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Abstract. Philosophical applications of familiar paracomplete and paraconsistent logics often
rely on an idea of ‘default classicality’. With respect to the paraconsistent logic LP (the dual of Strong
Kleene or K3), such ‘default classicality’ is standardly cashed out via an LP-based nonmonotonic
logic due to Priest (1991, 2006a). In this paper, I offer an alternative approach via a monotonic
multiple-conclusion version of LP.

§1. Introduction. The logic LP is the dual of the well-known logic K3 (viz., Strong
Kleene).1 This logic, like K3, has found prominent applications in philosophy, particularly
with respect to paradoxical phenomena (Beall, 2009; Brady, 2006; Field, 2008; Kripke,
1975; Priest, 2006a, 2006b). In such applications, the background picture is one of ‘default
classicality’. The basic thought is that classical logic is ‘right’ (in some sense) for the
broad array of ‘normal’ cases; however, various ‘abnormal’ (e.g., paradoxical) phenomena
motivate a slightly weaker logic. In short, the thought is that classical logic is the default
logic, and the weaker logic kicks into gear when necessary.

The chief question is how to understand this ‘default classicality’, particularly in the LP
case. We may distinguish two (closely related) questions:

• How, if at all, does the logic reflect default classicality?
• How does use of the logic reflect defeasibility?

In the K3 case, the answers are relatively clear: adding appropriate premises of the form
A ∨ ¬A in effect collapses K3 into classical logic; and one’s use of the logic invokes
extralogical principles that generally warrant the additional premises. But LP is different,
at least with respect to the first question: there is no corresponding adding-to-the-premises
recipe for LP that yields the target ‘collapse’. (This will be apparent from the account of
LP in §2.1). And so another route towards the questions is required for LP theorists.

The standard route, advanced by Priest (1991, 2006b), answers both questions by con-
structing an LP-based nonmonotonic logic, namely, minimally inconsistent LP. This logic
both formally models default classicality and similarly purports to thereby model ‘defeasi-
ble reasoning’.

I have no substantive objections to the nonmonotonic approach, but I nonetheless
propose a different—and perhaps simpler—approach in terms of a monotonic

Received: February 8, 2011.
1 LP was first discussed, under a different label, by Asenjo (1966), but later independently

discovered and widely advanced by Priest (1979, 1984). A more leisurely discussion of K3,
LP, and a familiar family of nonclassical logics is widely available (Beall, 2010; Beall & van
Fraassen, 2003; Priest, 2008; Restall, 2005a). While much of what I say applies, dually, to the K3
case—for example, a dual version of Theorem 3.7 is available—my own paraconsistent interests
(Beall, 2009) guide my focus here on LP.
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multiple-conclusion logic that I shall call LP+.2 The thought is simple: just as the K3
theorist adds appropriate premises of the form A ∨ ¬A to ‘return to classical logic’, the
LP+ theorist does the dual—namely, adds appropriate sentences of the form A ∧¬A to the
conclusion set.

In §2 I present LP+. Towards answering the first question concerning default classi-
cality, §3 presents a simple though crucial theorem concerning a relation between LP+
and CPL+ (i.e., the corresponding multiple-conclusion version of classical propositional
logic). §4 takes up the second question concerning default consistency and reasoning,
suggesting a general sense in which multiple-conclusion logic(s) leave us with ‘defeasible
inferences’.

§2. Multiple-conclusion LP. I first present (single-conclusion) LP, and then turn to
the multiple-conclusion generalization LP+. Because of the simplicity of the LP model
theory, I rely throughout on ‘semantic’ characterizations of the logics (except in the
Appendix, where I briefly present an adequate sequent system).

The syntax (throughout) is that of standard CPL (i.e., classical propositional logic),
where atomics are propositional variables.3 Throughout, I let S be the set of all sentences,
p any atomic in S, and A any (atomic or molecular) element of S, with ¬ (unary), ∨
(binary) and, with redundancy, ∧ (binary) the only primitive connectives—with other stan-
dard binary connectives (e.g., ⊃, ≡) defined as usual.

