, ... , cn ∈ A,
ΦAn (¬ma,¬mb, c1, ... , cn) ⊆ F,
ΨAn (¬ma,¬mb, c1, ... , cn) ⊆ F.

Suppose that 〈a, b〉 ∈ �A(F ). It follows by Proposition 4.1 that aRb.
Conversely, we claim that R is a congruence relation on A compatible with
F. It should be clear that R is an equivalence relation on A, given Lemma
3.2.1–3. Notice next that the relation R is compatible with the connective ¬,
since by construction of R we are ranging ¬ma and ¬mb overm ∈ �. We are
left to prove that R is also compatible with the binary language operations of
C1. Let 〈a1, b1〉 ∈ R and 〈a2, b2〉 ∈ R. We claim that for every c1, ... , cn ∈ A,⋃

n∈�

⋃
m∈�

ΦAn (¬m(a1 ∗ a2),¬m(b1 ∗ b2), c1, ... , cn) ⊆ F,

with ∗ ∈ {∧,∨,→}. Let n ∈ �, c1, ... , cn ∈ A, ∗, ∗1, ... , ∗n ∈ {∧,∨,→} and
m,m1, ... , mn ∈ �. Consider Φn+1(a1, b1, a2, c1, ... , cn) with m′ = 0, m′

1 =
m,m′

2 = m1, ... , m
′
n+1 = mn. Since Φn+1(a1, b1, a2, c1, ... , cn) ⊆ F by the

assumption 〈a1, b1〉 ∈ R, we have

¬mn(··· ¬m1(¬m(a1 ∗ a2) ∗1 c1) ··· ∗n cn) ↔
¬mn(··· ¬m1(¬m(b1 ∗ a2) ∗1 c1) ··· ∗n cn) ∈ F.
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Next, consider Ψn+1(a2, b2, b1, c1, ... , cn) withm′ = 0,m′
1 = m,m′

2 = m1, ... ,
m′
n+1 = mn. Since Ψn+1(a2, b2, b1, c1, ... , cn) ⊆ F by the assumption

〈a2, b2〉 ∈ R, we have

¬mn(··· ¬m1(¬m(b1 ∗ a2) ∗1 c1) ··· ∗n cn) ↔
¬mn(··· ¬m1(¬m(b1 ∗ b2) ∗1 c1) ··· ∗n cn) ∈ F.

It then follows by transitivity (Lemma 3.2.3) that

¬mn(··· ¬m1(¬m(a1 ∗ a2) ∗1 c1) ··· ∗n cn) ↔
¬mn(··· ¬m1(¬m(b1 ∗ b2) ∗1 c1) ··· ∗n cn) ∈ F.

Thus, Φn
(
¬m(a1 ∗ a2),¬m(b1 ∗ b2), c1, ... , cn

)
⊆ F .

Similarly, one proves that for every c1, ... , cn ∈ A,⋃
n∈�

⋃
m∈�

ΨAn (¬m(a1 ∗ a2),¬m(b1 ∗ b2), c1, ... , cn) ⊆ F,

with ∗ ∈ {∧,∨,→}. Finally, in order to see that R is compatible with F, let
〈a, b〉 ∈ R and assume a ∈ F . Since by assumption Φ0(a, b) ⊆ F , it follows
that a → b ∈ F , and hence by (MP) that b ∈ F . Thus, R ⊆ �A(F ). �

In other words, Theorem 4.3 tells us that the set

Δ(x, y, z) =
⋃
n∈�

⋃
m∈�

Φn(¬mx,¬my, z1, ... , zn) ∪⋃
n∈�

⋃
m∈�

Ψn(¬mx,¬my, z1, ... , zn)

is a set of parameterized congruence formulas for the logic C1. Although
the set Δ(x, y, z) above may seem of little more practical usage than the one
given in Proposition 4.1, it will be the key to proving Theorem 9.1 later on.

§5. Algebraic semantics for C1. As we have mentioned in the Introduction,
several semantical approaches to the logic C1 have been put forward in
the literature, namely, behavioral semantics [12, 13], possible-translations
semantics [9], da Costa algebras [14, 52], C1-algebras [19], and a two-valued
semantics [22, 23], this latter already introduced in Definition 3.3. From
an AAL perspective, however, there are still two natural candidates for
a semantical approach left unstudied—the class Alg∗(C1) and Blok and
Pigozzi’s notion of algebraic semantics. In this section we will investigate
both these approaches, and conclude that neither provides a meaningful
algebraic counterpart to the logic C1.

5.1. The class Alg∗(C1). The first (negative) result on the algebraization
of C1 was established by Mortensen in [44], by proving that the only
congruence on the formula algebra compatible with the set of C1-theorems
is the identity relation. This fact can be re-written as:

Proposition 5.1 (Mortensen). �Fm(ThmC1) = idFm.
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In light of Proposition 5.1, it follows by Theorem 4.3 that for every ϕ,� ∈
FmL,

ϕ = � ⇔ ∀n ∈ � ∀m ∈ � ∀
1, ... , 
n ∈ FmL,

ΦFmn (¬mϕ,¬m�, 
1, ... , 
n) ⊆ ThmC1 ,

ΨFmn (¬mϕ,¬m�, 
1, ... , 
n) ⊆ ThmC1 .

Having in mind (1) on page 483, Mortensen’s result can be re-stated as
follows:

Proposition 5.2. Fm ∈ Alg∗(C1).

Proposition 5.2 has a most crucial consequence upon the intrinsic variety
of the logic C1.

Corollary 5.3. The intrinsic variety of C1 is the class of all L-algebras.
That is, V(C1) = {A : A is an L-algebra}.

Proof. Since Fm is the absolutely free L-algebra over the (denumerable)
set of variables Var, it is well-known that V(Fm) is the class of all L-
algebras. Moreover V(C1) = V

(
Fm/

∼
�Fm(Th(C1))

)
= V(Fm), bearing in

mind that
∼
�Fm

(
Th(C1)

)
= �Fm(ThmC1) = idFm by protoalgebraicity of C1

and Proposition 5.1, respectively. �
Corollary 5.3 sets aside the possibility of associating with C1 its intrinsic

variety as the class of algebras one could canonically associate with it.
Notice that since C1 is an extension of Cn, we also have Fm ∈ Alg∗(C1) ⊆

Alg∗(Cn), for every n ≥ 1. As such, Corollary 5.3 also holds for the logics Cn,
with n ≥ 1. Consequently, the intrinsic varieties of all da Costa’s C-systems
coincide. It is an open problem whether the quasivarieties QAlg∗(Cn), with
n ≥ 1, also coincide, or even if the classes Alg∗(Cn), with n ≥ 1, happen to
coincide.

Given the fact that the intrinsic variety of a logic is generated by its
algebraic counterpart (see page 483), it follows by Corollary 5.3 that
Alg∗(C1) generates the variety of all L-algebras.

We now proceed to prove that Alg∗(C1) is not a quasivariety. In order
to see that, we borrow the next example from [54, p. 590], and prove that
Alg∗(C1) is not closed under subalgebras. Notice that the proof of Theorem
3.6 provides a counterexample for the fact that Mod∗(C1) is not closed under
submatrices, but the subalgebra B there presented still belongs to Alg∗(C1),
because �B({1}) = idB and {1} ∈ F iC1B.

Proposition 5.4. Alg∗(C1) is not a quasivariety.

Proof. We prove that Alg∗(C1) is not closed under subalgebras. Consider
the algebra A defined by the truth-tables given in Table 3 and fix F :=
{0, 1, 2, 3, 4}. First, one must check that F ∈ F iC1A and furthermore that
�A(F ) = idA (we leave the details to the reader). Thus, A ∈ Alg∗(C1).
Now, consider the subalgebra B ≤ A with universe B = {0, 4, 5}. We have
SgAL(B) = B and {0, 4} = F ∩ B ∈ F iC1B. In fact F iC1B = {F ∩ B,B},
because the singletons {0}, {4}, {5} are not C1-filters, and neither are
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→A 0 1 2 3 4 5 ¬A

0 0 0 0 0 0 5 5
1 0 0 0 0 0 5 2
2 0 0 0 0 0 5 3
3 0 0 0 0 0 5 4
4 0 0 0 0 0 5 5
5 0 0 0 0 0 0 4

∧A 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 1 4 3 4 5
2 2 3 2 4 4 5
3 3 3 3 3 4 5
4 4 4 4 4 4 5
5 5 5 5 5 5 5

∨A 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 0 1 1 1
2 0 0 2 0 2 2
3 0 1 2 3 3 3
4 0 1 2 3 4 4
5 0 1 2 3 4 5

Table 3. Truth-tables of the algebra A of [54, p. 590].

the subsets {0, 5} and {4, 5}. We now claim that 〈0, 4〉 ∈ �B(F ∩ B).
We shall make use of Theorem 4.3. Notice that 0 ↔ 4 = 0 ∈ F ∩ B , and
since ¬0 = ¬4, it follows that ¬m0 = ¬m4, for every m ∈ �, and therefore
¬m0 ↔ ¬m4 = 0 ∈ F ∩ B . Furthermore, by looking at the truth tables of A
restricted to the subuniverse B, one sees that for every ∗1, ... , ∗n ∈ {∧,∨,→},
every m1, ... , mn ∈ �, and every c1, ... , cn ∈ A,

¬mn(··· (¬m2(¬m1(0 ∗1 c1) ∗2 c2) ··· ) ∗n cn) =
¬mn(··· (¬m2(¬m1(4 ∗1 c1) ∗2 c2) ··· ) ∗n cn),

and

¬mn(··· (¬m2(¬m1(c1 ∗1 0) ∗2 c2) ··· ) ∗n cn) =
¬mn(··· (¬m2(¬m1(c1 ∗1 4) ∗2 c2) ··· ) ∗n cn).

Therefore,

¬mn(··· (¬m2(¬m1(0 ∗1 c1) ∗2 c2) ··· ) ∗n cn) ↔
¬mn(··· (¬m2(¬m1(4 ∗1 c1) ∗2 c2) ··· ) ∗n cn) = 0 ∈ F ∩ B,

and

¬mn(··· (¬m2(¬m1(c1 ∗1 0) ∗2 c2) ··· ) ∗n cn) ↔
¬mn(··· (¬m2(¬m1(c1 ∗1 4) ∗2 c2) ··· ) ∗n cn) = 0 ∈ F ∩ B.

It follows by Theorem 4.3 that 〈0, 4〉 ∈ �B(F ∩ B). Thus, �B(F ∩ B) �=
idB . We conclude that B /∈ Alg∗(C1) and hence Alg∗(C1) is not closed under
subalgebras. �

Corollary 5.5. Alg∗(C1) � V(C1).

Proof. Since Alg∗(C1) is not a quasivariety by Proposition 5.4, it follows
at once that Alg∗(C1) � QAlg∗(C1) ⊆ V(C1). �

In summary, the class Alg∗(C1) seems to be of little interest from an
algebraic point of view. Indeed, it is not a quasivariety (Proposition 5.4), the
formula algebra Fm belongs to Alg∗(C1) (Proposition 5.2), and the variety
generated by Alg∗(C1) is the class of all L-algebras (Corollary 5.3).

5.2. Algebraic semantics for C1. Our next goal is to prove that C1 admits
no algebraic semantics in the sense of Blok and Pigozzi, as originally defined
in [6] and introduced in Definition 2.8. We shall appeal to a recent result
established in [43] characterizing non-trivial protoalgebraic logics with an
algebraic semantics and (once again) to Mortensen’s result.
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Theorem 5.6. The logic C1 has no algebraic semantics.

Proof. Let ϕ,� ∈ FmL be two logically equivalent formulas. That is,
for every 
(x, z) ∈ FmL we have 
(ϕ, z) ��C1 
(�, z). It trivially follows
that 
(ϕ, z) ∈ ThmC1 if and only if 
(�, z) ∈ ThmC1 . Therefore, 〈ϕ,�〉 ∈
�Fm(ThmC1)—see for instance [32, Corollary 4.24]. But thenϕ = �, in light
of Mortensen’s Proposition 5.1. We conclude by [43, Theorem 9.3] (which
states that a non-trivial protoalgebraic logic admits an algebraic semantics
if and only if there are two distinct logically equivalent formulas) that C1

admits no algebraic semantics. �

The non-algebraizability of da Costa’s logic C1 established in [39] tells us
that there exists no triple 〈K, �, �〉 satisfying conditions (ALG1) and (ALG2)
for the logic C1; in other words, C1 fails to possess an equivalent algebraic
semantics. Theorem 5.6 now tells us that there exists no pair 〈K, �〉 satisfying
condition (ALG1) for the logic C1; in other words, C1 fails to possess an
algebraic semantics. Theorem 5.6 definitely leaves out of the picture any
attempt to associate with C1 a canonical class of algebras K, whose K-
relative congruences would algebraically translate the logical properties of
C1 according to Definition 2.8.

