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Abstract. The propagating sourcemethod has been extended to solve theBoltzmann
equation with a quasi-linear diffusion scattering operator. A half-range polynomial
expansion method is used to reduce the integral-diffusion form of the ‘collisional’
Boltzmann equation to an infinite set of linear hyperbolic partial differential equa-
tions in the harmonics of the polynomial expansion. The lowest-order truncation of
the coupled set of equations yields an inhomogeneous form of the well-known tele-
grapher equation, which, unlike the homogeneous telegrapher equation, does not
introduce physically unrealistic pulse solutions. Anisotropic quasi-linear scattering
models for which the index q of the power spectrum ofmagnetic fluctuations satisfies
1< q < 2 admit slow scattering through 90◦ and no scattering through 90◦ for q � 2.
Accordingly, four models that either allow or enhance scattering through 90◦ are
used to augment the standard quasi-linear model for pitch-angle scattering. These
are mirroring, dynamical turbulence and two distinct wave-based models. In the
case that mirroring is responsible for scattering particles through 90◦, together with
the standard QLT (quasi-linear theory) pitch-angle diffusion model for scattering
within the forward and backward hemispheres, it is found that the QLT isotropic
and anisotropic models are well approximated by relaxation time scattering models.
As an application of the general study, the implications of the four models intro-
duced to redress the difficulties faced by QLT in describing scattering through 90◦

are briefly considered. An initial beam was found to relax more rapidly for either
the dynamical turbulence or wave models with resonant scattering through 90◦

than for mirroring models.

1. Introduction
The transport of charged particles along a randomly fluctuating magnetic field is
a basic problem in space physics and astrophysics. Typically, the magnetic field is
ordered on some large scale but is highly temporal on smaller scales. In Part 1 of

https://doi.org/10.1017/S0022377803002745 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377803002745


506 E. Kh. Kaghashvili et al

this series of papers (Zank et al. 1999, 2000; henceforth Paper 1), we introduced
a new approach, the propagating source method, for solving the time-dependent
Boltzmann equation for charged particles experiencing large-angle deflections (‘col-
lisions’) in the fluctuating magnetic field. In Paper 1, the large-angle scattering
operator was modeled as a BGK (Bhatnager, Gross and Krook 1954) relaxation
time operator. In this paper, we extend the propagating source method to a small-
angle quasi-linear scattering operator that takes the form of a diffusion term in
the cosine of particle pitch-angle. In addition to describing the general method
and presenting some results, we apply this approach to the general question of
particle scattering through 90◦ and present a brief comparison of large-angle and
small-angle scattering models. The transport of charged particles along a magnetic
field is governed by the Fokker–Planck equation. By assuming that the charged
particle distribution function f(x, t, v) is nearly gyrotropic, the gyrophase averaged
Boltzmann equation in the stationary frame may be expressed as (Skilling 1971;
Isenberg 1997)
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(

δf

δt

)
c

+ S − L. (1.1)

In (1.1), the distribution function f(x, t, v)= f(x, t, µ, v), where the pitch angle θ
defines µ ≡ v · b/v= cos θ, b=B0/|B0| is the unit vector aligned with the large-scale
magnetic field B0, v denotes the particle speed along B0 and u is the large-scale bulk
flow velocity. The variables x and t denote the particle position and time respectively
and S andL are source and loss terms, respectively. Cross-field diffusion and particle
drifts are neglected in (1.1), as is energy diffusion. For the present, we restrict our
attention to large particle energies (i.e. v � u) and consider a constant flow speed u
and radial magnetic field. We further neglect focusing and adiabatic deceleration.
Subject to these assumptions, the equation that we solve is therefore

∂f

∂t
+ µv

∂f

∂xi
=

(
δf

δt

)
c

. (1.2)

This very simplified form of the Boltzmann equation is often used to study cosmic-
ray propagation in the heliosphere (e.g. Kota 1994).

2. Models for Dµµ and scattering through 90◦

The scattering operator (δf/δt)c in (1.2) describes particle scattering by random
magnetic fluctuations and is given either by a quasi-linear pitch-angle model or by a
relaxation time model. Paper 1 considered large-angle scattering, using a relaxation
time model, exclusively. We extend the approach of Paper 1 to include the small-
angle quasi-linear scattering operator.
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For pitch-angle scattering, the scattering operator is frequently expressed in
terms of particle diffusion in the pitch angle. Thus,(

δf

δt

)
c

=
∂

∂µ

[
Dµµ(µ, τ1)

∂f

∂µ

]
, (2.1)

where Dµµ(µ, τ1) is the particle scattering frequency (e.g. Jokipii 1966) and is a
function of the pitch-angle and the quasi-linear small-angle scattering time τ1. If
the magnetic field fluctuations are assumed to be magnetostatic, the turbulence
geometry is assumed to be slab and the spectral form is proportional to k−q (where
k denotes wave number), then Dµµ(µ, τ1) may be expressed in the form (Jokipii
1966; Hasselmann and Wibberanz 1968)

DQLT
µµ (µ, τ1)=

|µ|q−1(1 − µ2)
τ1

. (2.2)

The time scale τ1 is determined from a combination of the particle frequency Ω,
the mean magnetic field strength B0 and the particle velocity v (e.g. Dröge 2000b).
Specifically, if we assume that the power spectrum of resonant scattering waves or
turbulence has the form P = Ak−q for wavenumber k, then

τ−1
1 ≡ π

4
AΩ2−qvq−1

B2
0

.

The BGK Boltzmann collision operator or relaxation time approximation(
δf

δt

)
c

=
〈f〉 − f

τ
(2.3)

is often used instead of (2.1) (Gombosi et al. 1993; Kota 1994; Zank et al. 2000;
Lu and Zank 2001; Lu et al. 2001) and describes isotropic large-angle scattering.
In (2.3), 〈f〉 ≡ 1

2

∫ 1

−1 f dµ is the isotropic distribution function f averaged over the
pitch angle µ and τ = τ(x, v, µ) is a collision or scattering time.
The scattering of particles through µ= 0 has long been regarded as a major chal-

lenge to models of particle transport, particularly those based on a QLT diffusion
formulation such as (2.2). Evidently, a magnetic fluctuation spectrum for which
the spectral index satisfies q = 1 corresponds to isotropic scattering and particles
experience no difficulty at 90◦. However, for q > 1, the scattering time tends to
infinity as |µ| → 0. Since the parallel mean free path λ‖ is given by