2.1. LP. The (single-conclusion) logic LP may be characterized ‘semantically’ as fol-
lows. Our sentences are interpreted via all (total) valuations v : S −→ {1, .5, 0} that obey
the following clauses:

• v(¬A) = 1 − v(A)
• v(A ∨ B) = max{v(A), v(B)}
• v(A ∧ B) = min{v(A), v(B)}

We let Vlp be the set of all such LP valuations.

DEFINITION 2.1 A valuation v ∈ Vlp satisfies A iff v(A) ∈ {1, .5}.
DEFINITION 2.2 A valuation v ∈ Vlp satisfies a set X ⊆ S of sentences iff v satisfies

every A ∈ X.

With these definitions in hand, we define the validity relation—for present purposes, the
logic—in the usual way.

DEFINITION 2.3 (LP) X �lp A iff every v ∈ Vlp that satisfies X satisfies A.

2.2. A few notable features. Here, I briefly note some of the distinguishing features
of LP. (The reader may consider the dual K3 features for comparison.)

2 On terminology: a monotonic logic is one such that adding to the premise set does not take
you from a valid argument to an invalid argument. For present purposes, I simply generalize
this notion of monotonicity to cover multiple-conclusion: adding to either a premise set or a
conclusion set doesn’t take you from a valid argument to an invalid argument. (I do not dwell on
this definition, but assume it in the background.)

3 I ignore (minor) complexities involved in adding predicates or names. While I focus on the
propositional level in this paper, the discussion—and results—should carry over to the predicate-
cum-quantifier level (though proofs would require more complexity).
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2.2.1. Notable invalidities. LP is a paraconsistent logic: A ∧¬A �lp B. Any valuation
v such that v(A) = 0.5 and v(B) = 0 serves as a counterexample.

Moreover, disjunctive syllogism fails in LP: ¬A, A ∨ B �lp B. Again, the above
counterexample suffices: v(A) = 0.5 and v(B) = 0.

Similarly, ‘material modus ponens’ fails, where A ⊃ B is the material conditional de-
fined as ¬A ∨ B. In particular, we have A, A ⊃ B �lp B. The counterexample (mentioned
twice) above suffices again here.

2.2.2. Notable validities. While LP is paraconsistent, it is not paracomplete. That LP
is not paracomplete comes from the fact that B �lp A ∨ ¬A.

An important fact, related to the ‘default-classicality’ idea, is that LP is a sublogic of
CPL.

FACT 2.4. If X �lp A then X �cpl A.

That this is so is evident from the fact that, if you remove the middle value from LP’s set
of semantic values (i.e., codomain of the LP valuations), the resulting set of valuations is
the familiar set Vcpl of CPL valuations.

2.3. LP+++. We achieve LP+, the multiple-conclusion generalization of LP, by general-
izing the validity relation from the standard set-to-sentence relation to a set-to-set relation.
Instead of validity being a subset of ℘(S) × S, we now take it to be a binary relation on
℘(S), a subset of ℘(S) × ℘(S).4

The semantics for LP is all we need to define LP+, but some additional definitions are
convenient:

DEFINITION 2.5 A valuation v ∈ Vlp dissatisfies A iff v(A) = 0.

DEFINITION 2.6 A valuation v ∈ Vlp dissatisfies a set X ⊆ S of sentences iff v
dissatisfies every A ∈ X.

With these definitions in hand, we define the validity relation—for present purposes,
the logic—in the usual way, where, as throughout, X and Y are subsets of the set S of
sentences.

DEFINITION 2.7 (LP+) X �+
lp Y iff no v ∈ Vlp satisfies X and dissatisfies Y .