Having an algebraic semantics is a property preserved by extensions [8,
Theorem 2.15]—the cited result is stated for finitary logics, but for our
purposes it suffices. Therefore, an immediate consequence of Theorem 5.6
is the following:

Corollary 5.7. For every n ≥ 1, the logic Cn has no algebraic semantics.

On the other hand, the property of having an algebraic semantics is
not necessarily preserved by expansions, and C1 provides one such coun-
terexample. Indeed, IL+ possesses an (equivalent) algebraic semantics—the
variety of generalized Heyting algebras, also known as relatively pseudo-
complemented lattices—while C1 does not.

It is worth mentioning that a (protoalgebraic) logic without any algebraic
semantics is not a novel phenomenon in the literature. Indeed, [8, Section
2.3] investigates a necessary condition for a logic to possess an algebraic
semantics, and then builds a very simple logic (with one single axiom
schema and the inference rule of Modus Ponens), which fails to satisfy such
condition. In fact, this logic has been exhaustively studied from an AAL
perspective in [31]. Another ad-hoc example of a logic without any algebraic
semantics appears in [51, Example 3]. For the sake of completeness, the
negation fragments of CL and IL also fail to admit any algebraic semantics,
as observed in [8, p. 170], as well as the logic PW having a single binary
connective [51, Example 4]. The novelty of Theorem 5.6 is the fact that such
pathological behaviour is here exhibited by a well-established logic, rather
than a built-up counterexample, or a mono-connective logic. As a matter of
fact, the existence of an interesting logic without an algebraic semantics was
posed as an open problem right from the very introduction of this notion
by Blok and Pigozzi [6, p. 18]: “It is an open question if any interesting
deductive systems fail to have an algebraic semantics.”
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Part II. From C1 to its extensions.
The second part of our work may be seen as a bridge between the logic

C1 and the extensions of C1 we intend to study. Indeed, while the results of
Section 6 still hold, in particular, for the logic C1, from Section 7 onwards
the results will depend on conditions which C1 fails to satisfy. We were led
to such conditions while investigating the same results for several extensions
of C1. The reason for this abstraction is twofold. On the one hand, our new
assumptions allow us to establish stronger results than those seen for the
logic C1. On the other hand, we avoid repeating the same results for each
extension of C1 under study, while unifying them under a general setting.

Ultimately, the goal of this second part is to arrive at Theorems 8.3 and 8.7
concerning the non-trivial algebra subdirectly irreducible relative toAlg∗(S),
where S is an extension of C1 satisfying the aforementioned conditions.
These results will allow us in Part III to characterize the quasivarieties
Alg∗(S) and the intrinsic variety V(S), for some known extensions S of C1.

§6. The subalgebra A◦. In this section we study a special subalgebra
whose C1-filters satisfy “classical” properties. Most notably, the quotient
of such subalgebra over the Leibniz congruence of any of its C1-filters
is a Boolean Algebra (Theorem 6.6). The results of this section lay the
groundwork for Sections 7 and 8.

Throughout the present section let S be an extension of C1, extended
itself by CL, that is, C1 ≤ S ≤ CL. Let also A be an arbitrary fixed algebra.
Consider the subset A◦ :=

{
a ∈ A : a◦ ∈

⋂
F iSA

}
⊆ A and let A◦ be the

subalgebra of A generated by the subuniverse SgAL(A◦).
Let us start by observing that the subset A◦ is in fact a subuniverse of A.

Lemma 6.1. For every A, A◦ = SgAL(A◦).

Proof. Let a, b ∈ A◦. That is, a◦, b◦ ∈
⋂

F iSA. It follows by axioms
(Ax12), (Ax13), and (Ax14) and Lemma 3.2.19 that (a ∧ b)◦, (a ∨
b)◦, (a → b)◦, (¬a)◦ ∈

⋂
F iSA, respectively. That is, a ∧ b, a ∨ b, a →

b,¬a ∈ A◦. Thus, A◦ is closed under the language operations. �
In light of Lemma 6.1, from here on, we shall denote the subuniverse

SgAL(A◦) simply byA◦. Another useful observation is that a◦ ∈ A◦, for every
a ∈ A. We register this fact for future reference.

Lemma 6.2. For every A and a ∈ A, a◦ ∈ A◦.

Proof. Just notice that (a◦)◦ ∈
⋂

F iSA, by Lemma 3.2.20. �
Our first goal is to show that, by restricting ourselves to the subuniverse
A◦, the Leibniz congruence on A◦ of S-filters of A◦ can be “classically”
characterized. For ease of notation we shall drop the superscript A on a◦A.

Proposition 6.3. For every A, F ∈ F iSA◦ and a, b ∈ A◦,

〈a, b〉 ∈ �A◦
(F ) ⇔ a ↔A◦

b ∈ F.
Proof. LetA arbitrary and F ∈ F iSA◦. Consider the relationR ⊆ A◦ ×
A◦ defined by xR y iff x ↔A◦

y ∈ F . Suppose 〈a, b〉 ∈ �A◦
(F ). It follows
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by Proposition 4.1 that a ↔A◦
b ∈ F . Thus, aRb. Conversely, we claim

that R is a congruence relation on A◦ compatible with F. First, it should
be clear from Lemma 3.2.1–3 that R is an equivalence relation. Next, it
follows by Lemma 3.2.4–6 that R is compatible with the language operations
∧,∨,→, respectively. To see that it is also compatible with the operation ¬,
let x, y ∈ A◦ such that xR y. Then, x◦, y◦ ∈

⋂
F iSA ⊆ F . It follows by

Lemma 3.2.8 that ¬x ↔A◦ ¬y ∈ F . Finally, it is clear by (MP) that R is
compatible with F. Thus, R ⊆ �A◦

(F ). �
Corollary 6.4. For every A and F ∈ F iSA◦,

�A
◦
(F ) = �A

◦

S (F ).

Proof. Given Proposition 3.11, the result follows immediately by
Proposition 6.3. �

Corollary 6.4 reinforces the “classical” flavour of the subalgebraA◦. Recall
that the Leibniz congruence and Frege relation coincide on classical filters,
for arbitrary algebras.

As it turns out, not only is the Leibniz congruence on A◦ of an S-filter
classically defined (Proposition 6.3), but it is actually a congruence relative
to BA.9 (Theorem 6.6) In order to prove it, we compile some auxiliary
facts, whose proofs we leave for the reader—item 3 below is proved in [15,
Proposition 4.2].

Lemma 6.5.

1. �C1 (ϕ ∧ �) ∨ 
 → (ϕ ∨ �) ∧ (� ∨ 
).
2. �C1 (ϕ ∨ �) ∧ (� ∨ 
) → (ϕ ∧ �) ∨ 
.
3. ϕ �C1 ϕ ↔ (� ∨ ¬�).
4. �C1 (� ∧ ¬�) ↔ ¬¬(� ∧ ¬�).
5. ϕ,ϕ◦, �◦ �C1 (� ∧ ¬�) ↔ ¬ϕ.

Theorem 6.6. For every A and F ∈ F iSA◦, A◦/�A
◦
(F ) ∈ BA.

Proof. Let A arbitrary and F ∈ F iSA◦. Fix B := A◦/�A
◦
(F ). We

must prove that 〈B,∧B ,∨B ,→B ,¬B〉 is a distributive, bounded, and
complemented lattice. Let � : A◦ → B be the natural map. For every
a, b ∈ A◦, define the relation ≤B⊆ B × B by

�(a) ≤B �(b) ⇔ a →A◦
b ∈ F.

It is easy to see that ≤B is reflexive and transitive, by Lemma 3.2.11 and
12. Furthermore, if �(a) ≤B �(b) and �(b) ≤B �(a), that is, a ↔A◦

b ∈ F ,
it follows by Proposition 6.3 that 〈a, b〉 ∈ �A◦

(F ), and hence �(a) = �(b).
So, ≤B is a partial order on B.

It follows by (Ax3), (Ax4), and (Ax5) that ∧B is the infimum induced by
the order ≤B , and by (Ax6), (Ax7), and (Ax8) that ∨B is the supremum
induced by the order ≤B . So, 〈B,∧B ,∨B〉 is indeed a lattice. Moreover, it
follows by Lemma 6.5.1 and 2 that it is a distributive lattice.

9BA denotes the class of all Boolean algebras.
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We next prove that B is limited. Let a ∈ F ⊆ A◦ and b ∈ A◦. It follows
by (Ax1) and (MP) that b →A◦

a ∈ F , that is, �(b) ≤B �(a). So, �(a) is
the top element of B w.r.t. the order ≤B . In particular, �(¬A◦

b) ≤B �(a),
i.e., ¬A◦

b →A◦
a ∈ F . Since a ∈ A◦, we have a◦ ∈

⋂
F iSA ⊆ F . It follows

by Lemma 3.2.7 that ¬A◦
a →A◦ ¬A◦¬A◦

b ∈ F . But ¬A◦¬A◦
b →A◦

b ∈ F
by (Ax10), so by transitivity ¬A◦

a →A◦
b ∈ F , that is, �(¬A◦

a) ≤B �(b).
Therefore, ¬B�(a) is the bottom element of B w.r.t. the order ≤B .

We are left to prove thatB is complemented. Let a ∈ F ⊆ A◦ and b ∈ A◦.
It follows by Lemma 6.5.3 that a ↔A◦

(b ∨A◦ ¬A◦
b) ∈ F , and hence

�(a) = �(b ∨A◦ ¬A◦
b) = �(b) ∨B ¬B�(b).

Moreover, since a◦, b◦ ∈
⋂

F iSA ⊆ F and a ∈ F , it follows by Lemma
6.5.5 that (b ∧A◦ ¬A◦

b) ↔A◦ ¬A◦
a ∈ F , and hence

�(b) ∧B ¬B�(b) = �(b ∧A◦ ¬A◦
b) = �(¬A◦

a) = ¬B�(a).

Since we have seen already �(a) and ¬B�(a) to be the top and bottom
elements of B, respectively, it follows that B is complemented. �

§7. A sufficient condition forA◦ ∈ BA. Our goal in this section is to isolate
a general condition which will allow us to prove stronger algebraic results
than those seen so far for the logic C1.

Throughout the present section, let S be such that C1 ≤ S ≤ CL and
satisfying the following condition: For every A, F ∈ F iSA and a, b ∈ A◦,

〈a, b〉 ∈ �A(F ) ⇔ a ↔A b ∈ F. (�)

To put it in words, by restricting ourselves to the subuniverse A◦, the
Leibniz congruence onA of S-filters ofA can be “classically” characterized.
Comparing condition (�) with Proposition 6.3, we see that the former is
applicable to S-filters of A while the latter is applicable to S-filters of the
subalgebra A◦.

Notice that for every a, b ∈ A◦ and every F ∈ F iSA, we have a◦, b◦ ∈⋂
F iSA ⊆ F , and hence a◦ ↔ b◦ ∈ F . Therefore, condition (�) is equiva-

lent to the following condition: For every A, F ∈ F iSA and a, b ∈ A◦,

〈a, b〉 ∈ �A(F ) ⇔ a ↔A b ∈ F and a◦ ↔A b◦ ∈ F,

and having in mind Lemma 4.2.2, it is also equivalent to the following
condition: For every A, F ∈ F iSA and a, b ∈ A◦,

〈a, b〉 ∈ �A(F ) ⇔ a ↔A b ∈ F and ¬a ↔A ¬b ∈ F. (��)

Observe that, as claimed, condition (�) does not hold for C1. Indeed,
consider the algebraA depicted in Figure 2 and fix F0 :=

⋂
F iC1A = {1, u}.

On the one hand, a◦ = 1◦ = 1 ∈ F0 and a ↔ 1 ∈ F0. On the other hand,
〈a, 1〉 /∈ �A(F0) = idA.

In light of Lemma 6.2, a particular case of condition (�) arises when
dealing with a◦, b◦ ∈ A.
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Corollary 7.1. For every A, F ∈ F iSA and a, b ∈ A,

〈a◦, b◦〉 ∈ �A(F ) ⇔ a◦ ↔ b◦ ∈ F.
The next result is a very important consequence of condition (�)—in fact,

it is equivalent to it.

Theorem 7.2. For every A and F ∈ F iSA,

�A(F )�A◦= �A
◦
(F ∩ A◦).

Proof. The inclusion �A(F )�A◦⊆ �A◦
(F ∩A◦) holds in general by

Lemma 2.1.2. As for the converse inclusion, let 〈a, b〉 ∈ �A◦
(F ∩ A◦). Then

a ↔A◦
b ∈ F ∩A◦ by Proposition 4.1, and therefore a ↔A b ∈ F because

A◦ ≤ A. Since a, b ∈ A◦, the result now follows by condition (�). �
Notice that Theorem 7.2 holds for every equivalential extension of C1.