λ‖ ∝
∫ 1

−1

(1 − µ2)2

Dµµ
dµ,

use of (2.2) shows that λ−1
‖ remains bounded provided q < 2. For q � 2, the integral

for λ‖ is divergent. What this implies, of course, is that the flux of particles in
momentum space through µ= 0 is non-zero provided that 1< q < 2. Physically,
the non-zero flux through µ= 0 has the following interpretation. For a particle
located at ε> 0 say in velocity space, the location being determined precisely by
the resonance condition, a scatter will change ε to ε + ∆µ= ε′. For ε small, i.e.
close to µ= 0, the ∆µ change can be sufficiently large so that the particle scatters
through 90◦ and ε′ < 0. Provided the turbulence spectrum is sufficiently flat, such
∆µ scatters ensure a non-zero flux in momentum space through 90◦. Conversely, if
the spectrum is too steep and ∆µ is very small due to insufficient power near 90◦,
then a particle can never be ‘close enough’ to µ= 0 for it to scatter through 90◦.
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Thus, for q 	= 1, particles cannot scatter from 90◦, and for 1< q < 2, particles can
scatter through 90◦. Thus, since the dissipation range of the magnetic fluctuation
spectrum typically satisfies q > 2 (where particles with very small pitch angles are
expected to resonate), it has been argued by Davila and Scott (1984); (see also
Bieber et al. (1988); Smith et al. (1990)) that scattering through 90◦ is prevented
by the dissipation of turbulence at the small scales. As a result, the mean free path
in standard QLT is formally infinite.
In an effort to address the shortcomings of standard QLT with respect to scat-

tering through 90◦, several mechanisms have been suggested which either augment
or refine the diffusion theory. Among these are ‘mirroring’ by fluctuations of the
magnetic field magnitude (Goldstein et al. 1974; Smith 1992), nonlinear extensions
of QLT (Goldstein 1976; Jones et al. 1978; Owens 1974; Völk 1975), resonance
broadening (Völk 1973; Dröge 1994), wave propagation effects (Schlickeiser 1988,
1989; Schlickeiser et al. 1991; Dröge and Schlickeiser 1993; Schlickeiser and Achatz
1993; Dröge 2000a, b), dynamical turbulence (Bieber and Matthaeus 1991, 1992;
Bieber et al. 1994) and non-resonant pitch-angle scattering (Ragot 1999, 2000). A
review of models describing the various approaches to the scattering of particles
through 90◦ is given by Dröge (2000b).
The relaxation time scattering operator (2.3) can be extended to accommodate

the possibility of non-isotropic particle scattering when particles have difficulty
in scattering through 90◦. One way is to introduce two scattering time scales τ1

and τ2. In the µ < 0 and µ > 0 hemispheres of velocity space, particle scattering is
assumed to be isotropic and to occur at a rate τ−1

1 . By contrast, the scattering of
particles from one hemisphere to another proceeds at the slower rate τ−1

2 . Thus,
µ= 0 is singular in the sense that scattering through 90◦ is slow. Following Kota
(1994), Zank et al. (2000) adopted a modified relaxation time model analogous
to (2.3) and introduced the half-range expansion f± corresponding to particles
populating either the forward (µ > 0) or backward (µ < 0) hemispheres. Schwadron
(1998) introduced a similar scattering operator in his modeling of solar wind pickup
ion propagation (see also Isenberg (1997)). Accordingly, we may generalize (1.2) as

∂f−

∂t
+ µv

∂f−

∂r
=

〈f−〉 − f−

τ1
+

〈f+〉 − f−

τ2
, (µ < 0) (2.4)

∂f+

∂t
+ µv

∂f+

∂r
=

〈f+〉 − f+

τ1
+

〈f−〉 − f+

τ2
, (µ > 0) (2.5)

where 〈f−〉 ≡ 1
2

∫ 0

−1 f− dµ and 〈f+〉 ≡ 1
2

∫ 1

0 f+ dµ. If τ1 = τ2 = 2τ , then the isotropic
scattering model (1.2) is recovered.
In this paper, we assume simple functional forms for the scattering operators

appropriate to some of the above models advanced to resolve the 90◦ QLT scattering
problem and compare the resulting solutions for identical initial data. As we show,
some of the theoretical models advanced to scatter particles through 90◦ lead
to observable differences in the computed distribution functions. Elsewhere (Lu
et al. 2002), we use a more realistic Boltzmann equation model that includes a
background flow field, focusing and adiabatic deceleration for a particular model
to study transport in the solar wind.
The scattering models are listed in Table 1. Four models are considered for the

scattering of particles through 90◦.
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Table 1. Four mechanisms considered for scattering particles through 90◦. Also listed are
the specific forms of either the collisional term or the Fokker–Plank coefficient Dµµ used to
model scattering (including 90◦) in this paper.

Mechanisms for scattering through 90◦ Model scattering coefficients

(1) Mirroring
(

δf

δt

)
c

≈ ∂

∂µ

(
DQLT

µµ

∂f

∂µ

)
+

〈f〉 − f

τ2

(2) Dynamical turbulence Dµµ ≈ DQLT
µµ + Φ(µ=0)(1 − µ2)

(3) Wave models (resonant scattering) Dµµ ≈ DQLT
µµ + ϕ

1 − µ2

τres

(4) Wave models (non-resonant scattering) Dµµ ≈ DQLT
µµ + ϕ2 1 − µ2

2τres
ϕ ≡ Vgroup/v ≈ VA/v

(1) Mirroring or large-angle scattering of particles through 90◦, which is assumed to
proceed at a rate significantly slower than the pitch-angle scattering of particles,
taken to occur independently within the forward and backward hemispheres.
The pitch-angle scattering is described by the standard QLT Fokker–Planck
diffusion coefficient (2.2).

(2) Model 2 is a slight generalization of one suggested by Bieber et al. (1994). By
no longer assuming the usual magnetostatic approximation and introducing a
decorrelation time for the magnetic turbulence, Bieber and Matthaeus (1991)
introduced resonance broadening to allow particles to scatter through 90◦.
The decorrelation or two-point correlation decay time was estimated to be
(kVA)−1 for a wave number k and Alfvén speed VA. For protons, Bieber et al.
(1994) found that the Fokker–Planck coefficient for pitch-angle scattering in
dynamical turbulence was non-zero at 90◦, and that it could be approximated by
Φ(0)(1−µ2), where Φ(0)= (2πΩ2/B2

0)GE(Ω). Here,GE(Ω) denotes the Eulerian
frequency spectrum ((3) of Bieber et al. (1994)). As can be seen from Fig. 7(b) of
Bieber et al. (1994), the simple extension listed in Table 1 captures the features
of the Fokker–Planck coefficient as a function of the pitch-angle.

(3) In a formal sense, the resonance broadening models introduced by Bieber and
Matthaeus (1991) and Bieber et al. (1994) are related closely to the wave mod-
els introduced by Schlickeiser (1988, 1989) (see also Schlickeiser et al. (1991);
Dröge and Schlickeiser (1993); Schlickeiser and Achatz (1993); Dröge 2000a,
b). The wave models incorporate the dynamical effects of wave propagation,
particularly waves propagating parallel and anti-parallel to the magnetic field,
and damping in the scattering coefficient. The spectral functions adopted to
describe the waves are not unlike the slab turbulence models introduced by
Bieber et al. (1994) and, consequently, the wave and turbulence models can be
described using the same mathematical formalism but with a different choice of
parameter. At the simplest level of description, we therefore use the form listed
in Table 1.

(4) Unlike the turbulence and wave models discussed above, Ragot (1999, 2000) has
suggested that fast non-resonant magnetosonic waves can scatter low-rigidity
cosmic rays through 90◦ very efficiently. Her argument is that low-frequency
waves determine the local variation in the magnetic field line direction and
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any description of particle scattering through µ= 0 must therefore include the
non-resonant low-frequency wave component. An approximate non-resonant
diffusion coefficient Dµµ = ε2/(2τexit) can be derived, where ε= VA/v is the
ratio of the wave group velocity Vgroup ≈ VA to the particle velocity. The
average exit time τexit describes the time for a particle to escape from a small
µ neighborhood into a region where scattering can proceed more quickly by
regular QLT diffusion in pitch angle. As suggested by Ragot (1999), the exit
time is always less than the gyroperiod Ω−1. Accordingly, we introduce the
simple functional form shown in Table 1, which is a sum of the standard QLT
diffusion coefficient for pitch angles not in the region µ ≈ 0 and the Ragot
non-resonant term for µ ≈ 0.

