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Abstract
Eotetranychus kankitus is an important pest on several agricultural crops, and its resistance
to pesticides has promoted the exploration of biological control strategies. Beauveria bassiana
and Neoseiulus barkeri have been identified as potential agents for suppressing spider mites.
This study aimed to investigate the pathogenicity of B. bassiana on E. kankitus and its com-
patibility with N. barkeri. Results showed that among the five tested strains of B. bassiana,
Bb025 exhibited the highest level of pathogenicity on E. kankitus. Higher application rates
(1 × 108 conidia/mL) of Bb025 led to a higher mortality rate of E. kankitus (90.402%), but also
resulted in a 15.036% mortality of N. barkeri. Furthermore, preference response tests indicated
that both E. kankitus and N. barkeri actively avoided plants sprayed with Bb025 compared
to the control group that was sprayed with Tween-80. In a no-choice test, we observed that
N. barkeri actively attacked Bb025-treated E. kankitus with no adverse effect on its preda-
tory capacities. Furthermore, N. barkeri laid more eggs when fed on Bb025-treated E. kankitus
compared to Tween-80-treated E. kankitus, but the subsequent generation of surviving indi-
viduals fed on Bb025-treated E. kankitus was reduced. These findings demonstrate that the
Bb025 strain of B. bassiana is highly virulent against E. kankitus while causing less harm to
N. barkeri. Consequently, a promising strategy for controlling E. kankitus could involve the
sequential utilisation of Bb025 and N. barkeri at appropriate intervals.

Introduction

Eotetranychus kankitus is a significant pest mite found in orchards primarily in the Oriental
and Palearctic regions (Wang et al., 2014). The mobile life stages of this mite feed on the sur-
faces of leaves and young terminal shoots by using their piercing-sucking mouthparts, causing
mesophyll collapse and subsequent leaf drop (Zhou et al., 1999). Although E. kankitus is not as
widely distributed as other pest mites like Panonychus citri and Phyllocoptruta oleivora, it causes
more serious damage when it does appear (Li et al., 2017). Additionally, E. kankitus frequently
co-occurs with P. citri or P. oleivora, forming in a pest complex that poses significant difficulties
for orchard management (Li et al., 2014; Zhou et al., 1999). Traditionally, acaricides have been
used to control E. kankitus (Chen et al., 2023). However, the effectiveness of acaricides is lim-
ited due to the mite’s quick development of resistance, short life cycle, high reproductive rate,
and parthenogenesis. Therefore, the development of biological control strategies is necessary to
manage this mite.

One promising approach to managing E. kankitus is the use of entomopathogenic fungi
as biological control agents. These fungi can infect spider mites, leading to their mor-
tality and ultimately reducing their population densities (Shah and Pell, 2003). Beauveria
bassiana is distributed worldwide and can infect various pest species, including Lepidoptera,
Hemiptera, Coleoptera, Diptera, and Acarina (Altinok et al., 2019; Sohrabi et al., 2019;
Wu et al., 2016a). According to earlier research, B. bassiana has potential in con-
trolling pest mite species, such as Tetranychus urticae (Wu et al., 2016a), T. evansi
(Wekesa et al., 2005), P. oleivora (Alves et al., 2005), and P. citri (Shi and Feng, 2006).
However, there is limited research on the use of B. bassiana for controlling E. kankitus.
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The effectiveness of biological control may be increased by
employing multiple natural enemies (Chandler et al., 2005).
Research suggests that using natural enemies in cooperation with
B. bassiana shows potential in controlling pests (Baverstock et al.,
2010; Castillo-Ramírez et al., 2020; De Freitas et al., 2021; Lin
et al., 2017). For example, the combined use of B. bassiana and
Stratiolaelaps scimitus increased control efficacy for Frankliniella
occidentalis (Zhang et al., 2021). Furthermore, natural enemies
such as insects or mites, acting as vectors for B. bassiana conidia,
also show potential in controlling pests. Diaphorina citri died after
B. bassiana conidia were successfully delivered to it by Amblyseius
swirskii or Neoseiulus cucumeris (Zhang et al., 2015). Therefore, it
is recommended to combine the use of entomopathogenic fungi
with release of natural enemies as a potential strategy to improve
the efficacy of controlling E. kankitus.