Indeed, it is known (see [32, Lemma 6.72]) that given an equivalential logic
S, we have �A(F )�B= �B(F ∩ B), for every algebra A, F ∈ F iSA, and
every subalgebra B ≤ A. Theorem 7.2 is simply the particular case for the
subalgebra A◦.

Theorems 6.6 and 7.2 taken together have one major consequence. As it
turns out, the subalgebraA◦ of an algebraA ∈ Alg∗(S) is a Boolean algebra.

Corollary 7.3. If A ∈ Alg∗(S), then A◦ ∈ BA.

Proof. LetA ∈ Alg∗(S). Then there existsF ∈ F iSA such that�A(F ) =
idA. It follows by Theorem 7.2 that �A

◦
(F ∩A◦) = �A(F )�A◦= idA �A◦=

idA◦ . Since F ∩A◦ ∈ F iSA◦ ⊆ F iC1A
◦, it follows by Theorem 6.6 thatA◦ ∼=

A◦/�A
◦
(F ∩A◦) ∈ BA. �

Corollary 7.3 does not hold for the logic C1. Indeed, consider the algebra
A whose truth-tables are given as in Table 3. We have A◦ = {0, 4, 5}. Since
|A◦| = 3, necessarily A◦ /∈ BA.

The next two consequences of Corollary 7.3 concern the S-filters of the
subalgebra A◦, and in particular its least element. Given a lattice 〈A,∧,∨〉,
let FiltA denote the set of lattice filters of A w.r.t. the order a ≤A b iff
a ∧A b = a iff a ∨A b = b, for every a, b ∈ A. Recall that, given A ∈ BA, we
have F iCLA = FiltA.

Corollary 7.4. For every A ∈ Alg∗(S), F iSA◦ = F iCLA◦.

Proof. SinceS ≤ CL, the inclusionF iCLA◦ ⊆ F iSA◦ is clear. Conversely,
given axioms (Ax4) and (Ax5), we have F iSA◦ ⊆ FiltA◦. Furthermore,
since A◦ ∈ BA by Corollary 7.3, it is well-known that FiltA◦ = F iCLA◦. �

Corollary 7.5. If A ∈ Alg∗(S), then⋂
F iSA ∩A◦ =

⋂
F iSA◦ = {1},

where 1 is the top element of A◦.

Proof. It follows by Corollary 7.4 that
⋂

F iSA◦ =
⋂

F iCLA◦ =⋂
FiltA◦ = {1}, where 1 is the top element of A◦, having in mind
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Corollary 7.3. So, 1 ∈
⋂

F iSA◦. Next, since
⋂

F iSA ∩A◦ is an S-filter
of A◦, we have

⋂
F iSA◦ ⊆

⋂
F iSA ∩A◦. So, 1 ∈

⋂
F iSA ∩ A◦. Finally,

let a ∈
⋂

F iSA ∩ A◦. Since both a, 1 ∈
⋂

F iSA ∩ A◦, we have a ↔A◦

1 ∈
⋂

F iSA ∩ A◦. Therefore 〈a, 1〉 ∈ �A◦(⋂
F iSA ∩ A◦), by Proposition

6.3. But �A
◦(⋂

F iSA ∩A◦) = �A
(⋂

F iSA
)
�A◦= idA�A◦= idA◦ , using

Theorem 7.2 and the fact A ∈ Alg∗(S). Thus a = 1, and therefore⋂
F iSA ∩A◦ ⊆ {1}. �

§8. Subdirectly irreducible algebras relative to Alg∗(S). We are now ready
to investigate the subdirectly irreducible algebras in Alg∗(S) relative to
Alg∗(S), and to prove the two main results of Part II (Theorems 8.3 and
8.7), namely:

1. Let C1 ≤ S ≤ CL satisfy condition (�). If A ∈ Alg∗(S) is a non-trivial
algebra subdirectly irreducible relative to Alg∗(S), then A◦ ∼= 2.

2. Let C1 ≤ S ≤ CL be finitely equivalential with set of congruence
formulas �(x, y) = {x ↔ y,¬x ↔ ¬y}. IfA ∈ Alg∗(S) is a non-trivial
algebra subdirectly irreducible relative to Alg∗(S), then |A| ≤ 3.

We start by discarding the case of a trivial (Boolean) algebra in Corollary
7.3. Unless otherwise stated, we continue to assume that the underlying logic
S satisfies condition (�).

Lemma 8.1. If A ∈ Alg∗(S) is non-trivial, then A◦ is non-trivial.

Proof. If A = A◦, then the result follows immediately by assumption.
Assume therefore that there exists a ∈ A – A◦. Suppose for the sake of
contradiction that A◦ = {b}, for some b ∈ A. Then,

⋂
F iSA◦ = {b}. Fix

F :=
⋂

F iSA. We first claim that we can assume, without loss of generality,
that a ∈ F . Indeed notice that b◦ ∈ A◦, so necessarily b◦ = b ∈

⋂
F iSA◦ ⊆

F . Moreover a →A b ∈ F , by (Ax1) and (MP). It follows by Lemma 3.2.7
that ¬Ab →A ¬Aa ∈ F . But, ¬Ab = ¬A◦

b = b, because A◦ ≤ A and A◦ =
{b}, respectively. It follows by (MP) that¬Aa ∈ F . Now, if by chance¬Aa =
b, then ¬A¬Aa = ¬Ab = ¬A◦

b = b ∈ F , and therefore by (Ax10) and (MP)
we have a ∈ F . So, either ¬Aa �= b and ¬Aa ∈ F , or ¬Aa = b and a ∈ F .
In any case, there exists c ∈ A – A◦ such that c ∈ F . Assume therefore
that a ∈ F . We next claim that 〈a, b〉 ∈ �A(F ). On the one hand, since
both a, b ∈ F , we have a ↔A b ∈ F . On the other hand, notice that a◦ =
b◦ = b ∈ F , because A◦ = {b}. It follows by condition (�) that 〈a, b〉 ∈
�A(F ). But�A(F ) = idA, because A ∈ Alg∗(S). Thus a = b, and we reach
an absurdity. �

Lemma 8.2. For everyA ∈ Alg∗(S) and every F ∈ F iSA◦, there existsG ∈
F iSA such that �A(G)�A◦= �A

◦
(F ).

Proof. Consider the L-matrix 〈A,
⋂

F iSA〉 and its L-submatrix〈
A◦,

⋂
F iSA ∩A◦〉. Since

⋂
F iSA ∩ A◦ =

⋂
F iSA◦ by Corollary 7.5,

and the class Mod(S) has the FEP by the remark following Theorem
3.10.3, we conclude that for every F ∈ F iSA◦ there exists G ∈ F iSA
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such that F = G ∩ A◦. It now follows by Theorem 7.2 that �A(G)�A◦=
�A

◦(
G ∩A◦) = �A

◦
(F ). �

We are now able to identify, up to isomorphism, the (Boolean) subalgebra
A◦ of any non-trivial algebra A ∈ Alg∗(S) subdirectly irreducible relative to
Alg∗(S).

Theorem 8.3. IfA ∈ Alg∗(S) is a non-trivial algebra subdirectly irreducible
relative to Alg∗(S), then A◦ ∼= 2.

Proof. Let A ∈ Alg∗(S) be a non-trivial algebra subdirectly irreducible
relative to Alg∗(S). Fix � := min CoAlg∗(S)A – {idA} and ϑ := ��A◦ . We
claim that ϑ = min CoAlg∗(S)A

◦ – {idA◦}. First, since � ∈ CoAlg∗(S)A, there
exists F ∈ F iSA such that � = �A(F ). So, ϑ = �A(F )�A◦= �A

◦
(F ∩

A◦) ∈ CoAlg∗(S)A
◦, using Theorem 7.2. Next, let α ∈ CoAlg∗(S)A

◦ – {idA◦}.
On the one hand, there exists G ∈ F iSA◦ such that α = �A

◦
(G). On

the other hand, by Lemma 8.2 there exists H ∈ F iSA such that α =
�A(H )�A◦ . Since �A(H ) ∈ CoAlg∗(S)A and �A(H ) �= idA (otherwise α =
idA◦), we must have � ⊆ �A(H ). Hence ϑ = ��A◦⊆ �A(H )�A◦= α. Thus,
ϑ = min CoAlg∗(S)A

◦ – {idA◦}, as claimed.
We now claim that A◦ is subdirectly irreducible. We know that F iSA◦ =

F iCLA◦, by Corollary 7.4. Therefore, ϑ = �A
◦
(F ∩A◦) ∈ CoBAA

◦. More-
over, since BA ⊆ Alg∗(S), it also holds ϑ = min CoBAA

◦ – {idA◦}. Finally,
since BA is closed under H, CoBAA

◦ = CoA◦, and hence ϑ = min CoA◦ –
{idA◦}. We conclude that A◦ is subdirectly irreducible—see [10, Theorem
8.4]. Since A◦ ∈ BA is non-trivial by Lemma 8.1, it can only be the case
A◦ ∼= 2. �

Having determined the cardinality of the subuniverse A◦, given A ∈
Alg∗(S) non-trivial subdirectly irreducible relative to Alg∗(S), we now wish
to determine the cardinality of the universe A itself. In fact, we want to prove
that |A| ≤ 3. For this purpose we will need to strengthen our assumption
over S. The next auxiliary results however still holds under our current
assumption, that is, S satisfying (�). In light of Corollary 7.3, let 1 denote
the top element of A◦ and let 0 = ¬1.

Lemma 8.4. LetA ∈ Alg∗(S) be a non-trivial subdirectly irreducible algebra
relative to Alg∗(S). For every a ∈ A◦, a◦ = 1; for every a ∈ A – A◦, a◦ = 0.

Proof. First, it should be clear that for every a ∈ A◦, we have ¬A(a ∧A
¬Aa) = ¬A◦

(a ∧A◦ ¬A◦
a) = ¬A◦

0 = 1, becauseA◦ ≤ A andA◦ ∈ BA. Next,
let a ∈ A – A◦. We know by Theorem 8.3 thatA◦ ∼= 2. But a◦ ∈ A◦ = {0, 1},
using Lemma 6.2. If a◦ = 1 ∈

⋂
F iSA (recall Corollary 7.5), then a ∈ A◦

and we reach an absurdity. Necessarily, a◦ = 0. �
Corollary 8.5. Let A ∈ Alg∗(S) be a non-trivial subdirectly irreducible

algebra relative to Alg∗(S).

1.
⋂

F iSA = A – {0}.
2. F iSA =

{⋂
F iSA, A

}
.

3. CoAlg∗(S)A = {idA, A× A}.
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Proof. 1. Let a ∈ A – A◦. Then a◦ = 0, by Lemma 8.4. So, ¬a◦ = 1 ∈⋂
F iSA. Since ¬ϕ◦ = ¬¬(ϕ ∧ ¬ϕ), it follows by (Ax10) that a ∧ ¬a ∈⋂
F iSA, and then by (Ax3) that a ∈

⋂
F iSA. Thus, A – A◦ ⊆

⋂
F iSA.

Since A◦ = {0, 1} and 1 ∈
⋂

F iSA, it can only be the case
⋂

F iSA = A –
{0}. Indeed, if 0 ∈

⋂
F iSA, then A =

⋂
F iSA, so idA = �A

(⋂
F iSA

)
=

�A(A) = A× A, using the fact A ∈ Alg∗(S), and it would follow that A is
trivial.

2. It follows immediately by 1.
3. Every � ∈ CoAlg∗(S)A is of the form �A(F ) with F ∈ F iSA, so the

result follows by 2, having in mind that �A
(⋂

F iSA
)

= idA and �A(A) =
A× A. �

For the last result of the section let S be a finitary and finitely equivalential
extension of C1, extended itself by CL, with (finite) set of congruence
formulas �(x, y) = {x ↔ y,¬x ↔ ¬y}. Let us first see that our new
assumption is stronger than condition (�).

Lemma 8.6. If S is finitely equivalential with a set of congruence formulas
�(x, y) = {x ↔ y,¬x ↔ ¬y}, then S satisfies (�).

Proof. Our hypothesis tells us that for every algebra A, F ∈ F iSA and
a, b ∈ A,

〈a, b〉 ∈ �A(F ) ⇔ a ↔A b ∈ F and ¬a ↔A ¬b ∈ F.
But this clearly implies (��)—which is the particular case where a, b ∈ A◦—
and we have seen it already to be equivalent to (�). �

Theorem 8.7. IfA ∈ Alg∗(S) is a non-trivial algebra subdirectly irreducible
relative to Alg∗(S), then |A| ≤ 3.

Proof. Let A ∈ Alg∗(S) be a non-trivial algebra subdirectly irreducible
relative to Alg∗(S). Then |A◦| = 2, by Theorem 8.3. Assume for the
sake of contradiction that there exist a, b ∈ A – A◦, with a �= b. Then
a◦ = b◦ = 0 by Lemma 8.4, and therefore ¬a◦ = ¬b◦ = 1 ∈

⋂
F iSA.