3. Basic method
To illustrate our approach to solving the Boltzmann equation (1.2), we use the
expressions for Dµµ listed in Table 1. We consider three distinct cases for the
spectral wave number exponent: q = 1, which yields isotropic scattering; q = 2,
which corresponds to pickup ion driven turbulence (Galeev and Sagdeev 1988;
Glassmeier et al. 1989; Williams and Zank 1994); and q = 5

3 , which corresponds
to the Kolmogorov spectrum typical of much of the solar wind (e.g. Matthaeus
et al. 1995).

3.1. Case q = 1
As noted, the pitch-angle diffusion coefficient for this case admits only isotropic
scattering with no singularity at 90◦. Thus, in the absence of both focusing and
adiabatic energy changes, the Boltzmann equation reduces to

∂f

∂t
+ µv

∂f

∂r
=

∂

∂µ

(
1 − µ2

τ

∂f

∂µ

)
, (3.1)

where f(r, t, µ, v) is the velocity space distribution function at position r and time
t for particles of speed v and pitch angle cosine µ= cos θ. We consider the Cauchy
problem for (3.1) with arbitrary initial data given by

f(r, t = 0, µ, v)= F (r, 0, µ, v). (3.2)

No restrictions are imposed on the form of the initial data, i.e. it need not be
isotropic andwe shall frequently consider an initial ring-beam distribution for which

F (r, 0, µ, v)=
N(r)δ(v − v0)δ(µ − µ0)

2πv2
. (3.3)

In (3.3), N(r) denotes the particle number density as a function of position.
As discussed in Paper 1 (see also Gombosi et al. (1993); Lu et al. (2001)) in the

context of large-angle scattering, at very early times an initial particle distribution
should propagate almost ballistically until such time as scattering begins to modify
the distribution. Thus, particle scattering may be viewed as a loss process for
the unscattered streaming particles with a decay time given by the scattering
time τ . Conversely, no scattered particles exist at early times and instead the
scattered distribution grows from zero as the unscattered streaming distribution
decays. Thus, initial data can be prescribed for the unscattered particle distribution,
which, as it decays, leads to the formation of a scattered particle distribution.
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This approach was discussed originally by Zank et al. (1999) and is reminiscent
of the multiple scattering solution of the Boltzmann equation presented by Webb
et al. (1999, 2000). Since we are at liberty to separate the distribution function
in any way we choose, provided that we ensure that the appropriate initial and
boundary conditions between f s and F hold, the above comments suggest we split
the distribution function f into an ‘unscattered’ part F and a ‘scattered’ part f s

according to the decomposition

f = f s + F (3.4)

and (3.1) may be re-expressed as

∂F

∂t
+ µv

∂F

∂r
= − F

τ
, (3.5)

∂f s

∂t
+ µv

∂f s

∂r
=

∂

∂µ

(
1 − µ2

τ

∂f s

∂µ

)
+

∂

∂µ

(
1 − µ2

τ

∂F

∂µ

)
+

F

τ
. (3.6)

We can verify a posteriori that the decomposition of (3.1) into (3.5) and (3.6) is
valid since the solution F of (3.5) with the initial data (3.2) is the ballistically
propagating, decaying distribution

F (r, t, µ, v)= F (r − µvt, 0, µ, v)e−t/τ . (3.7)

Note that F can only lose particles unless an explicit source term is present (such as
occurs for pickup ions in the inner and outer heliosphere). Evidently, F is a source
term for the scattered particle distribution and, unlike the prescribed initial data,
is a moving source. As discussed in Paper 1, such a distributed source of scattered
particles acts to eliminate the possibility of coherent pulses forming for isotropic
scattering when a low-order truncation to a polynomial series solution to (3.1) is
used.
To solve (3.6), we may expand f s in an infinite series of Legendre polynomials

Pn(µ),

f s(r, t, µ, v)=
∞∑

n=0

(2n + 1)Pn(µ)fn(r, t, v), (3.8)

where fn(r, t, v) is the nth harmonic of the scattered distribution function

fn(r, t, v)=
1
2

∫ 1

−1

P (µ)f s(r, t, µ, v) dµ. (3.9)

By means of the recursion relations (n + 1)Pn+1(µ) + nPn−1(µ) = (2n + 1)µPn(µ)
and (µ2 − 1)P ′

n(µ)= nµPn(µ) − nPn−1(µ) (the prime denotes differentiation), we
obtain the infinite set of partial differential equations for the harmonics of the
scattered distribution f s

∂fn

∂t
+

(n + 1)v
2n + 1

∂fn+1

∂r
+

nv

2n + 1
∂fn−1

∂r
= −(n2 + n − 1)

Fn

τ
− n(n + 1)

fn

τ
. (3.10)
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The source term Fn in (3.10) is of course the nth harmonic of the decaying un-
scattered distribution F . The formal structure of the partial differential equations
(3.10) is very similar to those derived for the large-angle scattering case discussed in
Paper 1, with a primary difference being the presence of the higher-order harmonic
source terms.
The closure of (3.10) is commonly addressed by simply truncating the infinite

set of equations at some arbitrary order with the hope that this does not introduce
any unphysical character into the reduced model. For the f1 approximation (i.e.
assume fn = 0, for all n� 2), we have

∂f0

∂t
+ v

∂f1

∂r
=

F0

τ
,

(3.11)
∂f1

∂t
+

v

3
∂f0

∂r
= −F1

τ
− 2f1

τ
,

which is a linear hyperbolic system admitting the characteristic speeds λ = ±
v/

√
3, a result which is entirely independent of the form of the scattering op-

erator. Equations (3.11) can be combined to give the more familiar telegrapher
equation, although now in inhomogeneous form because of the source terms F0

and F1,

τ
∂2f0

∂t2
+ 2

∂f0

∂t
− κ

∂2f0

∂r2
=

∂F0

∂t
+ v

∂F1

∂r
+

2F0

τ
(3.12)

and κ ≡ v2τ/3 = (4/3π)v2B2
0/(ΩA). The inhomogeneous term in (3.12) is the source

term for the isotropic scattered component and the initial data is only with re-
spect to F in (3.7). As in Paper 1, the inhomogeneous telegrapher equation can
be solved analytically, yielding a somewhat cumbersome expression. The exact
solution of (3.12) reveals several important features which distinguish the trans-
port equation (3.12) from the standard telegrapher equation model. The scattered
particle distribution grows gradually from zero at the initial time. The combined
distribution f =F + (f0 + 3µf1) describes the evolution of the particle distribu-
tion function at all times, including t < τ . The expansion which yields the linear
hyperbolic equations (3.12) (and the higher order expansion (3.13) below) cap-
tures the initial coherent or flash phase (Earl 1995; Federov and Shakhov 1993;
Federov et al. 1995; Ruffulo and Khumlumlert 1995) of particle transport to-
gether with the subsequent evolution into the diffusive regime. Furthermore, no
coherent pulses are present in the solution of (3.12) and this, as discussed in Pa-
per 1, is a consequence of the propagating source term. The inhomogeneous tele-
grapher equation is therefore a major improvement in describing particle propaga-
tion compared with the original telegrapher equation formulated by Fisk and
Axford (1969).
In general, the fn truncation forms a linear hyperbolic system of partial differ-

ential equations

Ψt + vAΨr = C (3.13)

with a (discrete) spectrum of characteristic speeds. HereΨ = (f0, f1, f2, . . . c)T, with
T denoting transpose, the subscripts denoting partial differentiation with respect
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to t and r, and A is the tridiagonal matrix

A =




0 1 0 0 0 . . . . . . 0
1
3

0
2
3

0 0 . . . . . . 0

0
2
5

0
3
5

0 . . . . . . 0

0 0
3
7

0
4
7

. . . . . . 0
...