2.3.1. Notable invalidities. All of the single-conclusion invalidities remain, where a
single-conclusion argument is one in which the conclusion set is a singleton. Any philo-
sophical virtues of LP, the single-conclusion variant of LP+, thus carry over into L P+,
which remains paraconsistent and nonparacomplete.5

2.3.2. Notable validities. What is notable—and explicitly noted in Theorem 3.7
below—is that for each of the noted invalidities in LP, there is a corresponding LP+ validity
that arises from, in effect, treating the ‘inconsistency’ or ‘gluttiness’ of one of the premises
(i.e., one of the elements of the premise set) as an element of the conclusion set—one of
the ‘options’, so to speak, that the premise set yields in the conclusion set. In particular, we

4 This is simply the standard multiple-conclusion insight, which enjoys often-noted mathematical
elegance over its single-conclusion counterpart. My interest here is in some of the philosophical
applications of the insight, particularly to the idea of default classicality for target nonclassical
logics.

5 In this setting, we say that a logic 
 is paraconsistent just if �, A, ¬A � B,�, and paracomplete
just if �, B � A, ¬A,�, where � and � are subsets of S (sentences).
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have the following validities corresponding to the LP invalidities noted in §2.2.1. (Proofs
are left as exercise.)

• {A ∧ ¬A} �lp B but {A ∧ ¬A} �+
lp {B, A ∧ ¬A}.

• {¬A, A ∨ B} �lp B but {¬A, A ∨ B} �+
lp {B, A ∧ ¬A}.

• {A, A ⊃ B} �lp B but {A, A ⊃ B} �+
lp {B, A ∧ ¬A}.

These validities reflect a pattern captured more generally in a simple but, for target philo-
sophical purposes, central theorem concerning CPL+ and LP+.

§3. Default classicality: CPL+ and LP+. CPL may be defined by taking the ‘seman-
tics’ for LP and fixing the set Vcpl of CPL valuations to a proper subset of the set Vlp of LP
valuations. In particular, Vcpl is simply the set of LP valuations whose range is {1, 0}. With
this in mind, the generalization to CPL+, multiple-conclusion CPL, is straightforward.

3.1. CPL+++. The multiple-conclusion generalization of CPL is achieved in the same
way that the corresponding generalization to LP+ is achieved. In fact, all of the foregoing
definitions apply; and the definition of validity is as follows.

DEFINITION 3.1 (CPL+) X �+
cpl Y iff no v ∈ Vcpl satisfies X and dissatisfies Y .

For present purposes, what is important about this generalized form of classical (propo-
sitional) logic is its relation to the corresponding generalization of LP. In particular, that
classical logic, so understood (in multiple-conclusion form), is the default logic of—the
otherwise all-purpose, weaker—logic LP+ is conspicuous from the result below.

3.2. CPL+ and LP+. Throughout, we let X be any subset of S, and p any atomic in
S. We define (standard) notions of, respectively, a valuation restricted to a subset of its do-
main; a set of subsentences of a sentence; a set of subsentences of a set of sentences; the set
of atomic sentences in a set of sentences; and an ‘atomic inconsistency set’ corresponding
to a set of sentences:

DEFINITION 3.2 We let v�Z be the restriction of v to Z as standardly defined.

DEFINITION 3.3 Let σ(A) be the set of subsentences of A, standardly defined.

DEFINITION 3.4 Let σ(X) be {B : B ∈ σ(A) for each A ∈ X}.
DEFINITION 3.5 Let α(X) = {p : p is atomic and p ∈ σ(X)}.
DEFINITION 3.6 Let ι(X) = {p ∧ ¬p : p ∈ α(X)}.

An example, with respect to Definition 3.6, is ι(X) = {p ∧ ¬p, q ∧ ¬q, r ∧ ¬r}, which is
the ‘atomic inconsistency set’ corresponding to any set X for which α(X) = {p, q, r}, for
example, X = {¬p, ¬(r ∨ q)} or the like.

THEOREM 3.7. X �+
cpl Y iff X �+

lp Y ∪ ι(X).

Proof. RLD. This follows immediately from two facts:

FACT 3.8. Vcpl ⊆ Vlp.