Since ¬ϕ◦ = ¬¬(ϕ ∧ ¬ϕ), it follows by (Ax10) that a ∧ ¬a ∈
⋂

F iSA
and b ∧ ¬b ∈

⋂
F iSA, and then by (Ax3) and (Ax4) that a,¬a, b,¬b ∈⋂

F iSA. Clearly then a ↔ b ∈
⋂

F iSA and ¬a ↔ ¬b ∈
⋂

F iSA. Since
by hypothesis S is finitely equivalential with set of congruence formulas
�(x, y) = {x ↔ y,¬x ↔ ¬y}, it follows that 〈a, b〉 ∈ �A

(⋂
F iSA

)
= idA,

using the fact A ∈ Alg∗(S). We reach a contradiction. Thus |A – A◦| ≤ 1,
and hence |A| ≤ 3. �

A careful look at the proof of Theorem 8.7 show us why condition (�)
does not suffice. We need to extend (�) to elements a, b ∈ A – A◦. That is:
for every A, F ∈ F iSA and a, b ∈ A – A◦,

〈a, b〉 ∈ �A(F ) ⇔ a ↔A b ∈ F and ¬a ↔A ¬b ∈ F.
An important consequence of our stronger assumption on S (that is, S

is finitary and finitely equivalential) is that the class of algebraic reducts
of S is a quasivariety—see [32, Corollary 6.80]. Quasivarieties are fully
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determined by their relative subdirectly irreducible algebras. In Part III,
we will characterize the quasivariety Alg∗(S) in terms of the subdirectly
irreducible algebras in Alg∗(S) relative to Alg∗(S), for the equivalential
extensions of C1 considered in the literature S = P1,P2,P3. In light of
Theorem 8.7, we will do this by determining the truth-tables of the three-
element algebras in Alg∗(S) subdirectly irreducible relative to Alg∗(S).

Part III. Axiomatic extensions of C1.
In this last part we extend our AAL study of C1 to some of its

paraconsistent extensions considered in the literature. To settle the scope
of the logics under study, we shall focus ourselves on the so-called dC-
systems, according to the terminology of [16, Section 3.8] or [17, Section
5.1]. In particular, we shall be mainly interested in the logics Cilo, Cilow,
Cibv, P1, P2, and P3—recall Figure 1 for the inclusion relations among these
logics.

In the sequel we will only classify sentential logics within the Leibniz
hierarchy, leaving aside the Frege hierarchy. The reason for this omission is
that every extension of C1 (weaker than CL) is not self-extensional—see [16,
Corollary 3.65]—and therefore falls outside the Frege hierarchy.

§9. The logic Cilo. The goals of this section are to introduce the logic
Cilo, prove that it satisfies condition (�) (Corollary 9.2), and classify it
within the Leibniz hierarchy (Propositions 9.6 and 9.9). We finish with a
brief discussion about the class Alg∗(Cilo) in order to clarify a couple of
incorrect claims in the literature.

We first consider an extension of C1 introduced by da Costa, Béziau, and
Bueno in [24]. We follow the presentation of [16], as well as the notation
adopted there—the reason for choosing the notation Cilo of [16] instead
of the original notation C+

1 of [24] is so that it does not collide with the
notation of the strong version of C1 [1]. Let us define the logic Cilo as the
logic axiomatized by (Ax1)–(Ax11) plus (MP), together with the following
axioms:

� (ϕ◦ ∨ �◦) → (ϕ ∧ �)◦. (Ax12a)

� (ϕ◦ ∨ �◦) → (ϕ ∨ �)◦. (Ax13a)

� (ϕ◦ ∨ �◦) → (ϕ → �)◦. (Ax14a)

Clearly the logic Cilo is an extension of C1, that is C1 ≤ Cilo, and therefore
Lemma 3.2 still holds for the consequence relation �Cilo. In particular,

ϕ◦ �Cilo (¬ϕ)◦.

Although the axiomatization of Cilo resembles that of C1, the logic Cilo is
stronger enough to obtain better results than those seen for C1, at least from
an AAL point of view. By “stronger enough,” we mean Cilo satisfies (�).

To begin with, let us stress that F iCiloA ⊆ F iC1A, for an arbitrary algebra
A, and therefore the results seen so far for C1-filters are also applicable to
Cilo-filters. In particular, and having in mind that sets of parameterized
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congruence formulas are preserved by extensions, for every algebra A, F ∈
F iCiloA, and a, b ∈ A,

〈a, b〉 ∈ �A(F ) ⇔ ∀n ∈ � ∀m ∈ � ∀c1, ... , cn ∈ A,
ΦAn (¬ma,¬mb, c1, ... , cn) ⊆ F,
ΨAn (¬ma,¬mb, c1, ... , cn) ⊆ F.

We now prove that Cilo satisfies (�). The proof makes use of the (rather
complex) set of parameterized congruence formulas given in Theorem 4.3.
It is interesting to observe where the axioms (Ax12a)–(Ax14a) play its role,
and why the axioms (Ax12)–(Ax14) do not suffice for our purposes.

Theorem 9.1. LetA be arbitrary,F ∈ F iCiloA, and a, b ∈ A. If a◦, b◦ ∈ F ,
then

〈a, b〉 ∈ �A(F ) ⇔ a ↔ b ∈ F.

Proof. If 〈a, b〉 ∈ �A(F ), then a ↔ b ∈ F by Proposition 4.1. Con-
versely, assume a ↔ b ∈ F . We claim that for every c1, ... , cn ∈ A,⋃

n∈�

⋃
m∈�

ΦAn (¬ma,¬mb, c1, ... , cn) ⊆ F.

The proof goes by induction on n ∈ �.
Basis: We must prove that for every m ∈ �, ¬ma ↔ ¬mb ∈ F . The

proof goes by induction on m ∈ �. Assume first m = 0. It follows by
assumption that a ↔ b ∈ F . Assume now that m > 0. On the one hand,
we have ¬ma ↔ ¬mb ∈ F , by inductive hypothesis. On the other hand,
since a◦, b◦ ∈ F , it follows by m applications of Lemma 3.2.19 that
(¬ma)◦, (¬mb)◦ ∈ F . So it follows by Lemma 3.2.8 that ¬m+1a ↔ ¬m+1b ∈
F . Thus,

⋃
m∈� Φ0(¬ma,¬mb) ⊆ F .

Step: Let m,m1, ... , mn+1 ∈ �, c1, ... , cn+1 ∈ A, and ∗1, ... , ∗n+1 ∈
{∧,∨,→}.

• Φn+1(¬ma,¬mb, c1, c2, ... , cn+1) withmn+1 = 0: It follows by inductive
hypothesis that Φn(¬ma,¬mb, c1, ... , cn) ⊆ F . Therefore,

¬mn(··· ¬m2(¬m1(¬ma ∗1 c1) ∗2 c2) ··· ∗n cn) ↔
¬mn(··· ¬m2(¬m1(¬mb ∗1 c1) ∗2 c2) ··· ∗n cn) ∈ F.

Since moreover cn+1 ↔ cn+1 ∈ F by Lemma 3.2.1, it follows by Lemma
3.2.4–6 that

¬mn(··· ¬m2(¬m1(¬ma ∗1 c1) ∗2 c2) ··· ∗n cn) ∗n+1 cn+1 ↔
¬mn(··· ¬m2(¬m1(¬mb ∗1 c1) ∗2 c2) ··· ∗n cn) ∗n+1 cn+1 ∈ F.

Thus, Φn+1(¬ma,¬mb, c1, c2, ... , cn+1) ⊆ F .
• Φn+1(¬ma,¬mb, c1, c2, ... , cn+1) with mn+1 > 0: Since a◦ ∈ F by

hypothesis, it follows by m applications of Lemma 3.2.19 that (¬ma)◦ ∈
F . It then follows by (Ax12a)–(Ax14a) that (¬ma ∗1 c1)◦ ∈ F ; then
by m1 applications of Lemma 3.2.19 that

(
¬m1(¬ma ∗1 c1)

)◦ ∈ F ; and
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again by (Ax12a)–(Ax14a) that
(
¬m1(¬ma ∗1 c1) ∗2 c2

)◦ ∈ F ; and so
on, until we obtain(

¬mn
(
··· ¬m2

(
¬m1(¬ma ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1

)◦ ∈ F. (2)

Similarly,(
¬mn

(
··· ¬m2

(
¬m1(¬mb ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1

)◦ ∈ F. (3)

Moreover, it follows by inductive hypothesis that

¬mn
(
··· ¬m2

(
¬m1(¬ma ∗1 c1) ∗2 c2

)
··· ∗n cn

)
↔

¬mn
(
··· ¬m2

(
¬m1(¬mb ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∈ F.

So by Lemma 3.2.4–6,

¬mn
(
··· ¬m2

(
¬m1(¬ma ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1 ↔

¬mn
(
··· ¬m2

(
¬m1(¬mb ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1 ∈ F. (4)

It finally follows by (2), (3), (4) and Lemma 3.2.8 that

¬
(
¬mn

(
··· ¬m2

(
¬m1(¬ma ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1

)
↔

¬
(
¬mn

(
··· ¬m2

(
¬m1(¬mb ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1

)
∈ F. (5)

Having arrived here, by (2) and Lemma 3.2.19 we have(
¬

(
¬mn

(
··· ¬m2

(
¬m1(¬ma ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1

))◦
∈ F.

(6)

Similarly, by (3) and Lemma 3.2.19 we have(
¬

(
¬mn

(
··· ¬m2

(
¬m1(¬mb ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1

))◦
∈ F.

(7)

This time it follows by (5)–(7) and Lemma 3.2.8 that

¬2(¬mn( ··· (¬m2
(
¬m1(¬ma ∗1 c1) ∗2 c2

)
···

)
∗n cn

)
∗n+1 cn+1

)
↔

¬2(¬mn( ··· (¬m2
(
¬m1(¬mb ∗1 c1) ∗2 c2

)
···

)
∗n cn

)
∗n+1 cn+1

)
∈ F.

By repeating this process mn+1 times, we eventually obtain

¬mn+1
(
¬mn

(
··· ¬m2

(
¬m1(¬ma ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1

)
↔

¬mn+1
(
¬mn

(
··· ¬m2

(
¬m1(¬mb ∗1 c1) ∗2 c2

)
··· ∗n cn

)
∗n+1 cn+1

)
∈ F.

Thus, Φn+1(¬ma,¬mb, c1, c2, ... , cn+1) ⊆ F .

We conclude that for every c1, ... , cn ∈ A,⋃
n∈�

⋃
m∈�

ΦAn (¬ma,¬mb, c1, ... , cn) ⊆ F.
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Similarly, one proves that for every c1, ... , cn ∈ A,⋃
n∈�

⋃
m∈�

ΨAn (¬ma,¬mb, c1, ... , cn) ⊆ F.

Since F ∈ F iCiloA ⊆ F iC1A, it follows by Theorem 4.3 that 〈a, b〉 ∈ �A(F ).
�

Corollary 9.2. The logic Cilo satisfies (�).

Proof. Let A be arbitrary, F ∈ F iCiloA, and a, b ∈ A◦. Then a◦, b◦ ∈⋂
F iCiloA ⊆ F . It follows by Theorem 9.1 that

〈a, b〉 ∈ �A(F ) ⇔ a ↔ b ∈ F.

�

As a consequence of Corollary 9.2, all the results seen in Section 7 hold
for the logic Cilo.

A particular case of Theorem 9.1 arises when dealing with ∼a,∼b ∈ A.
In order to see it, we first prove an auxiliary lemma.

Lemma 9.3. �Cilo (∼ϕ)◦.

Proof. Since∼ϕ = ¬ϕ ∧ ϕ◦ and �Cilo (ϕ◦)◦ by Lemma 3.2.20, it follows
by (Ax12a) that �Cilo (¬ϕ ∧ ϕ◦)◦, that is �Cilo (∼ϕ)◦. �

Corollary 9.4. For every A, F ∈ F iCiloA, and a, b ∈ A,

〈∼a,∼b〉 ∈ �A(F ) ⇔ ∼a ↔ ∼b ∈ F.

9.1. Classification of Cilo within the Leibniz hierarchy. We now address
the classification of Cilo within the Leibniz hierarchy and relate Cilo with
the strong version of C1.

Since protoalgebraicity is preserved by extensions, the next result should
come with no surprise.

Proposition 9.5. Cilo is protoalgebraic.

Proposition 9.5 prompts the question of whether Cilo is equivalential.
The problem this time is harder to grasp than it was for the logic C1, for we
lack a counterexample of a reduced Cilo-model with a non-reduced Cilo-
submodel. The strategy to prove that Cilo is not equivalential will make use
of another extension, Cilow, yet to appear, and hence we will have to wait
until Proposition 10.3 in order to see in full detail the proof. Nevertheless,
we state the next result here, where it belongs naturally.