. . .
. . .

...

0 0 0 0 . . .
n − 1
2n − 1

0
n

2n − 1

0 0 0 0 . . . 0
n

2n + 1
0




, (3.14)

C = τ−1




F0

−F1 − 2f1

−5F2 − 6f2

...

−(n2 + n − 1)Fn − n(n + 1)fn




.

With the exception of the source term C, (3.13) is identical to the large angle
scattering model of Paper 1.
The characteristic equation |A−λI| = 0 yields the (n + 1) characteristics of (3.13),

all of which are distinct. The characteristic speeds of the nth order truncation
correspond to the ‘speeds’ into which the particles are scattered. In particular, for
isotropic scattering models, we showed in Paper 1 that even-order truncations were
inherently more accurate than odd-order truncations of the polynomial expanded
Boltzmann equation. This is a consequence of the even-order truncations admitting
n/2 forward and n/2 backward propagating characteristics and a single stationary
characteristic. For the odd-order truncations, the stationary characteristic is always
absent and, as a result, the odd-order truncations can never accurately capture
particle propagation for particles with pitch-angles close to zero, i.e. nearly sta-
tionary scattered particles, no matter how refined. Since increasing the truncation
order increases the number of characteristic speeds into which the particle distri-
bution can be scattered, a higher-order truncation increases the accuracy of the
solution. However, we found that, provided we used an even-order truncation, low-
order polynomial expansions proved remarkably accurate with, for example, an f2

approximation giving results almost identical to a higher-order f4 approximation.
This only is true, however, if the propagating source method is utilized.
Since the truncated Boltzmann equation reduced to a system of linear hyperbolic

equations, the very powerful and accurate numerical method of characteristics is
ideally suited to solve the equations. This has proved relatively straightforward to
implement and yields accurate results.

3.2. Case q = 2
This case is particularly pertinent to cometary (Galeev and Sagdeev 1988;
Glassmeier et al. 1989) and interstellar (Lee and Ip 1987; Williams and Zank 1994)
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pickup ions since quasi-linear theory predicts that the excited turbulence forms a
k−2 spectrum. The pitch-angle diffusion coefficient (2.2) becomes

Dµµ(µ, τ)=
|µ|(1 − µ2)

τ
. (3.15)

Observations of pickup ions (Fisk et al. 1997; Gloeckler and Geiss 1998) show aniso-
tropic velocity distributions, which have been modeled (Isenberg 1997;
Schwadron 1998; Lu and Zank 2001) by assuming that scattering from one hemi-
sphere to the other proceeds much more slowly than scattering within each hemi-
sphere. Clearly, from the non-isotropic diffusion coefficient Dµµ above, Dµµ = 0
at µ= 0 and scattering through 90◦ is therefore singular. As discussed above, the
resonance gap at 90◦ is large when q = 2, and other physics are needed to scatter
particles from one hemisphere to the other. Accordingly, we consider the four models
listed in Table 1.

Model 1.Mirroring and large-angle scattering can be included by introducing aniso-
tropic relaxation time scattering operators, as considered in Paper 1, Lu and Zank
(2001) and Lu et al. (2001). We therefore introduce distributions f± that correspond
to the µ > 0 and µ < 0 hemispheres, respectively, and solve the generalization of
(1.2):

∂f±

∂t
+ µv

∂f±

∂r
= ± ∂

∂µ

[
µ(1 − µ2)

τ1

∂f±

∂µ

]
+

〈f∓〉 − f±

τ2
. (3.16)

The mirroring/large-angle scattering rate τ−1
2 is much slower than the QLT scatter-

ing time τ−1
1 . Thus, pitch-angle scattering occurs in each hemisphere, independently

of the other, and a slower scattering from one hemisphere to the other is controlled
by the relaxation time operator.
As discussed above, we again split f into scattered and unscattered particles

f± =F ± + f s± to obtain

∂F ±

∂t
+ µv

∂F ±

∂r
= −F ±

τ̄
(3.17)

∂f s±

∂t
+ µv

∂f s±

∂r
= ± ∂

∂µ

[
µ(1 − µ2)

τ1

∂f s±

∂µ

]
± ∂

∂µ

[
µ(1 − µ2)

τ1

∂F ±

∂µ

]

+
〈fS∓〉 − f s±

τ2
+

〈F ∓〉
τ2

+
F ±

τ1
, (3.18)

where the averaged scattering time τ̄−1 ≡ τ−1
1 + τ−1

2 has been introduced. Evidently,

F ±(r, t, µ, v)= F ±(r − µvt, 0, µ, v)e−t/τ̄ . (3.19)

We solve (3.18) using a half-range Legendre polynomial expansion

f s±(r, t, µ, v) =
∞∑

n=0

(2n + 1)Pn(2µ ∓ 1)f±
n (r, t, v),

f+
n (r, t, v) =

1
2

∫ 1

0

P (2µ − 1)f s+(r, t, µ, v) dµ,

f−
n (r, t, v) =

1
2

∫ 0

−1

P (2µ + 1)f s−(r, t, µ, v) dµ.
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The combined pitch-angle diffusion and large-angle scattering model then yields
the infinite set of linear hyperbolic partial differential equations for the forward
and backward harmonics f±

n :

∂f±
n

∂t
+

(n + 1)v
2(2n + 1)

∂f±
n+1

∂r
± v

2
∂f±

n

∂r
+

nv

2(2n + 1)
∂f±

n−1

∂r

=∓n(n2 − 1)
2(2n + 1)

f±
n−1 + F ±

n−1

τ1
− 3n(n + 1)

2
f±

n + F ±
n

τ1

∓n(n + 1)(n + 2)
2(2n + 1)

f±
n+1 + F ±

n+1

τ1
+

F ±
n

τ1
− f±

n

τ2
+ δn0

F ∓
0 + f∓

0

τ2
(3.20)

where δij = 0 (i 	= j) or 1 (i= j).
The f2 truncation of (3.20) can again be expressed as