FACT 3.9. If ι(X) �= ∅, then every v ∈ Vcpl dissatisfies ι(X), that is, no CPL valuation
satisfies anything in ι(X). If ι(X) = ∅, then Y ∪ ι(X) = Y , and so Fact 3.8 suffices for the
result.
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LRD. Suppose that X �+
cpl Y but, for reductio, X �

+
lp Y ∪ ι(X), in which case there’s

some v ∈ Vlp such that v satisfies X but v dissatisfies Y ∪ ι(X). If v ∈ Vcpl , then, by the
initial supposition, v satisfies something in Y and, hence, satisfies something in Y ∪ ι(X).
So, v ∈ Vlp \ Vcpl . Now, either there’s some v ′ ∈ Vcpl such that v�α(X) = v ′�α(X)
or not. In the latter case, v(p) = 0.5 for some p ∈ α(X), and so v(p ∧ ¬p) = 0.5
by LP (semantic) conditions; and so v satisfies something in ι(X) and, in turn, satisfies
something in Y ∪ ι(X). Contradiction. In the former case, where there is some v ′ ∈
Vcpl such that v�α(X) = v ′�α(X), we immediately get v�X = v ′�X by the following
fact:

FACT 3.10. Let v ∈ Vlp and v ′ ∈ Vcpl . For any X ⊆ S, if v�α(X) = v ′�α(X), then
v�X = v ′�X. (Proof: exercise.)

But, then, since v satisfies X , so too does v ′, in which case, since v ′ ∈ Vcpl and X �+
cpl Y ,

we have that v ′ satisfies something in Y and, hence, v ′ satisfies something in Y ∪ ι(X). But,
then, so does v . Contradiction. �

Parenthetical remark. I am grateful to Graham Priest who, in comments on an earlier
draft, pointed to a related result that he establishes concerning single-conclusion LP (Priest,
2006b, chap. 8). The proof of Priest’s result proceeds via the metatheory (invoking, e.g.,
compactness and the material-conditional deduction theorem). Given that LP may be seen
as the limit (singleton-conclusion) case of LP+, the purely semantic proof that I give for
Theorem 3.7 extends to LP.

I should also note that Priest’s result is related to one discussed by Belnap & Dunn
(1973), which turns on introducing a sentential constant f that, informally, may be thought
of as the disjunction of all elements of ι(S). Both results are more coarse-grained than
Theorem 3.7; and one advantage of LP+ and Theorem 3.7 emerges along these lines by an
objection that Belnap and Dunn present against using such (single-conclusion) results for
cashing out the ‘default classicality’ idea:

the relevantist [or, for present purposes, LP theorist] generally has more
information than a barren disjoined f; he knows, if he has done his home-
work, which contradiction is at issue. . . [A]nd so for him, using f, whether
suppressed or not, is to lose information. (Anderson et al., 1992,
p. 505)

In the LP+ context, we get more fine-grained information via the already-available ι(X) in
question. (And we could define a ‘minimally inconsistent conclusion set’ to get even finer-
grained information.) Of course, one could similarly add a multitude of more finely grained
‘atomic-inconsistency constants’ (so to speak) to play the role of the already-available
family of atomic inconsistency sets ι(X), but it is not clear what would be achieved over
the LP+ framework. My own view is that the LP+ framework is more natural, but ‘natural’
in a sense that, regrettably, I cannot as yet make precise. I leave the matter for future debate.
End remark.

3.3. Philosophical application. Theorem 3.7 gives an answer to the first question
about default-classicality (without invoking a nonmonotonic logic). In short, the theorem
above makes plain that CPL+ is our ‘default logic’ in the sense that, except when one
or more of the premises is a ‘glut’, what follows from the premise set is precisely what
follows according to classical logic (here conceived in multiple-conclusion terms).
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§4. Choices: default-classical reasoning. The import of Theorem 3.7 is that the
consequences of a premise set are the classical consequences—unless some of the
premises are glutty. This is the sense in which the logic exhibits the default-classicality idea.

There is, however, a second question: how is such ‘default classicality’ or ‘default
consistency’ to be understood with respect to using the logic? How does such ‘default
classicality’ show up in reasoning? This question, I suggest, has a very natural answer that
coincides nicely with a perspective on using multiple-conclusion logic in general.