Proposition 9.6. Cilo is not equivalential.

Proposition 9.6 corrects a claim on [42, p. 183] stating: “The logic Cilo,
for instance, is (finitely) equivalential.”

We are left to address the truth-equationality of Cilo. Unlike C1, the
logic Cilo has its filters equationally definable, hence being the first truth-
equational logic we have come across in our study.

https://doi.org/10.1017/bsl.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.36


AN ABSTRACT ALGEBRAIC LOGIC STUDY OF DA COSTA’S LOGIC C1 511

Lemma 9.7. 
, (
 ∧ ϕ) ↔ (
 ∧ �) �C1 ϕ ↔ �.

Proposition 9.8. Cilo is truth-equational, witnessed by the set of truth
equations �(x) =

{
(x◦)◦ ∧ x ≈ (x◦)◦ ∧ (x → x)

}
.

Proof. Let 〈A, F 〉 ∈ Mod(Cilo). Assume first a ∈ F . Since both a ∈ F
and a → a ∈ F by assumption and Lemma 3.2.11, respectively, it follows
by manipulation of (Ax1) and (MP) that a ↔ (a → a) ∈ F . It then follows
by Lemma 3.2.16 that

(
(a◦)◦ ∧ a

)
↔

(
(a◦)◦ ∧ (a → a)

)
∈ F . Moreover,

since
(
(a◦)◦

)◦ ∈ F by Lemma 3.2.20 (taking ϕ◦ instead of ϕ), it follows
by (Ax12a) that

(
(a◦)◦ ∧ a

)◦ ∈ F and
(
(a◦)◦ ∧ (a → a)

)◦ ∈ F . It finally
follows by Theorem 9.1 that �A(a) ⊆ �A(F ). Conversely, assume �A(a) ⊆
�A(F ). Then,

(
(a◦)◦ ∧ a

)
↔

(
(a◦)◦ ∧ (a → a)

)
∈ F by Proposition 4.1.

Since (a◦)◦ ∈ F by Lemma 3.2.20, it follows by Lemma 9.7 that a ↔ (a →
a) ∈ F . Next, since a → a ∈ F by Lemma 3.2.11, it follows by (MP) that
a ∈ F . We conclude that F = {a ∈ A : �A(a) ⊆ �A(F )}, which proves the
result. �

Bearing in mind Definition 2.2, and putting together Propositions 9.5 and
9.8, it follows at once that:

Proposition 9.9. Cilo is weakly algebraizable.

In light of Proposition 9.6, the logic Cilo is not algebraizable. There are
few examples of weakly algebraizable, but not algebraizable, logics in the
literature. Namely, the logic of ortholattices SOL, the logic of Andréka and
Nemeti SAN, and some assertional logics of protoregular classes—the latter
being in fact regularly weakly algebraizable. All these examples, as well as
the corresponding proofs of their weak algebraizability, can be found in [29,
Section 6].

9.2. The class Alg∗(Cilo). The class Alg∗(Cilo) enjoys much nicer
properties than Alg∗(C1). Perhaps most notably, Mortensen’s result (recall
Proposition 5.2) is no longer valid. We next prove this and other results
concerning the class Alg∗(Cilo).

A consequence of Proposition 9.8 is that Alg∗(Cilo) is an algebraic
semantics for the logic Cilo. Indeed, every truth-equational logic S admits
Alg(S) as an algebraic semantics—see [51, Corollary 26]. This contrasts with
the situation seen for the logic C1—recall Theorem 5.6.

Since Cilo satisfies (�) by Theorem 9.1, it follows by Corollary 7.3 that
A◦ ∈ BA whenever A ∈ Alg∗(Cilo).

Proposition 9.10. If A ∈ Alg∗(Cilo) then A◦ ∈ BA.

The converse of Proposition 9.10 is false. Consider once again the algebra
A depicted in Figure 2. We haveA◦ ∼= 2 ∈ BA, butA /∈ Alg∗(Cilo)—this last
fact is easily checked by noticing that no non-trivial C1-filter in Table 2 is
closed under axioms (Ax12a)–(Ax14a).

As already claimed, unlike the logic C1, Mortensen’s result no longer holds
for the logic Cilo.
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Proposition 9.11. Fm /∈ Alg∗(Cilo).

Proof. Suppose for the sake of contradiction thatFm ∈ Alg∗(Cilo). Since
Cilo is a non-trivial logic with theorems, it follows by the observation
after Theorem 5.6 that Cilo admits no algebraic semantics, and we reach
a contradiction. �

As a consequence of Proposition 9.11, there exists a non-trivial congruence
on Fm compatible with the Cilo-theorems—just consider �Fm(ThmCilo) �=
idFm. The existence of such a congruence has already been stated in the
literature—originally in [24, Theorem 3.21], but also in [16, Fact 3.81] and
[9, p. 3]. However, from the existence of a non-trivial congruence on Fm
(compatible with ThmCilo) it does not follow that Cilo is algebraizable nor
even equivalential, as mentioned in [16, p. 79] and [42, p. 118].

§10. The logic Cilow. The goals of this section are to introduce the logic
Cilow, classify it within the Leibniz hierarchy, and use its classification
(namely, the fact that it is not equivalential) to establish that Cilo is not
equivalential (although formally stated in Proposition 9.6, it is an immediate
consequence of Proposition 10.3).

Consider the axiom:

� (¬ϕ)◦. (Ax15)

Let us call the logic C1 + (Ax15) by Cilaw10 and the logic Cilo + (Ax15)
by Cilow.11 Unlike the logic Cilo, the extensions Cilaw and Cilow have not
been considered in the literature. Our main purpose in considering them is
to help us establish that Cilo is not equivalential.

Putting together Lemma 3.2.8 and (Ax15), we obtain:

Lemma 10.1. ¬ϕ ↔ ¬� �Cilaw ¬¬ϕ ↔ ¬¬�.

The classification of the logic Cilaw within the Leibniz hierarchy coincides
with that of C1. In fact, the exact same counterexample used in the
proofs of Propositions 3.6 and 3.7 (that is, the algebra A in Figure 2)
can also be used for the logic Cilaw. We need only to check that the
subsets {1, u} and {a, 1, u} are Cilaw-filters of A. But this is easy, because
(¬0)◦ = (¬a)◦ = (¬b)◦ = (¬1)◦ = (¬u)◦ = 1. Therefore both {1, u} and
{a, 1, u} satisfy (Ax15). Therefore, Cilaw is neither equivalential nor truth-
equational.

As for the logic Cilow, since it extends Cilo it follows at once by Proposition
9.9 that it is weakly algebraizable.

We now move on to the main result of this section which is the non-
equivalentiality ofCilow. The next auxiliary lemma makes use of Proposition
2.7 seen in the Preliminaries.

10Recall that the logic C1 is denoted by Cila in [16].
11Following the terminology suggested in [16, p. 68]: “and add w do the name of a logic

containing (cw),” where (cw) is precisely (Ax15).
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Lemma 10.2. If Cilow were equivalential, then �(x, y) := {x ↔ y,¬x ↔
¬y} would be a set of congruence formulas for Cilow.

Proof. Suppose that Cilow is equivalential. Let � : Fm → Fm(x, y) such
that �(x) = x, �(y) = y, and �(z) = ¬x, for every z ∈ Var\{x, y}. It
follows by Proposition 2.7 and Theorem 4.3 that �Δ is a set of congruence
formulas for Cilow, where

Δ(x, y, z) =
⋃
n∈�

⋃
m∈�

Φn(¬mx,¬my, z1, ... , zn) ∪⋃
n∈�

⋃
m∈�

Ψn(¬mx,¬my, z1, ... , zn).

Now, let m, n ∈ � and ϕ ∈ Φn(¬mx,¬my, z1, ... , zn). That is,

ϕ = ¬mn(··· (¬m2(¬m1(¬mx ∗1 z1) ∗2 z2) ··· ) ∗n zn) ↔
¬mn(··· (¬m2(¬m1(¬my ∗1 z1) ∗2 z2) ··· ) ∗n zn),

for some ∗1, ... , ∗n ∈ {∧,∨,→} and some m1, ... , mn ∈ �. We claim that

x ↔ y,¬x ↔ ¬y �Cilow �ϕ.

The proof of our claim goes by induction on n ∈ �.
Basis:n = 0:

Then �ϕ = ¬mx ↔ ¬my, for somem ∈ �. Ifm = 0 orm = 1, then clearly
x ↔ y,¬x ↔ ¬y �Cilow �ϕ holds by extensivity. Assume m > 1. It follows
by m – 1 applications of Lemma 10.1 that ¬x ↔ ¬y �Cilow ¬mx ↔ ¬my.
Therefore, x ↔ y,¬x ↔ ¬y �Cilow �ϕ.
Step:n > 0:

Then

�ϕ = ¬mn+1
(
¬mn(··· ¬m2(¬m1(¬mx ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x

)
↔

¬mn+1
(
¬mn(··· ¬m2(¬m1(¬my ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x

)
,

for some ∗1, ... , ∗n+1 ∈ {∧,∨,→} and m1, ... , mn+1 ∈ �. It follows by
inductive hypothesis that

x ↔ y,¬x ↔ ¬y �Cilow¬mn(··· ¬m2(¬m1(¬mx ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ↔
¬mn(··· ¬m2(¬m1(¬my ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x).

Now, it follows by Lemma 3.2.13–15 (depending on ∗n+1 ∈ {∧,∨,→},
respectively) that

x ↔ y,¬x ↔ ¬y
�Cilow¬mn(··· ¬m2(¬m1(¬mx ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x ↔

¬mn(··· ¬m2(¬m1(¬my ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x. (8)

If mn+1 = 0, then we are done. If mn+1 > 0, then since �Cilow (¬x)◦ by
(Ax15), it follows by (Ax12a)–(Ax14a) (depending on ∗n+1 ∈ {∧,∨,→},
respectively) that

�Cilow
(
¬mn(··· ¬m2(¬m1(¬mx ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x

)◦ (9)
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→A 0 b a 1 ¬A

0 1 1 1 1 1
b 0 b 1 1 1
a 0 1 a 1 1
1 0 1 1 1 0

∧A 0 b a 1

0 0 0 0 0
b 0 b b 1
a 0 b a 1
1 0 1 1 1

∨A 0 b a 1

0 0 1 1 1
b 1 b a 1
a 1 a a 1
1 1 1 1 1

Table 4. Truth-tables of the algebra A.

and similarly

�Cilow
(
¬mn(··· ¬m2(¬m1(¬my ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x

)◦
. (10)

It follows by (8)–(10) and Lemma 3.2.8 that

x ↔ y,¬x ↔ ¬y
�Cilow¬

(
¬mn(··· ¬m2(¬m1(¬mx ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x

)
↔

¬
(
¬mn(··· ¬m2(¬m1(¬my ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x

)
.

It then follows by mn+1 – 1 applications of Lemma 10.1 that

x ↔ y,¬x ↔ ¬y
�Cilow¬mn+1

(
¬mn(··· ¬m2(¬m1(¬mx ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x

)
↔

¬mn+1
(
¬mn(··· ¬m2(¬m1(¬my ∗1 ¬x) ∗2 ¬x) ··· ∗n ¬x) ∗n+1 ¬x

)
.

That is, x ↔ y,¬x ↔ ¬y �Cilow �ϕ.
We conclude that x ↔ y,¬x ↔ ¬y �Cilow �ϕ, as claimed. Similarly, one

proves that x ↔ y �Cilow ��, with� ∈ Ψn(¬mx,¬my, z1, ... , zn). Thus x ↔
y,¬x ↔ ¬y �Cilow �Δ, which proves the result. �

Proposition 10.3. The logic Cilow is not equivalential.

Proof. Suppose for the sake of contradiction that Cilow is equivalential.
It follows by Lemma 10.2 that �(x, y) := {x ↔ y,¬x ↔ ¬y} is a set of
congruence formulas for Cilow. Consider the algebra A whose truth-tables
are given in Table 4 and fix F := {b, a, 1}. First of all, one must check that
F ∈ F iCilowA. Next, on the one hand a ↔A b = 1 ∈ F and ¬Aa ↔A ¬Ab =
1 ∈ F . On the other hand, ¬A(a →A b) ↔A ¬A(b →A b) = 0 ↔A 1 = 0 /∈
F . Thus �A(a, b) ⊆ F , but 〈a, b〉 /∈ �A(F ). We reach a contradiction. �

Consequently, Cilow is not algebraizable.
Still concerning the logic Cilow, it is interesting to observe that the Leibniz

congruence of a Cilow-filter is “classically” defined for negated elements.
Indeed, we have seen this to be the case in Theorem 9.1 for all “well-behaved”
elements. But given axiom (Ax15), all negated elements are now “well-
behaved.”