Ψt + vAΨr = C (3.21)
with Ψ = (f−

0 , f+
0 , f−

1 , f+
1 , f−

2 , f+
2 )T and the tridiagonal matrix

A =




−1
2

0
1
2

0 0 0

0
1
2

0
1
2

0 0

1
6

0 −1
2

0
1
3

0

0
1
6

0
1
2

0
1
3

0 0
1
5

0 −1
2

0

0 0 0
1
5

0
1
2




,

C =




F −
0

τ1
− f−

0

τ2
+

F+
0 + f+

0

τ2

F+
0

τ1
− f+

0

τ2
+

F −
0 + f−

0

τ2

−2
F −

1

τ1
− 3

f−
1

τ1
− f−

1

τ2
+

F −
2 + f−

2

τ1

−2
F+

1

τ1
− 3

f+
1

τ1
− f+

1

τ2
− F+

2 + f+
2

τ1

−8
F −

2

τ1
− 9

f−
2

τ1
− f−

2

τ2
+

3
5

F −
1 + f−

1

τ1

−8
F+

2

τ1
− 9

f+
2

τ1
− f+

2

τ2
− 3

5
F+

1 + f+
1

τ1




. (3.22)

The f1 truncation (i.e. setting f±
2 = 0 above) admits the four characteristic speeds

λ±
± = ± 1

2v(1 ±
√

1
3 ) and the f2 truncation admits the six characteristics λ0

± = ±
1
2v and λ±

± = ± 1
2v(1 ±

√
3
5 ).No fundamentally different characteristic speeds are
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introduced in going from an odd to an even truncation for the half-range expan-
sion and the decomposition simply becomes increasingly refined with increasing
truncation order.
Before considering Models 2, 3 and 4, and our final example, q = 5

3 , we derive
the ‘diffusive’ reduction of (3.21) at the f1 truncation level. If gradients in f±

1 are
small, then

f±
1 ≈ −v

6
τ1τ2

τ1 + 3τ2

∂f±
0

∂r
− 2

τ2

τ1 + 3τ2
F ±

1

which yields the coupled diffusion transport equations

∂f±
0

∂t
± v

2
∂f±

0

∂r
+

f±
0 + f∓

0

τ2
=

v2

12
τ1τ2

τ1 + 3τ2

∂2f±
0

∂r2
+

F ±
0

τ1
+

F ∓
0

τ2
+

τ2v

τ1 + 3τ2

∂F ±
1

∂r
. (3.23)

The slow large-angle scattering time τ2 acts as a coupling coefficient between the for-
ward and backward hemispheres. The coupling term in (3.23) is formally identical
(when τ2 → τ1τ∗/(τ1 − 2τ∗)) to the coupled term in diffusion transport equations
(3.14) and (3.15) derived in Paper 1 on the basis of an anisotropic relaxation time
scattering operator instead of Dµµ.

3.3. Case q = 5
3

The power spectrum of magnetic fluctuations in the interplanetary medium is fre-
quently a broken power law with an inertial range exponent of− 5

3 ; the Kolmogorov
exponent for fully developed turbulence. If we assume that the particles scatter
only with fluctuations in the inertial range of the magnetic fluctuation spectrum
(see Bieber et al. (1994), Zank et al. (1998) and le Roux et al. (1999) for some
discussion about particle scattering in the energy containing range), we can extend
the approach above to investigate particle transport using the pitch-angle diffusion
coefficient (2.2). Recall that for q = 5

3 , scattering through 90◦ is possible but slow.
We either assume that some other physics control scattering through 90◦ or that
we can approximate

f(0±) − f(0∓)
τ

≈ 〈f±〉 − f∓

τ
for some long scattering time parameter τ and f(0±) denotes the particle distribu-
tion function immediately on either side of µ= 0.
We again use a half-range expansion and separate the distribution into scattered

and unscattered particles. Although we omit the details, we note that the half-
range expansion is particularly well suited to dealing with fractional powers q − 1.
Since the half-range expansion is in terms of Legendre polynomials with argument
2µ ± 1, the variable ξ = 2µ ± 1 allows us to replace |µ|q−1 by a term proportional
to |ξ ∓ 1|q−1. A binomial expansion of the fractional term to the desired order
(chosen to be consistent with the level of truncation for the resulting infinite set
of partial differential equations (PDEs)) and repeated use of the various Legendre
polynomial recursion relations allows us to follow a procedure similar to that of
Sec. 3.2. In doing so, we obtain the infinite set of equations in the harmonics f±

n ,
where for the present we have assumed Model 1 of Table 1,

∂f±
n

∂t
+

(n + 1)v
2(2n + 1)

∂f±
n+1

∂r
± v

2
∂f±

n

∂r
+

nv

2(2n + 1)
∂f±

n−1

∂r
=

F ±
n

τ1
− f±

n

τ2
+δn0

F ∓
0 + f∓

0

τ2
+Q±

n

(3.24)
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where

Q±
n =

n(n + 1)
3
√

4

{
−3

f±
n + F ±

n

τ1
+

2n2 + 2n − 3
3(2n − 1)(2n + 3)

f±
n + F ±

n

τ1

− (n + 2)(n + 3)
3(2n + 1)(2n + 3)

f±
n+2 + F ±

n+2

τ1
− (n − 2)(n − 1)

3(2n − 1)(2n + 1)
f±

n−2 + F ±
n−2

τ1

± 8
9

(n − 1)(n2 − 3)
(2n − 3)(2n + 1)(2n + 3)

f±
n−1 + F ±

n−1

τ1

± 8
9

(n + 2)(n2 + 2n − 2)
(2n − 1)(2n + 1)(2n + 5)

f±
n+1 + F ±

n+1

τ1

± 8
27

(n + 2)(n + 3)(n + 4)
(2n + 1)(2n + 3)(2n + 5)

f±
n+3 + F ±

n+3

τ1

± 8
27

(n − 1)(n − 2)(n − 3)
(2n − 3)(2n − 1)(2n + 1)

f±
n−3 + F ±

n−3

τ1

}
. (3.25)

Since the f2 truncation is used in the results below, the reduction of (3.24) and
(3.25) in the small-angle scattering case is given by

∂f±
0

∂t
+ v

∂f±
1

∂r
± v

2
∂f±

0

∂r
=

F ±
0

τ

∂f±
1

∂t
+

v

3
∂f±

2

∂r
± v

2
∂f±

1

∂r
+

v

6
∂f±

0

∂r
=

F ±
1

τ
− 46 3

√
2

15
F ±

1 + f±
1

τ
± 8 3

√
2

63
F ±

2 + f±
2

τ

∂f±
2

∂t
± v

2
∂f±

2

∂r
+

v

5
∂f±

1

∂r
=

F ±
2

τ
− 66 3

√
2

7
F ±

2 + f±
2

τ
± 8 3

√
2

105
F ±

1 + f±
1

τ
. (3.26)

Consider now the remaining models listed in Table 1. For Models 2, 3 and 4, the
transport equation that we need to solve may be expressed as

∂f

∂t
+ µv

∂f

∂r
=

∂

∂µ

[
(|µ|q−1 + ε)(1 − µ2)

τ

∂f

∂µ

]
, (3.27)

where ε denotes the parameter for particle scattering through 90◦. Equation (3.27)
is a little more difficult to solve than the relaxation time models and we are obliged
to introduce an operator splitting method. To this end, we first solve

∂f±

∂t
+ µv

∂f±

∂r
=

∂

∂µ

[
|µ|3/2(1 − µ2)

τ

∂f±

∂µ

]
, (3.28)

where, as before, we separate the distribution into forward and backward moving
particles and q = 5

3 . Again, we introduce a scattered and unscattered particle de-
composition, use a half-range Legendre polynomial expansion and derive an infinite
set of linear hyperbolic PDEs

∂f±
n

∂t
+

(n + 1)v
2(2n + 1)