4.1. Logic and choices. Let us assume that logic—or validity—is fundamentally along
multiple-conclusion lines, with single(-ton)-conclusion logic the limiting case. What our
logic tells us, then, is what sets of sentences follow from what sets of sentences.

How, then, shall we understand what logic provides? I suggest that what logic often
gives us is a (conclusion) set of choices. The logic simply tells you that Y follows from
X . What you do with the elements—the options—in Y is beyond logic’s rule. (More
on this in §4.2). Of course, given the monotonicity of our logic,6 talk of ‘choices’ is
interesting chiefly in what might be called strict-choice validities, that is, a valid argument
〈X, Y 〉 such that there’s no Z ⊂ Y such that X implies Z . For example, in our target
LP+ case,

〈{¬q, p ⊃ q}, {¬p, q ∧ ¬q}〉
is a strict-choice validity: it is LP+-valid, but the given premise set fails to imply any
proper subset of the conclusion set. It is in strict-choice validities that choices are ‘real’
(so to speak), though the general suggestion is that all valid arguments provide choices
(however degenerate), namely, whatever is in the conclusion set.7

4.2. Choices and extralogical principles. How, then, do we use logic on this pic-
ture? How do we draw a conclusion—make a single choice—from a (conclusion) set
of choices? The natural answer is a familiar one: we rely on extralogical principles—
principles of rationality, pragmatic principles, epistemic principles, or more.8 And this is
precisely where the default classicality—or defeasible consistency—comes into play in
using logic: extralogical principles.

When logic gives us a strict choice (i.e., delivers a strict-choice validity), a consis-
tency assumption—perhaps based on rationality, perhaps on something else—guides the

6 Recall that monotonicity in this context involves both sides—a fortiori, the conclusion-set side.
(In proof-theoretic terms, the present point may be made via weakening on the right.) I am grateful
to an anonymous referee for useful comments on this section.

7 Along these lines, one might think of logical truths as dull ‘choices’, namely, those A such that
{A} ∪ Y follows from every (including empty) premise set X , for any Y ⊆ S. In LP, such A are
precisely the classical logical truths (Priest, 1979); and—as a simple proof shows—the situation
is the same for LP+.

8 Lessons of Carroll (1895) might be construed along these lines, as well as Harman’s (1986)
distinction between logic and inference/reasoning. Extralogical principles of rationality—
concerning rejection (Field, 2008; Priest, 2006b; Restall, 2005b) or the like—are common in
applications of nonclassical logics, though formulating such principles can be hard, as Restall
(2004), (Priest, 2006b, chap. 19), and particularly Field (2010)—concerning degrees of belief in
multiple-conclusion setting—make plain.
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choice: reject inconsistency (other things being equal). While the details of such principles
might be complicated, the general idea is simple. Why, for example, do we normally infer
or ‘choose’ q via the premise set {¬p, p ∨ q} if, as I’ve suggested, our logic delivers
only the (conclusion) set {q, p ∧ ¬p}? The answer—at least in rough form—invokes
extralogical principles: as a first go, reject the inconsistent options! Of course, when,
in extraordinary (e.g., paradoxical) cases, our choices keep hitting against evidence for
inconsistency, we then return to our original conclusion set of choices, and choose a
different option. Such is the defeasibility of inference; such is the defeasibility of inquiry.
Logic itself can only take us to our options; it leaves extralogical principles to guide our
choices. Logic itself is monotonic; what we do with the choices that logic gives us is
defeasible.

§5. Concluding remarks. LP+, the multiple-conclusion generalization of LP, reflects
the idea of default classicality in a natural—and monotonic—way. With respect to the
formal logic itself, LP+ reflects default classicality via Theorem 3.7. In short: except for
various ‘glutty’ or inconsistent phenomena (e.g., paradoxes), what follows from a premise
set are precisely its classical consequences.