Corollary 10.4. For every A, F ∈ F iCilowA, and a, b ∈ A,

〈¬a,¬b〉 ∈ �A(F ) ⇔ ¬a ↔ ¬b ∈ F.

Compare Corollary 10.4 with Corollary 9.4, seen for the logic Cilo.
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As a final note, observe that by considering axiom

� ϕ → ¬¬ϕ, (Ax16)

one can define the logics Cilae and Ciloe12 as the extensions of C1 and Cilo by
(Ax16), respectively. Although we will not study these logics in detail here,
we shall nevertheless include them among the extensions of C1 in Figure 1.

§11. The logics Cibv, P1, and P2. The goals of this section are to
introduce the logics Cibv, P1, and P2, classify Cibv within the Leibniz
hierarchy (Theorem 11.5)—the classifications of P1 and P2 are known—
and characterize the non-trivial algebras in Alg∗(S) subdirectly irreducible
relative to Alg∗(S), with S = P1,P2 (Theorems 11.9 and 11.10, respectively).
These last characterizations will allow us to determine the quasivarieties
Alg∗(P1) andAlg∗(P2) (Propositions 11.11 and 11.13), as well as the varieties
V(P1) and V(P2) (Corollaries 11.12 and 11.14).

So far we have only seen non-equivalential axiomatic extensions of C1.
In this section we shall consider three equivalential extensions of Cilo.
Following the terminology of [16, p. 68], let us consider the logic Cibv as the
logic axiomatized by (Ax1)–(Ax11) and (MP), together with the following
axioms:

� (ϕ ∧ �)◦, (Ax12b)

� (ϕ ∨ �)◦, (Ax13b)

� (ϕ → �)◦. (Ax14b)

The logic P1 (also called Cibvw in [16, p. 68] and C0.1 in [45, p. 301])13 is
the extension of Cibv by axiom (Ax15). The logic P2 (also called Cibve in
[16, p. 68] and C0.2 in [45, p. 301]) is the extension of Cibv by axiom (Ax16).

The logic Cibv is the first equivalential (in fact, algebraizable) logic we
have come across so far.

Proposition 11.1. The logic Cibv is equivalential, witnessed by the set of
congruence formulas �(x, y) = {¬mx ↔ ¬my : m ∈ �}.

Proof. We prove that for every A and every F ∈ F iCibvA,

〈a, b〉 ∈ �A(F ) ⇔ ∀m∈� ¬ma ↔ ¬mb ∈ F.
Fix A and F ∈ F iCibvA. Define the relation R ⊆ A× A by 〈a, b〉 ∈ R ⇔
∀m∈� ¬ma ↔ ¬mb ∈ F . Assume that 〈a, b〉 ∈ �A(F ). It follows by
Proposition 4.1 that aRb. Thus, �A(F ) ⊆ R. Conversely, we claim that
R is a congruence relation on A compatible with F. It should be clear
that it is an equivalence relation on A by Lemma 3.2.1–3. It is also clear by
definition of R that it is compatible with the connective¬. We are left to prove

12Following the notation introduced in [16, p. 67].
13Sette’s paraconsistent logic P1

was originally defined in [53] within the language L′ =
〈→,¬〉, with the connectives ∧,∨ being defined in terms of the primitive connectives.
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that R is compatible with the binary language operations of L. The proof
goes by induction on m ∈ �. Basis: Take m = 0. The compatibility with
the language operations ∧,∨,→ follows by Lemma 3.2.4–6, respectively.
Step: Let m > 0. Let a1Rb1 and a2Rb2. It follows by axioms (Ax12b)–
(Ax14b) that (a1 ∗ a2)◦ ∈ F and (b1 ∗ b2)◦ ∈ F , with ∗ ∈ {∧,∨,→}. It then
follows by Lemma 3.2.19 (applied m times) that

(
¬m(a1 ∗ a2)

)◦ ∈ F and(
¬m(b1 ∗ b2)

)◦ ∈ F , with ∗ ∈ {∧,∨,→}. Moreover, it follows by inductive
hypothesis that ¬m(a1 ∗ a2) ↔ ¬m(b1 ∗ b2), with ∗ ∈ {∧,∨,→}. Hence, it
follows by Lemma 3.2.8 that ¬m+1(a1 ∗ a2) ↔ ¬m+1(b1 ∗ b2) ∈ F , with ∗ ∈
{∧,∨,→}. We conclude that R is compatible with the language operations
∧,∨,→. Finally, takingm = 0, it follows by (MP) that R is compatible with
F. Thus, R ⊆ �A(F ). �

We now proceed to prove that Cibv is not finitely equivalential.

Lemma 11.2. If Cibv were finitely equivalential, then there would existk ∈ �
such that {¬mx ↔ ¬my : m ≤ k} is a set of congruence formulas for Cibv.

Proof. Assume Cibv is finitely equivalential. Since Cibv is finitary, it
follows by Proposition 11.1 and [32, Proposition 6.65.6] that there exists
a finite subset of {¬mx ↔ ¬my : m ∈ �}, say {¬ix ↔ ¬iy : i ∈ I, I finite},
which is still a set of congruence formulas for Cibv. Let k = max I . Notice
that

{¬ix ↔ ¬iy : i ∈ I } ��Cibv {¬mx ↔ ¬my : m ≤ k}.
Thus {¬mx ↔ ¬my : m ≤ k} is a set of congruence formulas for Cibv. �

Proposition 11.3. The logic Cibv is not finitely equivalential.

Proof. Suppose for the sake of contradiction that Cibv is finitely equiv-
alential. Consider the algebra An with universe An = {0, 1

n–1 , ... ,
n–2
n–1 , 1}.

Define the operations ¬An ,∧An ,∨An ,→An as follows:

¬Anx =

⎧⎪⎨
⎪⎩

1, if x = 0,
x + 1

n–1 , if x ∈ { 1
n–1 , ... ,

n–2
n–1},

0, if x = 1,

x ∧An y =

{
0, if x = 0 or y = 0,
1, otherwise,

x ∨An y =

{
0, if x = 0 and y = 0,
1, otherwise,

x →An y =

{
0, if x �= 0 and y = 0,
1, otherwise.

For the case n = 4, the truth-tables of A4 are given in Table 5. Under
our assumption, it follows by Lemma 11.2 that there exists k ∈ � such
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→A4 0 1/3 2/3 1 ¬A4

0 1 1 1 1 1
1/3 0 1 1 1 2/3
2/3 0 1 1 1 1
1 0 1 1 1 0

∧A4 0 1/3 2/3 1

0 0 0 0 0
1/3 0 1 1 1
2/3 0 1 1 1
1 0 1 1 1

∨A4 0 1/3 2/3 1

0 0 1 1 1
2/3 1 1 1 1
1/3 1 1 1 1
1 1 1 1 1

Table 5. Truth-tables of the algebra A4.

that �(x, y) := {¬mx ↔ ¬my : m ≤ k} is a set of congruence formulas
for Cibv. Let us consider the algebra Ak+3 and fix F := { 1

k+2 , ... ,
k+1
k+2 , 1}.

First of all, notice that F ∈ F iCibvA. Next, observe that ¬m 1
k+2 ↔ ¬m 2

k+2 =
1 ∈ F , for every m ≤ k, but ¬k+1 1

k+2 ↔ ¬k+1 2
k+2 = 1 ↔ 0 = 0 /∈ F . Thus

�A
(

1
k+2 ,

2
k+2

)
⊆ F , but 〈 1

k+2 ,
2
k+2〉 /∈ �

A(F ). We reach a contradiction. �
Regarding the family An, with n ∈ �, observe that A2 = 2 and A3 = S ,

where S is Sette’s algebra.
The (few) known examples of equivalential logics which are not finitely

equivalential are Herrmann’s logic, Dellunde’s logic, and the local logic
associated with the least normal modal system. All these examples can be
found in [32, Examples 3.42, 3.53, and 6.67.3]. The logic Cibv provides one
further example to this list.

Since truth-equationality is preserved by extensions, it follows at once
by Proposition 9.8 that Cibv has its filters equationally definable by
�(x) =

{
(x◦)◦ ∧ x ≈ (x◦)◦ ∧ (x → x)

}
. However, in the case of Cibv one

can identify a simpler set of truth-equations.

Proposition 11.4. The logic Cibv is truth-equational, witnessed by the set
of truth-equations �(x) = {(x → x) → x ≈ x → x}.

Proof. Let 〈A, F 〉 ∈ Mod(Cibv). Assume a ∈ F . Since a → a ∈ F by
Lemma 3.2.11, it follows by some easy manipulation of (Ax1) and (MP)
that

(
(a → a) → a

)
↔ (a → a) ∈ F . Moreover, since both

(
(a → a) →

a
)◦ ∈ F and (a → a)◦ ∈ F by (Ax14b), it follows by Theorem 9.1 that
�A(a) ⊆ �A(F ). Conversely, assume �A(a) ⊆ �A(F ). Then,

(
(a → a) →

a
)
↔ (a → a) ∈ F . Since a → a ∈ F by Lemma 3.2.11, it follows by (MP)

that (a → a) → a, and again by (MP) that a ∈ F . We conclude that
F = {a ∈ A : �A(a) ⊆ �A(F )}, which proves the result. �

The algebraizability of Cibv is a straightforward consequence of Proposi-
tions 11.1 and 11.4. However, in light of Proposition 11.3, the logic Cibv is
not finitely algebraizable.

Theorem 11.5. The logic Cibv is algebraizable, with set of congruence
formulas �(x, y) = {¬mx ↔ ¬my : m ∈ �} and set of truth equations �(x) =
{(x → x) → x ≈ x → x}.

Since algebraizability is preserved by extensions, it follows by Theorem
11.5 that both P1 and P2 are algebraizable. However, as we next prove, these
logics admit finite sets of congruence formulas.

https://doi.org/10.1017/bsl.2022.36 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2022.36


518 HUGO ALBUQUERQUE AND CARLOS CALEIRO

¬A
1 0
a a or 1
0 1

∧A 0 a 1
0 0 0 0
a 0 a or 1 1
1 0 1 1

∨A 0 a 1
0 0 1 1
a 1 a or 1 1
1 1 1 1

→A 0 a 1
0 1 1 1
a 0 a or 1 1
1 0 1 1

Table 6. The truth-tables of Theorem 11.8.

Proposition 11.6. The logics P1 and P2 are finitely equivalential, with a set
of congruence formulas �(x, y) = {x ↔ y,¬x ↔ ¬y}.

Proof. Let S be any of P1,P2. We prove that for every A and every
F ∈ F iSA,

〈a, b〉 ∈ �A(F ) ⇔ a ↔ b ∈ F and ¬a ↔ ¬b ∈ F.

Fix A and F ∈ F iSA. Define the relation R ⊆ A× A by 〈a, b〉 ∈ R iff a ↔
b ∈ F and ¬a ↔ ¬b ∈ F . Assume that 〈a, b〉 ∈ �A(F ). It follows by
Proposition 4.1 that aRb. Thus, �A(F ) ⊆ R. Conversely, we claim that
R is a congruence relation on A compatible with F. It should be clear
that it is an equivalence relation on A by Lemma 3.2.1–3. Let a1Rb1 and
a2Rb2. On the one hand, it follows by Lemma 3.2.4–6 that (a1 ∗ a2) ↔
(b1 ∗ b2) ∈ F , with ∗ ∈ {∧,∨,→}. Moreover, ¬a ↔ ¬b ∈ F by assumption.
On the other hand, it follows by (Ax12b)–(Ax14b) that (a1 ∗ a2)◦ ∈ F and
(b1 ∗ b2)◦ ∈ F , with ∗ ∈ {∧,∨,→}. It then follows by Lemma 3.2.8 that
¬(a1 ∗ b1) ↔ ¬(a2 ∗ b2) ∈ F , with ∗ ∈ {∧,∨,→}. Now if S = P1, then it
follows by (Ax15) that (¬a1)◦ ∈ F and (¬b1)◦ ∈ F . Since¬a1 ↔ ¬b1 ∈ F by
assumption, it follows once again by Lemma 3.2.8 that ¬¬a1 ↔ ¬¬b1 ∈ F .
If S = P2, then it follows by (Ax10) and (Ax16) that a1 ↔ ¬¬a1 ∈ F and
b1 ↔ ¬¬b1 ∈ F . Since a1 ↔ b1 ∈ F by assumption, it follows by transitivity
(Lemma 3.2.3) that ¬¬a1 ↔ ¬¬b1 ∈ F . We conclude that R is compatible
with the language operations. Finally, it follows by (MP) that R is compatible
with F. Thus, R ⊆ �A(F ). �

Theorem 11.7. The logics P1 and P2 are finitely algebraizable, with a set
of congruence formulas �(x, y) = {x ↔ y,¬x ↔ ¬y} and a set of truth
equations �(x) = {(x → x) → x ≈ x → x}.