The predatory mite, N. barkeri, has been successfully used to
suppress E. kankitus (Li et al., 2017). To optimise the efficiency
of E. kankitus control, we explored the potential of combining the
application of B. bassiana with the releases of N. barkeri. However,
there is a potential risk that the fungus could harm the predatory
mites, given that various insect and mite species are susceptible to
B. bassiana. Previous research has shown that spraying B. bassiana
on adult predatory mites resulted in approximately 43% mortal-
ity of predators (Numa Vergel et al., 2011). Additionally, several
researchers have found negative effects on predator life cycles and
predation parameters when B. bassiana was sprayed (Ullah and
Lim, 2017) or when predators fed on B. bassiana-infected prey
(Seiedy, 2015; Seiedy et al., 2012a; Wu et al., 2015b). Therefore,
evaluating the compatibility between B. bassiana and predatory
mites is crucial for the success of integrated pest management
(IPM) programs targeting the control of E. kankitus.

In this study, we evaluated the pathogenicity of five isolates of B.
bassiana against E. kankitus. Subsequently, we assessed the direct
lethal effects of different concentrations of the selected virulent iso-
lates on both E. kankitus and N. barkeri by exposing the mites to
B. bassiana. Additionally, we determined the habitat preference,
predatory behaviour, fecundity, and offspring survival ofN. barkeri
in the presence of risks posed by B. bassiana.

Materials and methods

Rearing of entomopathogenic andmites

Five strains of B. bassiana (Bb02, Bb014, Bb025, Bb062, and
Bb252) were obtained from the Biotechnology Centre of Southwest
University and regularly cultivated on Potato Dextrose Agar plates
at 25∘C in the dark for 14 days. Conidia were collected from
the agar plates for the tests by flooding them in a sterile 0.05%
Tween-80 solution, and their concentration was measured using
a haemocytometer. The citrus yellow mites, E. kankitus, were cul-
tivated on Citrus sinensis leaf discs (7 cm in diameter). These leaf
discs were placed in Petri dishes (9 cm in diameter, 2 cm in depth)
on water-soaked polyurethane mats. To prevent mites from escap-
ing, the edges of the leaf discs were surrounded with wet cotton
wool. The predatory mites, N. barkeri, were maintained in a plastic
cylindrical container (15 cm in diameter, 8 cm in depth). A plas-
tic lid covered the container, with a 5 cm diameter opening in the
centre covered with stainless steel wire netting to provide venti-
lation. Spider mites were swept into the container twice per day
using a brush to rear the predatory mites. All mites were kept in a
climate chamber at a temperature of 25 ± 1 ∘C, relative humidity
of 80 ± 5%, and a photoperiod of L16: D8 hours.

Seection of B. bassiana strains on E. kankitus
The pathogenicity of five B bassiana isolates on female E. kanki-
tus was tested. Thirty E. kankitus females (one-day-old) were
placed onto leaf discs and then sprayed with 1 mL of a 1 × 107

conidia/mL fungal suspension using a spray tower. Eotetranychus
kankitus sprayed with 0.05% Tween-80 solution served as the
control. The mites treated with B. bassiana or Tween-80 were
then transferred onto new leaf disc, respectively. Mortality was
recorded daily for 9 days. Dead spider mites were transferred to
a sterile Petri plate lined with wet filter paper at each observa-
tion. The plates were then covered with Parafilm® and maintained
at 25∘C in the dark. They were monitored daily for symptoms
of mycosis. Spider mites showing visible mycelium growth on
their body surface were considered to have died from fungal
infection. Three replicates were performed for each B. bassiana
isolate.