Logic, qua fundamentally a set-to-set (multiple-conclusion) relation, tells us what sets
follow from what sets. But this often leaves us with choices: a single premise set may leave
us with the choice between a consistent and an inconsistent option. And here is where the
default-classicality feature of reasoning—or using a logic—shows up. Logic often leads us
to a choice; it’s only via extralogical principles that we make our choices. And such princi-
ples generally preach against inconsistency. It is only when—in the face of other theoretical
pressures (e.g., simplicity, coherence, faithfulness to data, whathaveyou)—inconsistency
cannot be avoided that we return to the initial stock of choices and choose an inconsis-
tent option. Such defeasibility is not something that the formal logic itself exhibits; such
defeasibility is instead a feature of extralogical principles guiding theoretical inquiry in
general.

§6. Acknowledgements. In addition to the very useful comments of two anonymous
referees, I’m grateful to Phil Bricker, Asher Kach, Marcus Rossberg, Reed Solomon, and
Bruno Whittle for discussion, the Holbox community for a beautiful place to think, and
very grateful to Aaron Cotnoir, Hartry Field, Graham Priest, and especially Dave Ripley
for comments on earlier drafts. Greg Restall put multiple-conclusion logics—and particu-
larly their philosophical applications—in my mind, and I’m grateful for ongoing fruitful
discussion with him. One of Restall’s papers (Restall, 2004) emphasizes the important
duality on which this paper relies.

I should also briefly note my hope that this paper be part of a bigger project. In
fact, my chief interest is not so much in all of the details of LP+ as it is in the philosoph-
ical application: my chief interest—though not in this paper—is in advancing a version
of ‘dialetheism’ underwritten by LP+ along the lines of what Graham Priest and I (in
conversation) call the Goodship Project (Goodship, 1996), specifically a version of ‘non-
detachable dialetheism’ (that lacks a detachable conditional), but this is for a larger project.
In the current paper, I ony present LP+ and a general perspective on using multiple-
conclusion logics, all with the target philosophical application to the idea of ‘default
classicality’.
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Appendix

A sequent system for LP+. There are various ways to achieve an adequate sequent
calculus for LP+.9 Ripley (2011) employs ideas from Baaz et al. (1993a, 1993b) to
construct a three-sided sequent system for LP that, with minor tweaks, yields a three-sided
set-set system for LP+.

An alternative approach towards a fully two-sided system is to take widely-known tagged
tableau systems for LP (Beall & Ripley, 2011; Beall & van Fraassen, 2003; Priest, 2008;
Restall, 2005a) and use them to construct a corresponding (cut-free) system for LP+.10 In
particular, use the ‘positive’ tableau tag (say, ‘+’) for left position and the ‘negative’ tag
(say, ‘−’) for right. For example, the ‘positive negated conjunction’ rule in such systems
directly reflects De Morgan equivalence:

¬(A ∧ B), +
¬A ∨ ¬B, +

And the same goes for the ‘negative negated conjunction’ rule:

¬(A ∧ B), −
¬A ∨ ¬B, −

As above, ‘translating’ these rules into two-sided sequent rules puts the ‘positive’ on the
left and the ‘negative’ on the right (and flipping the top-down tableau order to arrive at our
target ¬∧ operation in the corresponding sequent rules):

�, ¬A ∨ ¬B 
 �¬∧ Left:
�, ¬(A ∧ B) 
 �

� 
 ¬A ∨ ¬B,�¬∧ Right:
� 
 ¬(A ∧ B),�

In turn, the adequacy results of the given tableau system carry over, mutatis mutandis,
to the ‘generated’ sequent system. I briefly sketch such a system here, omitting (routine)
adequacy results.

A.1 Notation. Throughout, A and B are any sentences unless otherwise noted; �, �,
� and 	 are any sets (not multisets) of sentences; and, following convention, the comma
is union and ‘�, A’ abbreviates ‘� ∪ {A}’. I use the turnstile for sequents.

A.2 Axioms.