∂f±
n+1

∂r
± v

2
∂f±

n

∂r
+

nv

2(2n + 1)
∂f±

n−1

∂r
=

F ±
n

τ
+ Q±

n . (3.29)
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The f2 approximation is given by

∂f±
0

∂t
+ v

∂f±
1

∂r
± v

2
∂f±

0

∂r
=

F ±
0

τ

∂f±
1

∂t
+

v

3
∂f±

2

∂r
± v

2
∂f±

1

∂r
+

v

6
∂f±

0

∂r
=

F ±
1

τ
− 46 3

√
2

15
F ±

1 + f±
1

τ
± 8 3

√
2

63
F ±

2 + f±
2

τ

∂f±
2

∂t
± v

2
∂f±

2

∂r
+

v

5
∂f±

1

∂r
=

F ±
2

τ
− 66 3

√
2

7
F ±

2 + f±
2

τ
± 8 3

√
2

105
F ±

1 + f±
1

τ
. (3.30)

Having solved the first part of the operator split (3.33), we then solve

∂f

∂t
+ µv

∂f±

∂r
=

∂

∂µ

[
ε(1 − µ2)

τ

∂f±

∂µ

]
(3.31)

and this equation applies only to the scattered particles. Equation (3.31) is solved
straightforwardly using a regular Legendre polynomial expansion, yielding

f ′
n = fn exp

[
−n(n + 1)

ε∆t

τ

]
(3.32)

where f ′
n denotes the updated value and fn is the value contributed by solving

(3.30) (but expressed in terms of the expansion used to solve (3.31) and not the
half-range expansion used in the previous split). The updated value f ′

n must then
be re-expressed in terms of the half-range expansion used to solve (3.28), which
leads to an attractive set of relations between the operator split relations (not
reproduced here).

4. Relaxation time versus pitch-angle diffusion scattering operators
Our purpose in this section is to compare the large-angle relaxation time scattering
operator with the pitch-angle diffusion form of the scattering operator. We consider
both isotropic (i.e. a single-time relaxation operator and the diffusion operator with
q = 1) and anisotropic scattering models (i.e. a two-time relaxation operator and the
diffusion operator with q 	= 1).
To solve the various sets of truncated equations, we implement the method

of characteristics numerically. As an initial condition, we assume a ring beam
distribution (3.3) which is spatially localized between r = 0 and r = r0 such that

N(r)= H(r) − H(r − r0),

where H(r) denotes the Heaviside step function. In the calculations, we always
use normalized values always, so that r0 = 1, v = v0 = 1 and µ0 = 0.6. Unless we are
using an anisotropic scattering model for the relaxation time operator, we use τ = 1.

4.1. Isotropic scattering

Equation (1.2) is solved with either the relaxation time scattering operator (2.3) or
the quasi-linear operator with q = 1. The explicit form of the truncated equations
for the single time relaxation model can be found in (2.16) of Paper 1, and the
truncated system (3.13) is used for the quasi-linear solutions. Figure 1 shows the
scattered component fs of the distribution function corresponding to f1 and f2

truncations of both scattering models. Figure 1 directly compares the evolution of
an identical initial ring beam using (a) a single time relaxation scattering operator
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Figure 1. A comparison of solutions obtained using f1 and f2 truncations for (a) a
single-time relaxation operator and (b) the q =1 quasi-linear scattering operator. The
scattered distribution f s is plotted for normalized times t=0.1 to 10. The plots are along
µ=µ0 =0.6.

and (b) an isotropic q = 1 QLT scattering operator. Solutions are shown from an
early time (t/τ = 0.1) until a later time (t/τ = 10). Noticeable in Fig. 1(b) is that
the amplitude of the scattered particle distribution increases slowly despite the
presence of higher-order source term harmonics Fn in the pitch-angle diffusion case.
However, at later times (e.g. t/τ = 10), the small-angle scattering model has diffused
less than the large-angle scattering model and, consequently, the amplitude of the
distribution function is high in the former. This, of course, is simply a consequence
of large-angle scattering enabling greater access of all phase space than the small-
angle scattering operator. Like the large-angle scattering case, no coherent pulses
are present in both the f1 or f2 truncations.
Figure 2 illustrates the total distribution function f =F + f s as a function of

position at times corresponding to those of Figure 1. As before, Fig. 2(a) corresponds
to the relaxation time operator and Fig. 2(b) to the QLT operator. Evidently, at
early times, the solution is dominated by the initial beam.
The contribution of the harmonics f0, f1 and f2 to the total scattered distribution

function f s in the QLT model is illustrated in Fig. 3. The f1 and f2 truncations
are shown for two times t/τ = 1, 5 and µ= 0.6. Like the large-angle scattering
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Figure 2. The total distribution f =F +f s as a function of position for times corresponding to
those of Fig. 1 along µ=0.6. The f1 and f2 truncation of the single-time relaxation operator
is shown in (a), while (b) represents the f1 and f2 truncations of q =1 quasi-linear scattering
operator.

case, the f0 truncation dominates and the f1 and f2 harmonics are very similar in
amplitude and spatial distribution to those of the large-angle model. Under these
circumstances, expanding the distribution fn about the isotropic distribution f0 is
valid, but this certainly need not be the case for anisotropic scattering model.
In Fig. 4, we plot the intensity profile for the total distribution function f for

both the large-angle scattering and small-angle scattering operators. The values
plotted are along µ= 0.6. Two normalized spatial locations are chosen: r = 1.3 and
3.0. As is seen, the large-angle scattering exhibits a slightly higher amplitude. In
this case, the peak of the amplitude is also reached earlier compared with the small-
angle scattering. In the latter case, the decay in amplitude also occurs at a slower
rate.
A comparison of the small-angle isotropic and large-angle isotropic scattering

models presented here and in Paper 1 suggests that the two approaches do not yield
qualitatively different results. The small-angle scattering operator leads to a slower
spreading of the scattered particles and, consequently, intensity profiles can have
slightly greater amplitudes at later times in this case. However, these differences
are sufficiently slight so as to suggest that the simple relaxation time operator is a
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Figure 3. The contributions of the harmonics f0 and f1 to f s in the f1 approximation at
normalized times t/τ =1 and 5 and the contribution of the harmonics f0, f1 and f2 to fs in
the f2 approximation at the same times. µ=0.6 for both cases. Only the q =1 small angle
scattering model is illustrated.

reasonable approximation to the simplest isotropic small-angle scattering operator
(2.1) when q = 1.

4.2. Anisotropic scattering

As discussed above, one approach to incorporating the slow scattering of particles
through 90◦ in the context of the relaxation time scattering operator is to introduce
two scattering time scales τ1 and τ2. The first time scale describes the more rapid
scattering within each hemisphere and the second describes the slower scattering
of particles through 90◦. In this section, we compare the two-time relaxation scat-
tering model and the QLT pitch-angle diffusion model with q = 2. However, this
immediately introduces the problem of scattering through 90◦ for the QLT model
and so we use the mirroring model of Table 1. Two QLT cases are considered: the
first corresponds to strong scattering of particles through 90◦, for which τ2 = 3τ1;
the second corresponds to weak scattering of particles through a zero pitch angle,
with τ2 = 10τ1. In the strong-scattering model, scattering through 90◦ proceeds
at almost the same rate as scattering within the hemispheres and the model is
therefore very nearly isotropic in character. The second QLT model is evidently
highly anisotropic.
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Figure 4. A plot of the distribution function f as a function of time for µ=0.3 at two
(normalized) spatial locations r =1.3 and 3.0 for (a) the large-angle scattering operator and
(b) the QLT isotropic scattering operator.