Efects of Bb025 on susceptibility of E. kankitus and N. barkeri
Based on the pathogenicity of fiveB. bassiana strains onE. kankitus,
the strain Bb025 was selected for multiple concentration bioas-
says against both E. kankitus and N. barkeri. Thirty E. kankitus
females (one-day-old) were sprayed with six different concentra-
tions of Bb025 conidial suspension (1 × 103, 1 × 104, 1 × 105,
1 × 106, 1 × 107, 1 × 108 conidia/mL), while thirty N. barkeri
females (one-day-old) were sprayed with two different concentra-
tions (1 × 107, 1 × 108 conidia/mL). Tween-80 solution (0.05%)
was sprayed on E. kankitus and N. barkeri as the control. The
spraying method of B. bassiana and the method for determining
the number of dead mites are described above. Each concentra-
tion was replicated three times, and mortality was recorded daily
for 9 days.

Efect of Bb025 on habitat preference in E. kankitus and
N. barkeri
Two leaflets of the same size (4 cm in diameter) were used in
the experiment and placed upside down on a foam cube (14 cm
in diameter, 1 cm in depth). The foam cube was then placed in
Petri dishes (15 cm in diameter, 2.5 cm in depth) filled halfway
with water. A wax bridge (4 × 0.5 cm) connected the leaflets
(Walzer et al., 2006). One of the leaflets was sprayed with 1 mL
of a 1 × 108 conidia/mL Bb025 conidial suspension, serving as
the treatment group. The other leaflet was treated with 1 mL
Tween-80 solution (0.05%), serving as the control group. For
each choice, a single female was randomly selected and placed
in the middle of the bridge. Patch selection was observed at
0, 15, 30, 45, 60, 90, and 120 minutes. One hundred indi-
viduals for each mite species (E. kankitus or N. barkeri) were
tested, with each experimental unit and mite being used only
once.

Efect of Bb025 on predatory behaviour of N. barkeri
Predatory mites may invest a significant amount of time and energy
in self-grooming behaviours following treatment with B. bassiana,
potentially reducing their ability to search for and feed on prey.
Thus, we conducted an experiment to observe the movement and
self-grooming behaviours of N. barkeri when inhabiting Bb025-
treated citrus leaves and feeding on Bb025-treated E. kankitus.
The experiment involved spraying leaf discs containing thirty E.
kankitus eggs with a 1 mL Bb025 conidial suspension (1 × 108

conidia/mL) as the treatment group, while leaf discs sprayed with
Tween-80 (0.05%) served as the control group. After 10 minutes, a
single N. barkeri female (starved for 24 hours) was introduced into
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each leaf disc, and their movement, self-grooming behaviour, and
predatory tendencies towards E. kankitus eggs were observed and
recorded over a 10-minute period. Additionally, the number of E.
kankitus eggs consumed by N. barkeri was recorded after 2 hours
of exposure to the leaf disc. A new leaf disc was used for each test,
with nine mites tested individually.

Efect of Bb025 on fecundity and offspring survival of N. barkeri
To evaluate the safety of predators feeding on prey infected with
Bb025, we determined the predatory capacity, fecundity, and off-
spring survival of N. barkeri. Females of N. barkeri (starved for
24 hours) were placed on a leaf disc. Then, thirty E. kankitus
females, previously sprayed with a concentration of 1 × 108 coni-
dia/mL of Bb025, were offered to N. barker individuals daily at
3.5 days post-inoculation (corresponding to the LT50 value of E.
kankitus). As a control group, thirty E. kankitus females sprayed
with Tween-80 (0.05%) were provided to N. barker individuals at
3.5 days post-spray. The number of consumed prey and the number
of eggs laid by N. barkeri were counted daily for 7 days. The eggs
laid by N. barkeri were transferred daily to a new leaf disc, where
both Bb025 and Tween-80 sprayed E. kankitus females were pro-
vided daily. The individuals were monitored daily, and the number
of live individuals was recorded after 7 days. Each treatment was
replicated six times.

Data analyses

All statistical analyses were performed using SPSS 26.0. Mortality
data were corrected for natural mortality (Abbott, 1925), and
then normalised using arcsine-transformed before conducting a
one-way ANOVA. Probit analysis was used to estimate the lethal
time to 50% mortality (LT50) and the lethal concentration causing
50% mortality (LC50). Preference data were analysed using a chi-
squared test. The frequency of N. barkeri self-grooming, grooming
time, moving time, frequency of predation tendencies, E. kankitus
egg and female consumption by N. barkeri, total number of eggs
laid by N. barkeri, and the total number of new generation individ-
uals were analysed using an independent-sample t-test between the
Bb025 and Tween-80-treated groups.