The algebraizability of P1 was first established in [39, Theorem 2.1]. The
algebraizability of P2 is contained in [16, Fact 3.82] or [17, Theorem 135],
although it is unclear whether the relations there considered are in fact
congruence relations—see the remarks on page 479.

For the next result let S be a finitary and finitely equivalential extension of
Cilo, extended itself by CL, with (finite) set of congruence formulas �(x, y) =
{x ↔ y,¬x ↔ ¬y}. This encompasses both P1 and P2.

Theorem 11.8. If A ∈ Alg∗(S) is a subdirectly irreducible algebra relative
to Alg∗(S), then the truth tables of the L-connectives on A agree with those
in Table 6.
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¬T

1 0
a 1
0 1

∧T 0 a 1

0 0 0 0
a 0 1 1
1 0 1 1

∨T 0 a 1

0 0 1 1
a 1 1 1
1 1 1 1

→T 0 a 1

0 1 1 1
a 0 1 1
1 0 1 1

Table 7. The truth-tables of the algebra T [45, p. 301].

Proof. Let A comply with the assumption. It follows by Theorem 8.7
that |A| ≤ 3, say A = {0, 1, a}. We proceed to construct the truth table of
A. Fix F :=

⋂
F iSA = {1, a}, having in mind Corollary 8.5.1.

i. The truth table of the subuniverse A◦ = {0, 1} is obvious, given the
fact that A◦ ∼= 2 by Theorem 8.3.

ii. Let ∗ ∈ {∧,∨,→}. Notice that since 0◦ = 1◦ = 1 ∈ F , it follows by
(Ax12a)–(Ax14a) that (a ∗ 0)◦, (0 ∗ a)◦, (a ∗ 1)◦, (1 ∗ a)◦ ∈ F . But
clearly all these elements are in A◦. Therefore, (a ∗ 0)◦, (0 ∗ a)◦, (a ∗
1)◦, (1 ∗ a)◦ ∈ F ∩ A◦ = {1}, using Corollary 7.5. It follows by
Lemma 8.4 that a ∗ 0, 0 ∗ a, a ∗ 1, 1 ∗ a ∈ {0, 1}. We now reason by
cases until we obtain the (incomplete) truth-tables of Table 7.

a. If 1 ∧ a = 0, then since both a, 1 ∈ F , it would follow by (Ax5)
and (MP) that 0 ∈ F , reaching a contradiction. Thus, 1 ∧ a = 1.
Mutatis mutandis for a ∧ 1 = 1.

b. If 0 ∧ a = 1, then it would follow by (Ax3) and (MP) that 0 ∈ F ,
reaching a contradiction. Thus, 0 ∧ a = 0. Mutatis mutandis for
a ∧ 0 = 0, using (Ax4).

c. Let x ∈ {0, 1}. If x ∨ a = 0, then since a ∈ F , it would follow
by (Ax7) that 0 ∈ F , reaching a contradiction. Thus, x ∨ a = 1.
Mutatis mutandis for a ∨ x = 1, using (Ax6).

d. If a → 1 = 0, then since 1 ∈ F , it would follow by (Ax1) and
(MP) that 0 ∈ F , reaching a contradiction. Thus, a → 1 = 1.

e. If a → 0 = 1, then since a ∈ F , it would follow by (MP) that
0 ∈ F , reaching a contradiction. Thus, a → 0 = 0.

f. If 1 → a = 0, then since a ∈ F , it would follow by (Ax1) and
(MP) that 0 ∈ F , reaching a contradiction. Thus, 1 → a = 1.
Mutatis mutandis for 0 → a = 1.

iii. Let ∗ ∈ {∧,∨,→}. We are left to prove that ¬a �= 0 and a ∗ a �= 0. If
¬a = 0, then a◦ = 1, contradicting Lemma 8.4. Finally, since a ∈ F ,
notice that we also have a ∗ a ∈ F . Thus, a ∗ a �= 0. �

This does not necessarily mean that there exist 24 non-trivial algebras in
Alg∗(S) subdirectly irreducible relative to Alg∗(S). For instance, any truth-
table agreeing with Table 6 and such that a ∧ a = a and ¬a = a will not
correspond to a non-trivial algebra inAlg∗(S) subdirectly irreducible relative
to Alg∗(S), otherwise a◦ = ¬(a ∧ ¬a) = ¬(a ∧ a) = ¬a = a, contradicting
Lemma 8.4. It does mean however that there exist at most 12 non-trivial
algebras in Alg∗(S) with three elements subdirectly irreducible relative to
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¬S

1 0
a 1
0 1

∧S 0 a 1

0 0 0 0
a 0 1 1
1 0 1 1

∨S 0 a 1

0 0 1 1
a 1 1 1
1 1 1 1

→S 0 a 1

0 1 1 1
a 0 1 1
1 0 1 1

Table 8. The truth-tables of the algebra S [53, pp. 176 and 179] and [50, p. 101].

Alg∗(S). We shall see three of them in greater detail—namely, the algebras
S , T , and R.

Given Proposition 11.6, we can apply the general results of Section 8
together with Theorem 11.8 to the logics P1 and P2.

Theorem 11.9. The only non-trivial algebras in Alg∗(P1) subdirectly
irreducible relative to Alg∗(P1) are 2, S .

Proof. Let A comply with the assumption. The proof goes exactly as in
Theorem 11.8, with two further items:

iv. Let ∗ ∈ {∧,∨,→}. On the one hand, notice that (a ∗ a)◦ ∈ F ∩ A◦ =
{1}, using (Ax12b)–(Ax14b). It follows by Lemma 8.4 that a ∗ a ∈
{0, 1}. On the other hand, since a ∈ F , we have a ∗ a ∈ F = {a, 1}. It
can only be the case then that a ∗ a = 1.

v. Notice that (¬a)◦ ∈ F ∩ A◦ = {1}, using (Ax15). It follows by Lemma
8.4 that ¬a ∈ {0, 1}. But we had seen already in item iii (see the proof
of Theorem 11.8) that ¬a �= 0. Thus, ¬a = 1.

We conclude that A ∼= S , whose truth-tables are depicted in Table 8. �
Theorem 11.9 generalizes [40, Theorem 9], which states that the only

subdirectly irreducible algebras in Alg∗(P1) are 2 and S .

Theorem 11.10. The only non-trivial algebras in Alg∗(P2) subdirectly
irreducible relative to Alg∗(P2) are 2, T .

Proof. Let A comply with the assumption. The proof goes exactly as in
Theorem 11.8, with two further items:

iv. Let ∗ ∈ {∧,∨,→}. On the one hand, notice that (a ∗ a)◦ ∈ F ∩ A◦ =
{1}, using (Ax12b)–(Ax14b). It follows by Lemma 8.4 that a ∗ a ∈
{0, 1}. On the other hand, since a ∈ F , we have a ∗ a ∈ F = {a, 1}. It
can only be the case then that a ∗ a = 1.

v. We know by item iii (see the proof of Theorem 11.8) that ¬a �= 0.
Suppose for the sake of contradiction that ¬a = 1. Since 1 → a =
1 ∈ F and a → ¬¬a by (Ax16), it follows by transitivity (Lemma
3.2.3) that 1 → ¬¬a ∈ F , that is 1 → ¬1 = 1 → 0 = 0 ∈ F . We reach
a contradiction. Thus, ¬a = a.

We conclude that A ∼= T , whose truth-tables are depicted in Table 8. �
Theorems 11.9 and 11.10 allow us to characterize the classes of algebraic

reducts of P1 and P2, as well as their intrinsic varieties. In the case of
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P1, the result is already known and even has a lattice characterization,
corresponding to the so-called Sette’s algebras.

Proposition 11.11. Alg∗(P1) = IPS(2,S ) = Q(S ) = SA.

Proof. It is easy to check that 2,S ∈ Alg∗(P1). Therefore IPS(2,S ) ⊆
Alg∗(P1), because Alg∗(P1) is closed under IPS. Conversely, letA ∈ Alg∗(P1).
Since Alg∗(P1) is a quasivariety, because P1 is finitary and finitely equivalen-
tial [32, Corollary 6.80], it follows by Theorem 11.9 that A ∈ IPS(2,S ).
Thus, Alg∗(P1) = IPS(2,S ). The inclusion Q(S ) ⊆ Alg∗(P1) follows once
again from the fact that Alg∗(P1) is a quasivariety. To prove the converse
inclusion notice that since S is subdirectly irreducible relative to Alg∗(P1), it
follows by Theorem 8.3 that S ◦ ∼= 2, and hence 2 ∈ S(S ) ⊆ Q(S ). Finally,
Q(S ) = SA by definition of Sette algebra given in [50, p. 106]. �

The identity Alg∗(P1) = Q(S ) was first established in [38, Corollary 2.2],
while the identity Q(S ) = SA was established in [50, Theorem 4.3], together
with an axiomatization of Sette’s algebras.

Interestingly enough, Proposition 11.11 and Pynko’s [50, Corollary 5.8]
provide us with a lattice characterization of the intrinsic variety of P1. Quasi-
Sette algebras are introduced in [50, Section 5], and following [50, Definition
5.1] we shall denote the variety of all quasi-Sette algebras by QSA.

Corollary 11.12. V(P1) = V(S ) = QSA.

Proof. Since V(P1) = VAlg∗(P1), the identity V(P1) = V(S ) follows
immediately by Proposition 11.11. The identity V(S ) = QSA was proved
in [50, Corollary 5.8]. �

Proposition 11.13. Alg∗(P2) = IPS(2,T ) = Q(T ).

Proof. It is easy to check that 2,T ∈ Alg∗(P2). Therefore IPS(2,T ) ⊆
Alg∗(P2), because Alg∗(P2) is closed under IPS. Conversely, letA ∈ Alg∗(P2).
Since Alg∗(P2) is a quasivariety, because P1 is finitary and finitely equivalen-
tial [32, Corollary 6.80], it follows by Theorem 11.9 that A ∈ IPS(2,T ).
Thus, Alg∗(P2) = IPS(2,T ). The inclusion Q(T ) ⊆ Alg∗(P2) follows once
again from the fact that Alg∗(P2) is a quasivariety. To prove the converse
inclusion notice that since T is subdirectly irreducible relative to Alg∗(P2),
it follows by Theorem 8.3 that T ◦ ∼= 2, and hence 2 ∈ S(T ) ⊆ Q(T ). �

Corollary 11.14. V(P2) = V(T ).

§12. The logic P3. In this last section we introduce the logic P3, prove that
it coincides with the logic Cilor also covered in the literature (Proposition
12.2), and classify it within the Leibniz hierarchy (Theorem 12.7). Similarly
to the previous section, we then characterize the non-trivial algebras in
Alg∗(P3) subdirectly irreducible relative to Alg∗(P3) (Theorem 12.8) in order
to determine the quasivariety Alg∗(P3) (Proposition 12.9) and the variety
V(P3) (Corollary 12.10).
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Let us define the logic Cilor14 as the (axiomatic) extension of Cilo by the
following axioms:

� (ϕ ∧ �)◦ → (ϕ◦ ∨ �◦). (Ax12c)

� (ϕ ∨ �)◦ → (ϕ◦ ∨ �◦). (Ax13c)

� (ϕ → �)◦ → (ϕ◦ ∨ �◦). (Ax14c)

The logic P3 is the extension of Cilor by the axiom (Ax15).
Before proceeding with the classification of Cilor and P3 within the Leibniz

hierarchy, let us see that these two logics in fact coincide.

Lemma 12.1.

1. �C1 (ϕ ∧ �) ∧ 
 ↔ ϕ ∧ (� ∧ 
).
2. �Cilor

(
(ϕ ∧ �) ∧ 


)◦ ↔
(
ϕ ∧ (� ∧ 
)

)◦.
3. �Cilor ¬

(
(ϕ ∧ �) ∧ 


)
↔ ¬

(
ϕ ∧ (� ∧ 
)

)
.

4. �Cilor (ϕ ∧ ¬ϕ)◦.
5. �Cilor (¬ϕ)◦.

Proof. 1. It follows easily by Definition 3.3 and Theorem 3.4.
2. Notice that �Cilor

(
(ϕ ∧ �) ∧ 


)◦ ↔ (
(ϕ◦ ∨ �◦) ∨ 
◦

)
by (Ax12) and

(Ax12c). Notice also that �C1

(
(ϕ◦ ∨ �◦) ∨ 
◦

)
↔

(
ϕ◦ ∨ (�◦ ∨ 
◦)

)
by

1. Finally, notice that �Cilor
(
ϕ◦ ∨ (�◦ ∨ 
◦)

)
↔

(
ϕ ∧ (� ∧ 
)

)◦, again by
(Ax12) and (Ax12c). The result now follows by transitivity (Lemma 3.2.3).