Figures 5, 6 and 7 illustrate the temporal evolution of an initial ring beam
distribution as a function of position subject to: (i) a weak scattering two-time
relaxation operator with τ2 = 10τ1; (ii) a weak QLT scattering operator; and (iii) a
strong QLT scattering model, respectively. All three cases use the f2 truncation and
measure the distribution evolution in terms of the normalized time τ̄−1 = τ−1

1 +
τ−1
2 . The omnidirectional distribution is plotted, together with a decomposition
into forward- and backward-hemisphere particles and scattered and unscattered
particles.
The two weak scattering models illustrated in Figs 5 and 6 can be compared

directly. At early times, both the relaxation time and QLT models are dominated
by the propagating ring beam. A persistent pulse appears after about t/τ̄ ≈ 1.5
in both cases, but the pulse front of the QLT model lags behind that of the
relaxation model from t/τ̄ = 1. Apart from this, however, the character of the
evolving distributions subject to two apparently quite different scattering models
is surprisingly similar. At t/τ̄ = 10, both scattering models exhibit a pronounced
rightward moving pulse followed by a spatial tail, but the pulse front extends
further out for the relaxation model. With some minor adjusting of the values of τ̄
in the relaxation models, we expect that the QLT and relaxation scattering models
would be virtually indistinguishable.
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Figure 5. The temporal evolution of a single rightward-propagating ring beam for the
normalized times t/τ =0.1, 1, 2.5, 5, 10, 20 in the weak scattering limit τ2/τ1 =10 of
the large-angle two-time relaxation model. The omnidirectional distribution function 〈f〉,
the scattered distribution 〈f s〉, the beam 〈F 〉 and the forward- and backward-propagating
distributions 〈f±〉 are plotted. An f2 truncation is used and all times are normalized to the
scattering time τ̄ .

The QLT strong scattering model illustrated in Fig. 7 evolves quite differently
from the QLT weak scattering model. As before, the ring beam dominates at
early times and a rightward-propagating pulse forms at the same normalized time.
The leading pulse is, however, eroded much more rapidly in this case and a much
more dominant leftward-propagating component is produced—this an obvious con-
sequence of the particles ability to scatter rapidly from one hemisphere to the
other. By t/τ̄ > 5, the leading pulse has virtually disappeared and the spatial dis-
tribution soon acquires a normal character. The speed at which the distribution
front propagates is, however, identical in both the weak and strong scattering
models.
The major result to emerge from this section is that the single-time and two-

time relaxation models do surprisingly well in describing the propagation and
temporal evolution of beams, comparing very well to the QLT scattering models
when mirroring is assumed to scatter particles through 90◦. Some minor adjustment
of relaxation scattering times would allow almost indistinguishable results to be
achieved between the two approaches.
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Figure 6. The temporal evolution of a right-propagating ring beam for the normalized
times t/τ =0.1, 1, 2.5, 5, 10, 20 in the weak scattering limit τ2/τ1 =10 of the small-angle
anisotropic QLT q =2 model in the presence of large angle mirroring (Model 1 in Table 1).
The omnidirectional distribution function 〈f〉, the scattered distribution 〈f s〉, the beam 〈F 〉
and the forward- and backward-propagating distributions 〈f±〉 are plotted. An f2 truncation
is used and all times are normalized to the scattering time τ̄ .

In concluding this section, we present in Fig. 8 a comparison of intensity pro-
files for three QLT models with weak mirroring, using values of q = 1, 5

3 and
2. The plots are for a pitch angle of µ= 0.5 and a position of r = 2. Although
the arrival times are almost identical for all three scattering models, the arrival
time of the total distribution function f peak for the q = 1 case is as much as
a diffusion time later than the arrival time for the other two cases (which are
virtually coincident). Since the initial pitch angle µ0 = 0.6 and the scattering from
one hemisphere is weak, the more anisotropic distributions associated with the
q = 5

3 and 2 cases ensure that their peaks arrive sooner than the isotropic scattering
model.

5. Quasi-linear models and scattering through 90◦

In this section, we assume a Komlogorov turbulence model (i.e. q = 5
3 ) exclusively

and solve the Boltzmann equation (1.2) for Models 1–4 listed in Table 1. Thus, we
assume the standard QLT expression (2.2) and augment it by a model that describes
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Figure 7. The temporal evolution of a right-propagating ring beam for the normalized
times t/τ =0.1, 1, 2.5, 5, 10, 20 in the strong scattering limit τ2/τ1 =3 of the small-angle
anisotropic QLT q =2 model in the presence of large angle mirroring (Model 1 in Table 1).
The omnidirectional distribution function 〈f〉, the scattered distribution 〈f s〉, the beam 〈F 〉
and the forward- and backward-propagating distributions 〈f±〉 are plotted. An f2 truncation
is used and all times are normalized to the scattering time τ̄ .

scattering through 90◦, such as large-angle mirroring, dynamical turbulence effects,
or resonant and non-resonant scattering wave models.
Figures 9 and 10 compare two Model 1 examples (i.e. assuming that mirroring

is responsible for scattering through 90◦), one with a slow rate of scattering from
one hemisphere to the other (ten times slower than the QLT scattering time or
τ2 = 10τ1, Fig. 9) and the other with a fast rate (three times slower than the QLT
scattering time or τ2 = 3τ1, Fig. 10).
The example illustrated in Fig. 9 is not significantly different from the q = 2

example of Fig. 7. Slight differences in detail are noticeable, but the minor modific-
ations to (2.2) that result from using q = 5

3 instead of q = 2 do not significantly affect
the scattering rates. Similar comments hold for the differences between the strong
scattering q = 5

3 and 2 models. Clearly, however, large differences exist between
models which admit strong and weak mirroring of particles through 90◦. In the
former case, a distinguishable rightward-propagating pulse is present until a little
after t/τ = 5 scattering times, but thereafter the distribution spreads out almost
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Figure 8. Intensity plots of the distribution function f observed at a given position r =2
and pitch angle for three values of q =1, 5

3
and 2 for the QLT weak scattering model.