Results

Section of B. bassiana strains on E. kankitus

The pathogenicity of five B. bassiana isolates (1 × 107 conidia/mL)
was evaluated against the female of E. kankitus (Fig. 1 and Table 1).
The five isolates were highly effective against E. kankitus, with
mortality rates increasing over time. After 9 days, the cumula-
tive corrected mortality rates of E. kankitus varied significantly
among the five isolates (F = 26.720; df = 4, 10; P < 0.001), ranging
from 53.611% to 81.899% (Fig. 1). The LT50 values against female
E. kankitus for the five isolates ranged from 4.414 to 7.324 days
(Table 1). Notably, the Bb025 isolate exhibited the highest effec-
tiveness (Fig. 1), with an LT50 value of 4.414 days, which lower than
that of the other B. bassiana isolates (Table 1).

Efects of Bb025 on susceptibility of E. kankitus and N. barkeri

The mortality rates of E. kankitus varied among different coni-
dial concentrations of Bb025 and increased with conidial concen-
trations. The 1 × 108 conidia/mL Bb025 treatment consistently
resulted in the highest mortality of E. kankitus during the test
period, with a corrected mortality rate of 90.402% on the 9th

Figure 1. Cumulative corrected mortality rate (mean ± SE) of Eotetranychus kankitus
females caused by five isolates of B. bassiana, including Bb02, Bb014, Bb025, Bb062,
and Bb252.

day (Fig. 2a). The mortality of N. barkeri treated with 1 × 108 coni-
dia/mL Bb025 was comparable to that of the 1 × 107 conidia/mL
Bb025 treatment for the first eight days (Fig. 2b). However, after
exposure to 1 × 107 and 1 × 108 conidia/mL Bb025 conidial sus-
pension, the predatory mite’s corrected mortality rates were 8.385%
and 15.036%, respectively, on the 9th day.

The Bb025 strain had a lower LC50 value of 3.488 × 105 coni-
dia/mL for E. kankitus. However, the LC50 value for the predatory
mites could not be calculated because the mortality rate of N. bark-
eri remained low, even when exposed to higher concentrations of
Bb025 (Table 2). Furthermore, E. kankitus had a lower LT50 value
(3.581 days) compared to N. barkeri (22.773 days) when treated
with a concentration of 1 × 108 conidia/mL of Bb025 (Table 3).

Efect of Bb025 on habitat preference in E. kankitus and N.
barkeri

The citrus yellow mites, E. kankitus, exhibited a habitat preference
for Tween-80-treated leaflets at different time points: 0, 15, 30, 45,
60, 90, and 120 minutes after treatment (Fig. 3a). A similar prefer-
ence for Tween-80-treated leaflets was also observed in N. barkeri
(Fig. 3b).

Efect of Bb025 on predatory behaviour of N. barkeri

The predatory mites, N. barkeri, displayed various behaviours
such as movement, remaining stationary, and self-grooming when
exposed to citrus leaves sprayed with a concentration of 1 × 108

conidia/mL of Bb025 or 0.05% Tween-80. No significant differ-
ences were observed in the frequency of self-grooming between N.
barkeri on leaf discs sprayed with Bb025 and Tween-80 (t = 1.682,
df = 16, P = 0.112) (Fig. 4a). However, N. barkeri spent sig-
nificantly more time self-grooming on citrus leaves sprayed with
Bb025 (109.889 seconds) compared to those sprayed with Tween-
80 (45.111 seconds) (t = 2.631, df = 16, P = 0.018) (Fig. 4b).
Furthermore, a significant difference was found in the time
spent moving on citrus leaves sprayed with Bb025 and Tween-80
(460.111 seconds vs. 535.667 seconds) for N. barkeri (t = − 2.497,
df = 16, P = 0.024) (Fig. 4c). Conversely, no significant differences
were noted in the frequency of predatory tendencies (10 minutes,
t = − 0.985, df = 16, P = 0.339) or in the number of E. kanki-
tus eggs consumed by N. barkeri (2 hours, t = − 0.483, df = 16,
P = 0.636) when preying on spider mites sprayed with Bb025 and
Tween-80 (Fig. 5).
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Table 1 Lethal time (LT50) estimations of five B. bassiana in E. kankitus