3. It follows by 1 and 2, together with Lemma 4.2.2.
4. Fix 
 = ϕ ∧ ¬ϕ. Notice that 
◦ = ¬((ϕ ∧ ¬ϕ) ∧ ϕ◦). Having in mind

3, we have �Cilor ¬((ϕ ∧ ¬ϕ) ∧ ϕ◦) ↔ ¬(ϕ∧ ∼ϕ). But �C1 ¬(ϕ∧ ∼ϕ), fact
which can be easily checked using Definition 3.3 da Costa’s completeness
Theorem 3.4. Therefore, �Cilor ¬((ϕ ∧ ¬ϕ) ∧ ϕ◦). That is, �Cilor 
◦.

5. It follows by (Ax12c) that�Cilor (ϕ ∧ ¬ϕ)◦ → ϕ◦ ∨ (¬ϕ)◦. Therefore by
4 and (MP), �Cilor ϕ◦ ∨ (¬ϕ)◦. Finally, since �Cilor ϕ◦ → (¬ϕ)◦ by Lemma
3.2.19 and �Cilor (¬ϕ)◦ → (¬ϕ)◦ by Lemma 3.2.11, it follows by (Ax8) and
(MP) that �Cilor (¬ϕ)◦. �

Since P3 = Cilor + (Ax15) by definition, and Cilor satisfies axiom (Ax15)
by Lemma 12.1.5, both logics coincide.

Proposition 12.2. Cilor = P3.

Having considered the logic Cilor + (Ax15), it is also natural to consider
the logic Cilor + (Ax16). However, in this case we are in the presence of
classical logic.

Proposition 12.3. Cilor + (Ax16) = CL.

Proof. Let S = Cilor + (Ax16). We claim that �S ϕ◦, for every ϕ ∈
FmL. On the one hand, since Cilor satisfies axiom (Ax15) by Lemma 12.1.5,

14Following the terminology suggested in [16, p. 67]: “and so on, mutatis mutandis, for
Cilo.”
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we have �S (¬ϕ)◦. Therefore, �S (ϕ ∧ ¬ϕ) → (¬ϕ)◦. On the other hand,
it follows by Lemma 3.2.13, axiom (Ax16) and the fact �C1 � ∧ � ↔ � ∧ �,
that �S (ϕ ∧ ¬ϕ) → (¬ϕ ∧ ¬¬ϕ). Moreover, since (¬ϕ)◦ = ¬(¬ϕ ∧ ¬¬ϕ),
it follows again by (Ax16) that �S (¬ϕ ∧ ¬¬ϕ) → ¬(¬ϕ)◦. Therefore, it
follows by transitivity (Lemma 3.2.3) that �S (ϕ ∧ ¬ϕ) → ¬(¬ϕ)◦. Finally,
we have �S

(
(¬ϕ)◦

)◦ by Lemma 3.2.20. Now, fix 
 := ϕ ∧ ¬ϕ. We have by
(Ax11),

�S 

◦ →

(
(
 → (¬ϕ)◦) →

(
(
 → ¬(¬ϕ)◦) → ¬


))
.

It follows by successive applications of (MP) that �S ¬
. That is �S ϕ◦, as
claimed. We conclude that S = CL—see [26, Theorem 2.1.5]. �

Other than C1’s axioms, the above proof makes use only of axioms (Ax15)
and (Ax16).

Corollary 12.4. C1 + (Ax15) + (Ax16) = CL.

Similarly to the logics P1 and P2, the logic P3 is also finitely equivalential.

Proposition 12.5. The logic P3 is finitely equivalential, witnessed by the set
of congruence formulas �(x, y) = {x ↔ y, x◦ ↔ y◦}.

Proof. We prove that for every A and every F ∈ F iP3A,

〈a, b〉 ∈ �A(F ) ⇔ a ↔A b and a◦ ↔A b◦ ∈ F.
Let A arbitrary and F ∈ F iP3A. Define the relation R ⊆ A× A by 〈a, b〉 ∈
R iff a ↔ b ∈ F and a◦ ↔ b◦ ∈ F . Assume that 〈a, b〉 ∈ �A(F ). It follows
by Proposition 4.1 that aRb. Thus,�A(F ) ⊆ R. Conversely, we claim that R
is a congruence relation onA compatible with F. It should be clear that it is an
equivalence relation on A by Lemma 3.2.1–3. Let a1Rb1 and a2Rb2. On the
one hand, it follows by Lemma 3.2.4–6 that (a1 ∗ b1) ↔ (a2 ∗ b2) ∈ F , with
∗ ∈ {∧,∨,→}. Moreover, since both a1 ↔ b1, a

◦
1 ↔ b◦1 ∈ F by assumption,

it follows by Lemma 4.2.2 that ¬a1 ↔ ¬b1 ∈ F . On the other hand, we
have by axioms (Ax12c)–(Ax14c) that (a1 ∗ a2)◦ → a◦1 ∨ a◦2 ∈ F , with ∗ ∈
{∧,∨,→}. Since by assumption a◦1 ↔ b◦1 ∈ F and a◦2 ↔ b◦2 ∈ F , it follows
by Lemma 3.2.5 that (a◦1 ∨ a◦2 ) → (b◦1 ∨ b◦2 ) ∈ F , ∗ ∈ {∧,∨,→}. Moreover,
it follows by axioms (Ax12)–(Ax14) that (b◦1 ∨ b◦2 ) → (b1 ∗ b2)◦ ∈ F , with
∗ ∈ {∧,∨,→}. Thus by transitivity (a1 ∗ a2)◦ → (b1 ∗ b2)◦ ∈ F . Similarly,
one proves that (b1 ∗ b2)◦ → (a1 ∗ a2)◦ ∈ F . Thus, (a1 ∗ a2)◦ ↔ (b1 ∗ b2)◦ ∈
F . Finally, since (¬a1)◦, (¬b1)◦ by Lemma 12.1.5, it is clear that (¬a1)◦ ↔
(¬b1)◦ ∈ F . We conclude that R is compatible with the language operations.
Furthermore, it follows by (MP) that R is compatible with F. Thus, R ⊆
�A(F ). �

In light of Lemma 4.2.2, it follows that �(x, y) = {x ↔ y,¬x ↔ ¬y} is
also a set of congruence formulas for P3.

Truth-equationality follows by the fact that Cilo ≤ P3. But similarly to
Cibv, we can point out another set of truth-equations for P3 simpler than
the one presented for the logic Cilo in Proposition 9.8. Indeed, P3 admits the
same set of truth-equations than classical logic CL.
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¬T

1 0
a a
0 1

∧T 0 a 1

0 0 0 0
a 0 1 1
1 0 1 1

∨T 0 a 1

0 0 1 1
a 1 1 1
1 1 1 1

→T 0 a 1

0 1 1 1
a 0 1 1
1 0 1 1

Table 9. The truth-tables of the algebra R [16, p. 68].

Proposition 12.6. The logic P3 is truth-equational, witnessed by the set of
truth equations �(x) = {x ≈ x → x}.

Proof. Let 〈A, F 〉 ∈ Mod(P3). Assume a ∈ F . Since moreover a → a ∈
F by Lemma 3.2.11, we have a ↔ (a → a) ∈ F . On the other hand, we
have (a → a)◦ → a◦ ∈ F by (Ax14c) and a◦ → (a → a)◦ ∈ F by (Ax14a).
Therefore, a◦ ↔ (a → a)◦ ∈ F . Thus, �(a) ⊆ �A(F ) by Proposition 12.5.
Conversely, assume �(a) ⊆ �A(F ). Then, a ↔ (a → a) ∈ F . Since a →
a ∈ F , it follows by (MP) that a ∈ F . We conclude that F = {a ∈ A :
�A(a) ⊆ �A(F )}, which proves the result. �

We are now able to classify P3 within the Leibniz hierarchy.

Theorem 12.7. The logic P3 is finitely algebraizable, with a set of congruence
formulas �(x, y) = {x ↔ y,¬x ↔ ¬y} and aaa set of truth equations �(x) =
{x ≈ x → x}.

The algebraizability of P3 is contained in [16, Fact 3.82] or [17, Theorem
135], again assuming that the relations there considered are in fact
congruence relations—see the remarks on page 479. However, the truth-
set of Theorem 12.7 is new—the one presented in the cited results is
�(x) = {(x → x) → x ≈ x → x}.

Proposition 12.5 makes it possible to apply once again the general results
of Section 8 together with Theorem 11.8 to the logic P3.

Theorem 12.8. The only non-trivial algebras in Alg∗(P3) subdirectly
irreducible relative to Alg∗(P3) are 2 and R.

Proof. Let A comply with the assumption. The proof goes exactly as in
Theorem 11.8, with two further items which go as follows:

iv. Let ∗ ∈ {∧,∨,→}. On the one hand, notice that (a ∗ a)◦ ∈ A◦ = {0, 1}.
But if (a ∗ a)◦ = 1, then a◦ = 1 by (Ax12c)–(Ax14c), contradicting
Lemma 8.4. So, (a ∗ a)◦ = 0. It can only be the case then thata ∗ a = a,
again by Lemma 8.4.

v. We have two cases:
a. If ¬a = 1, then A ∼= R, whose truth-tables are depicted

in Table 9.
b. If ¬a = a, then a◦ = ¬(a ∧ ¬a) = ¬(a ∧ a) = ¬a = a, contra-

dicting Lemma 8.4. �

Proposition 12.9. Alg∗(P3) = IPS(2,R) = Q(R).
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���

��

BA = Alg∗(CL)•

Figure 3. Quasivarieties under study.

Proof. It is easy to check that 2,R ∈ Alg∗(P3). Therefore IPS(2,R) ⊆
Alg∗(P3), because Alg∗(P3) is closed under IPS. Conversely, letA ∈ Alg∗(P3).
Since Alg∗(P3) is a quasivariety, because P3 is finitary and finitely equivalen-
tial [32, Corollary 6.80], it follows by Theorem 12.8 that A ∈ IPS(2,R).
Thus, Alg∗(P3) = IPS(2,R). The inclusion Q(R) ⊆ Alg∗(P3) follows once
again from the fact that Alg∗(P3) is a quasivariety. To prove the converse
inclusion notice that since R is subdirectly irreducible relative to Alg∗(P3),
it follows by Theorem 8.3 that R◦ ∼= 2, and hence 2 ∈ S(R) ⊆ Q(R). �

Corollary 12.10. V(P3) = V(R).

The relations between the quasivarieties studied in the second part of
this work are depicted in Figure 3. Since Cibv is not finitely algebraizable
(recall Proposition 11.3), we must consider the class QAlg∗(Cibv), unlike
the classes of algebraic reducts of the remaining algebraizable logics
studied.

Our last result sums up the completeness results for the logics P1, P2, and
P3. These are all known—see [53, Proposition 9] for 1, [45, Theorem 5.3]15

for 2, and [16, Theorem 3.69]16 for 3. We state it for the sake of completeness
and also to provide a unified AAL proof for the three logics.17

Proposition 12.11. Consider the algebras whose truth-tables are given in
Tables 7–9.

1. P1 = Log〈S , {a, 1}〉.
2. P2 = Log〈R, {a, 1}〉.
3. P3 = Log〈T , {a, 1}〉.

15As observed in the proof of [16, Theorem 3.69], the logic P2
in [45] is (mistakenly)

defined with the truth set {1} rather than {a, 1}, compromising soundness; since the logic P2

is semantically defined in [45], the cited completeness result is obtained by proving it to be
axiomatizable relative to C1 by the axioms (Ax12b)–(Ax14b) and (Ax16).

16The completeness result is stated, but the proof actually skips the logic P3
.

17In rigor, we have not introduced the notation Log in the Preliminaries, but we trust the
reader is acquainted with it, as well as with the fact that every class M of logical matrices
induces a logic, denoted by Log(M).
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Proof. Fix S := Log〈A, {a, 1}〉, with A = S ,R,T , and let S ′ =
P1,P2,P3, respectively. Notice that {A} is a �-algebraic semantics for S, with
�(x) := {(x → x) → x ≈ x → x}, because {a, 1} is precisely the subset of
elements of A satisfying the equation (x → x) → x ≈ x → x onA. Bearing
in mind that S is finitary (for it is defined by a finite matrix), it follows by
[8, Proposition 2.2] that Q(A) is also a �-algebraic semantics for S. But
Q(A) = Alg∗(S ′), by Propositions 11.11, 11.13, and 12.9 (depending on
A = S ,R,T ). Therefore both S and S ′ are the �-assertional logic w.r.t.
Q(A), and hence must coincide. �

As future lines of research, one can point out finding lattice charac-
terizations of P2-algebras and P3-algebras, analogous to that of Sette’s
algebras SA for P1-algebras; and lattice characterizations of the intrinsic
varieties V(P2) = V(T ) and V(P3) = V(R), analogous to that of quasi-
Sette’s algebras QSA for V(P1) = V(S ).
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