A1. Identity: �, A 
 A,�, where A is any sentence.11

A2. Exhaustion: � 
 A, ¬A,�, where A is any atomic.12

9 I am grateful to a referee for suggesting the inclusion of a sequent system in this paper. I am
also grateful to Dave Ripley who not only gave me access to his unpublished work on three-
sided systems, but also independently discovered the tableau-to-gentzen system below. Indeed,
any novelty in ‘my’ system below is to be credited equally to Ripley.

10 I assume familiarity with the target tableau systems here. See any of the cited sources for details,
but for the target adequacy results I rely specifically on the system presented by Priest (2008).

11 An alternative approach is to formulate Identity for all literals, and show that it holds for all
sentences; however, a direct ‘translation’ of the target tableau system (Priest, 2008), on whose
adequacy results I rely, takes Identity for all sentences as primitive. (NB: that one needs to take it
as primitive at least for all literals is a feature of the nonclassical negation at work.)

12 A negation ¬ connective is sometimes said to be exhaustive just when its version of excluded
middle holds, that is, just when A ∨ ¬A is valid. The role of our exhaustion axiom here is to
ensure LP+’s exhaustive negation.
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A.3 Operational rules. What is peculiar about negation in LP+ is its interaction with
other connectives. Classical rules are fine for conjunction and disjunction; it’s in negation’s
interaction with such connectives where the nonclassicality emerges. All of this is reflected
directly in the familiar tableau system(s) for LP (Priest, 2008), which have independent
De Morgan rules governing negation’s interaction with other boolean connectives. (Some-
times, the De Morgan equivalences are given explicitly in the rules; sometimes they’re
implied, where a ‘positive’ rule for negated conjunctions might directly branch into the
negated disjuncts, rather than to the corresponding disjunction itself.) The rules below
simply rewrite such tableau rules in two-sided set-set sequent form.

A.3.1 Classical ∧ rules

�, A, B 
 �∧ Left:
�, A ∧ B 
 �

� 
 �, A � 
 �, B∧ Right:
� 
 �, A ∧ B

A.3.2 Classical ∨ rules

�, A 
 � �, B 
 �∨ Left:
�, A ∨ B 
 �

� 
 �, A, B∨ Right:
� 
 �, A ∨ B

A.3.3 Negated conjunctions

�, ¬A ∨ ¬B 
 �¬∧ Left:
�, ¬(A ∧ B) 
 �

� 
 ¬A ∨ ¬B,�¬∧ Right:
� 
 ¬(A ∧ B),�

A.3.4 Negated disjunctions

�, ¬A ∧ ¬B 
 �¬∨ Left:
�, ¬(A ∨ B) 
 �

� 
 ¬A ∧ ¬B,�¬∨ Right:
� 
 ¬(A ∨ B),�

A.3.5 Negated negations

�, A 
 �¬¬ Left:
�, ¬¬A 
 �

�, A 
 �¬¬ Right:
� 
 ¬¬A,�

A.4 Structural rules. Since we’re using sets, we rely on the (free) rules of contraction
and permutation. Cut, which is eliminable, is a rule:

� 
 �, A A, 	 
 �
Cut:

�,	 
 �,�

Weakening rules, namely,

� 
 �Weakening Left:
�, A 
 �

� 
 �Weakening Right:
� 
 A,�

are both eliminable for a standard reason: the ‘nature’ of our sequents—the axioms govern-
ing them—already allow side premises (antecedents) and side consequents (succeedents).

A.5 Validity. We say that � 
 � is valid just if derivable via the above rules.

A.6 Some results.

THEOREM A.1 (ADEQUACY). � �+
lp � iff � 
 �.

Proof. The soundness proof is straightforward. The completeness proof covered by
(Priest, 2008, p. 157, theorem 8.7.9) for the corresponding tableau system carries over
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directly, where, as above, the negative tableau tag corresponds to the right position in our
sequents, and the positive the left.13 �

THEOREM A.2 (CUT ELIMINATION). If � 
 �, A and 	, A 
 � then �,	 
 �,�.

Proof. The given completeness proof is Cut-free. �
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