95% confidence intervals

Isolates LT50 (days) Lower bound Upper bound Intercept Slope ± SE 𝜒2 (df = 7)

Bb02 7.324 6.054 9.735 −1.835 2.122 ± 0.358 1.275

Bb014 6.564 5.466 8.441 −1.691 2.070 ± 0.337 1.462

Bb025 4.414 3.763 5.155 −1.614 2.503 ± 0.336 3.154

Bb062 6.511 5.387 8.457 −1.657 2.037 ± 0.338 2.531

Bb252 5.529 4.664 6.761 −1.587 2.137 ± 0.321 1.949

Figure 2. Cumulative corrected mortality rate (mean ± SE) of Eotetranychus kankitus (a) and Neoseiulus barkeri (b) females caused by Bb025 at different concentrations of
conidia.

Table 2 Lethal concentration (LC50) estimations of B. bassiana isolate Bb025 on the E. kankitus and N. barkeri

95% confidence intervals

Species LC50 (conidia/mL−1) Lower bound Upper bound Intercept Slope ± SE 𝜒2 (df = 4)

E. k1 3.488 × 105 1.317 × 105 9.685 × 105 −2.853 0.515 ± 0.073 2.733

N. b2 −3 – – – – –
1E. k: E. kankitus.
2N. b: N. barkeri.
3The mortality rate of N. barkeri remained low when treated with higher concentrations of Bb025, making it impossible to calculate the LC50 value for the predatory mites in this study.

Table 3 Lethal time (LT50) estimations of B. bassiana isolate Bb025 on the E. kankitus and N. barkeri

95% confidence intervals

Species LT50(days) Lower bound Upper bound Intercept Slope ± SE 𝜒2 (df = 7)

E. k1 3.581 2.931 4.243 −1.444 2.606 ± 0.378 2.343

N. b2 22.773 13.841 118.701 −3.063 2.257 ± 0.636 1.068
1E. k: E. kankitus.
2N. b: N. barkeri.

Figure 3. Preference of Eoteranchus kankitus (a) and
Neoseiulus barkeri (b) to citrus leaflets inoculated with
Bb025 (1 × 108 conidia/mL) and 0.05% Tween-80. Data
were analysed using a chi-squared test to evaluate dif-
ferences in each choice experiment (P < 0.05). The
asterisk indicates significant differences between Bb025
and Tween-80 treatments.
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Figure 4. Grooming frequency (a), grooming time (b) and moving time (c) of Neoseiulus barkeri on citrus leaflets inoculated with Bb025 (1 × 108 conidia/mL) and 0.05%
Tween-80. The ‘ns’ and asterisk indicate no significant and significant differences, respectively, between Bb025 and Tween-80 treatments, based on an independent-samples
t-test (P < 0.05).

Figure 5. Frequency of predatory tendencies of Neoseiulus
barkeri towards Eoteranchus kankitus eggs over a 10-minute
period (a) and the number of E. kankitus eggs consumed
by N. barkeri within 2 hours (b) on citrus leaflets inoculated
with Bb025 (1 × 108 conidia/mL) and 0.05% Tween-80. The
‘ns’ indicates no significant differences between Bb025 and
Tween-80 treatments, based on an independent-samples t-
test (P < 0.05).