‘diffusively’ in both directions. The spatial distribution is approximately normally
distributed in space after t/τ = 20 scattering times, with a slow moving peak at
r = 1.5. In contrast, the weakmirroringmodel admits a very pronounced rightward-
propagating pulse, which, even after t/τ = 20, is still present.
Although formally the same structurally, the dynamical turbulence and wave

models, using either resonant or non-resonant scattering of particles through 90◦,
admit slightly different rates of scattering through µ= 0. Accordingly, we have
normalized the 90◦ resonant scattering time, the exit scattering time and the dy-
namical turbulence scattering timeΦ(µ= 0) to the QLT scattering time τ1. Crudely,
τ1 will scale inversely with particle gyrofrequency and, as discussed by Ragot
(1999), τexit also scales with or is less than the inverse particle gyrofrequency.
Unlike the wave models, where the rate of scattering through 90◦ is determined
primarily by the ratio of wave speed to particle speed, the dynamical turbulence
model scattering rates are determined by the Eulerian frequency spectrum GE(Ω)
(Bieber et al. 1994). Bieber et al. (1994) compute, for the reduced perpendicular
power spectrum of the slab model (their Fig. 5), an Eulerian frequency spectrum
for both their damping and random sweeping models (their Fig. 6). Relativistic
protons interact primarily with the inertial range of the turbulence spectrum, where
GE(Ω) ≈ BΩ−1.6. Thus, for relativistic protons (and highly relativistic electrons),
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Figure 9. The temporal evolution of a right-propagating ring beam for the normalized
times t/τ =0.1, 1, 2.5, 5, 10, 20 in the limit of weak mirroring (τ2/τ1 =10) for the
small-angle anisotropic QLT q = 5

3
model (Model 1 in Table 1). The omnidirectional

distribution function 〈f〉, the scattered distribution 〈f s〉, the beam 〈F 〉 and the forward-
and backward-propagating distributions 〈f±〉 are plotted. An f2 truncation is used and all
times are normalized to the scattering time τ̄ .

the dynamical turbulence model implies that the normalized quantity

τ1Φ(µ= 0) ≈ 8B

Av0.06
Ω0.06 (5.1)

is very weakly dependent on gyrofrequency. Extracting estimates for A and B
from the graph of Bieber et al. (1994) yields values of the normalized scattering
times for the perpendicular pitch-angle diffusion coefficient between about 0.1 and
0.01 for protons. For mildly relativistic electrons, still resonant with the dissipation
range, the normalized quantity analogous to (5.1) can become much smaller than
the corresponding proton value (of the order of ∼10−4 and less). For such electrons,
the differences between the distribution functions obtained from the damping or
random sweeping models do not appear to be large.
In view of the orderings discussed above and in Table 1, we considered three

simulations. If we denote by ε the normalized parameter multiplying the (1 − µ2)
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Figure 10. As Fig. 9, but now in the limit of strong mirroring (τ2/τ1 =3) for the small-angle
QLT q = 5

3
model (Model 1 of Table 1). The omnidirectional distribution function 〈f〉,

the scattered distribution 〈f s〉, the beam 〈F 〉 and the forward- and backward-propagating
distributions 〈f±〉 are plotted. An f2 truncation is used and all times are normalized to the
scattering time τ̄ .

term in the 90◦ pitch-angle diffusion term of Models 2–4, then ε ≈ 0.1 describes
the wave model with resonant scattering and the upper limit of the dynamical
turbulence model; ε ≈ 0.01 describes the wave model with non-resonant scattering
and the lower limit of the dynamical turbulence model, and ε ≈ 10−4 describes the
dynamical turbulence model for mildly relativistic electrons.
Figure 11 illustrates the case of ε= 0.1 for a rightward-propagating ring beam.

The omnidirectional distribution function 〈f〉 is plotted as the solid curve, together
with the various components of 〈f〉. Neither the intermediate case, ε= 0.01, nor the
very slow scattering case, ε= 10−4, is illustrated since the differences between each
of the cases is very slight.
The initial beam is seen to evolve quite differently from the corresponding mirror-

ing models. After one scattering time t/τ̄ = 1, no perceptible differences are present,
but by t/τ̄ = 5 , the rightward-propagating beam is much less pronounced than
the corresponding mirroring case. The distribution at t/τ̄ = 5 has relaxed spatially
into an almost normal distribution with equal numbers of particles occupying the
forward and backward hemispheres.
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Figure 11. The temporal evolution of a right-propagating ring beam for the normalized times
t/τ =0.1, 1, 2.5, 5, 10, 20 for the small-angle anisotropic QLT q = 5

3
wave model appropriate

to the non-resonant scattering of protons through 90◦ (Ragot 1999, 2000) for ε = 0.1. The
omnidirectional distribution function 〈f〉, the scattered distribution 〈f s〉, the beam 〈F 〉 and
the forward- and backward-propagating distributions 〈f±〉 are plotted. An f2 truncation is
used and all times are normalized to the scattering time τ̄ .

6. Conclusions
The conclusions to emerge from this work are several and may be enumerated as
follows:

(i) We have extended the propagating source method, introduced in Paper 1
to solve the Boltzmann equation with a relaxation time scattering operator,
to include the quasi-linear diffusion scattering operator. Like the analysis
presented in Paper 1, a half-range polynomial expansion method was used
to reduce the integral-diffusion form of the ‘collisional’ Boltzmann equation
to an infinite set of linear hyperbolic partial differential equations in the
harmonics of the polynomial expansion. The lowest-order truncation of the
coupled set of equations yielded an inhomogeneous form of the well-known
telegrapher equation. Unlike the homogeneous telegrapher equation, which
had been introduced previously to describe particle propagation in a scattering
medium (Fisk and Axford 1969), the inhomogeneous form derived here and in
Paper 1 does not introduce physically unrealistic pulse solutions. The form
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and coefficients of the telegrapher equation derived from the QLT model are
very similar to that derived on the basis of the relaxation-time description
for particle scattering. The characteristic speeds admitted by the nth order
truncation of the infinite-order set of equations correspond to the ‘speeds’ into
which the particles are scattered. As in Paper 1, even-order truncations are
inherently more accurate than odd-order truncations for isotropic scattering
models. In the case of anisotropic scattering, for which the half-range expansion
models were introduced, it does not matter whether one uses an even- or an
odd-order truncation. In either case, the propagating source method ensures
that low-order truncations are very accurate.

(ii) For QLT scattering models that are not isotropic, such as when the power
law index q of the power spectrum of magnetic fluctuations satisfies q > 1,
the standard QLT pitch-angle diffusion model introduces either very slow
scattering through 90◦ (1< q < 2) or no scattering through 90◦ (q � 2). We
therefore considered four augmentations to standard QLT designed to ad-
dress these difficulties, namely mirroring, dynamical turbulence and two wave
models.

(iii) By assuming that mirroring is responsible for scattering particles through 90◦

and using the standard QLT pitch-angle diffusion model to describe scattering
within the forward and backward hemispheres, we investigated how solutions
differed between models that use a relaxation time scattering operator and
models that use a standard QLT pitch-angle diffusion model. It was found that
the QLT isotropic and anisotropic models could be rather well approximated
by relaxation time scattering models, at least for the reduced form of the
Boltzmann equation (1.2) considered here.

(iv) As an application of our general study, we briefly considered the implications
of the four models introduced to redress the difficulties faced by QLT in
describing scattering through 90◦ (point (ii) above). In particular, for the non-
mirroring models we introduced a parameter ε, which measured the relative
rate of scattering within the hemispheres and from one hemisphere to the other.
Relatively strong scattering, ε ≈ 0.1, between the hemispheres corresponds to
a wave model with resonant scattering or the upper limit of the dynamical
turbulence model. The intermediate case, ε ≈ 0.01, describes the wave model
with non-resonant scattering or the lower limit of the dynamical turbulence
model. In both cases, the propagating beam behaves quite differently from the
corresponding mirroring model, with relaxation of the initial beam occurring
far more rapidly for either dynamical turbulence or wave models with resonant
scattering through 90◦ than for mirroring models. Finally, the case ε ≈ 10−4

describes the dynamical turbulence model for mildly relativistic electrons. We
found few discernible differences in the evolution of the distribution function
between the various values of ε.
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