Efect of Bb025 on fecundity and offspring survival of N. barkeri

A higher number of E. kankitus females sprayed with Bb025 were
consumed by N. barkeri compared to those treated with Tween-
80 (t = − 2.818, df = 10, P = 0.018) (Fig. 6a). Additionally, the
total number of eggs laid by N. barkeri was greater when fed on E.
kankitus females sprayed with Bb025 compared to those sprayed
with Tween-80 (18.833 vs. 13.000; t = − 2.637, df = 10, P = 0.025)
(Fig. 6b). However, the total number of new generation individu-
als was 10.333 and 14.833 for N. barkeri female fed on E. kankitus
sprayed with Bb025 and Tween-80, respectively, and these values
were not significantly different (t = − 2.212, df = 10, P = 0.051)
(Fig. 6c).

Discussion

In this study, a strain of B. bassiana (Bb025) was selected for its
high virulence against E. kankitus and lower pathogenicity towards
N. barkeri. Both E. kankitus and N. barkeri exhibited avoidance
behaviour towards leaves infected with Bb025. Additionally, the
predatory capacity of N. barkeri female was not influenced by the
presence of Bb025, although N. barkeri spent significantly more
time engaging in self-grooming behaviour on leaf discs sprayed
with Bb025 conidia. Notably, the number of eggs laid by N. barkeri
feeding on infected E. kankitus increased, but subsequent gen-
eration individuals of N. barkeri feeding on treated E. kankitus

were affected. These findings provide the potential of a combined
approach using Bb025 and N. barkeri for effective biological con-
trol of E. kankitus at appropriate intervals.

Lower LT50 values and higher mortality rates indicate that the
pests were rapidly infected by the fungus, which are important
characteristics for choosing fungal strains as potential biocontrol
agents (Geroh et al., 2015; Wekesa et al., 2005). In our study, the
isolate of Bb025 showed lower LT50 values and a higher corrected
mortality rate when targeting E. kankitus. These findings indicate
that the fungal strain Bb025 has the potential to effectively con-
trol the population of E. kankitus. The fungal pathogenicity on
pest populations is mainly influenced by dosage, and the mor-
tality of pests often varies with conidial concentration (Krishnan
et al., 2012; Sarasan et al., 2011). Our results also found that
the application of Bb025 to control E. kankitus exhibited a clear
concentration-dependent relationship, with higher fungal concen-
trations leading to increased mortality rates of E. kankitus. The
maximum mortality rate observed was 90.402% in E. kankitus
sprayed with 1 × 108 conidia/mL Bb025. However, it is important
to note that using higher concentrations of fungi can also result in
the direct mortality of non-target natural enemies (Flexner et al.,
1986). Castillo-Ramírez et al. (2020) reported that over 20% of N.
californicus and Phytoseiulus persimilis died when infected with 1
× 108 conidia/mL Bb88 during the 9-day experiment. In our study,
the mortality rate of N. barkeri was found to be 15.036% when
infected with 1 × 108 conidia/mL Bb025, indicating that N. barkeri
was susceptible to Bb025.

The pathogenicity of a fungus to a target insect is primar-
ily caused by the penetration of the insect’s cuticle by conidia
(Wu et al., 2018a). Previous study demonstrated that germinated
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Figure 6. The number of Eoteranchus kankitus inoculated with Bb025 (1 × 108 conidia/mL) and 0.05% Tween-80 that were consumed by Neoseiulus barkeri (a), along with the
number of eggs laid by N. barkeri (b) and the number of new generation individuals of N. barkeri (c) after feeding on these treated E. kankitus. The ‘ns’ and asterisk indicate
no significant and significant differences, respectively, between Bb025 and Tween-80 treatments, based on an independent-samples t-test (P < 0.05).

conidia of B. bassiana SZ-26 were unable to penetrate the cuti-
cle of N. barkeri (Wu et al., 2014), and transmission electronic
microscopy revealed that most SZ-26 B. bassiana conidia in the
gut of the predatory mite dissolved within 24 h post-ingestion (Wu
et al., 2016b). However, Niu et al. (2023) reported that Bb025 can
invade through the depressions and pores of the N. barkeri body
wall. Additionally, Bb025 was detected in N. barkeri tissue using a
specific nested PCR technique (Supplementary Fig. S1). These find-
ings further confirm that the strain Bb025 has lower pathogenicity
for the predatory mites N. barkeri.

Citrus yellow mites, E. kankitus, significantly avoided leaves
sprayed with Bb025, suggesting that the presence of Bb025
decreased the consumption of citrus leaves by E. kankitus.
This finding is consistent with the research by Rondot and
Reineke (2017), who found that the presence of endophytic ento-
mopathogenic fungi influenced the host choice behaviour of adult
black vine weevils, leading to the avoidance of colonised plants
and a consequent decrease in pest consumption. Seiedy (2014)
reported that the presence of fungi in the prey or its habitat can
affect the behaviour of predators, such as preference, activity, and
feeding. This response implies that predators can recognise danger-
ous conditions through odour (Wu et al., 2015b), and adjust their
behaviour (Baverstock et al., 2005; Faraji et al., 2001). In our study,
the predator N. barkeri also showed avoidance behaviour towards
plants treated with Bb025. Additionally, N. barkeri invested more
time in self-grooming on leaf discs with Bb025 conidia, which
reduced the time spent searching for prey. Surprisingly, this self-
grooming behaviour did not influence the predation capacity of
N. barkeri on E. kankitus. This indicates that N. barkeri may be
capable of recognising the presence of Bb025 and responding with
avoidance behaviour or post-contact responses. If contact with
spores is unavoidable, the self-grooming behaviour may effectively
remove most spores attached to N. barkeri. This selection and self-
grooming behaviour potentially enhances the survival rate of the
predator (Seiedy et al., 2012b).

Insects possess a selective advantage through their ability to
detect and avoid fungal pathogens. According to Ríos-Moreno
et al. (2018), Chrysoperla carnea larvae exhibited a preference for
consuming healthy prey over those treated withMetarhiziumbrun-
neum. However, females of N. barkeri consumed more E. kankitus
females infected with Bb025, laying more eggs compared to prey
sprayed with Tween-80 in a no-choice test. This could be due to
the decreased vitality of E. kankitus caused by fungal penetra-
tion, making them more vulnerable to predation by N. barkeri.

These results are consistent with the findings of Wu et al.. (2015a).
Furthermore, the population of subsequent generation individuals
that fed on infected E. kankitus was reduced, presumably due to the
weakly sclerotised cuticle of N. barkeri juveniles (Koehler, 1999;
Shipp et al., 2003). Thus, applying Bb025 and N. barkeri at short
intervals may negatively impact the number of predatory mite
offspring and hinder the establishment of predatory mites in the
field.

Based on our findings, we suggest a combined approach using
Bb025 and N. barkeri for E. kankitus control. Initially, spraying
plants with Bb025 will decrease the density ofE. kankitus due to the
direct lethal effect of the Bb025 on E. kankitus in the sprayed areas.
Additionally, the repelling effect of Bb025 on spider mites can help
prevent the spread of E. kankitus from unsprayed to sprayed areas.
Subsequently, releasing N. barkeri at appropriate intervals after
spraying the fungus is recommended. These predatory mites can
move to areas where Bb025 has not been sprayed, effectively con-
trolling E. kankitus. Although N. barkeri may come into contact
with the fungus while moving around and handling prey on the
leaves, their grooming behaviour can help remove the conidia from
their bodies (Wekesa et al., 2007; Wu et al., 2018b). Meanwhile,
N. barkeri consumed more infected E. kankitus adults, resulting in
lower population density of prey. It was found that B. bassiana had
limited efficacy in suppressing the immature stages of spider mites
(Wu et al., 2020), indicating that N. barkeri and its offspring could
provide continuous control for the immature stage of E. kankitus
where B. bassiana failed to control. In conclusion, these findings
suggest that using Bb025 strains of B. bassiana in combination with
N. barkeri may be an effective approach for controlling E. kankitus
on plants.

This integrated pest management strategy takes advantage of
the strengths of both the entomopathogenic fungus and the preda-
tory mites to address the pest problem more effectively. However,
there is insufficient evidence to accurately forecast how the com-
bined application of the two biocontrol agents will contribute to
an additive suppression of the pest mite population. It will also be
necessary to evaluate the combined effect of the two predators on
E. kankitus in a more natural environment.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0007485325000057.
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