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To sample a typical key in a “trie,” an appropriate climbing might consider generating
random edges in the same manner as the data are generated. In the absence of the
probability generating the keys, an uninformed random choice among the children
still provides an alternative. We are also interested in extremal sampling, achieved
by following a leftmost (or a rightmost) path. Each of these climbing strategies
always generates a key, but one that might not necessarily be in the database. We
investigate the altitude of the position at which climbing is terminated. Analytical
techniques, including poissonization and the Mellin transform, are used for the
accurate calculation of moments. In all strategies, the mean is always logarithmic.
For typical and uninformed climbing, the variance is bounded in unbiased tries
but grows logarithmically in biased tries. Consequently, in the biased case, one
can find appropriate centering and scaling to produce a limit distribution for these
two climbing strategies; the limit is normal. For extremal climbing, the variance is
always bounded for both biased and unbiased cases, and no nontrivial limit exists
under any scaling.

1. INTRODUCTION

The random climbing of trees has been a subject that authors revisit from time to time.
It was considered in Moon [10] and in Meir and Moon [11, 12]. The subject has been
revisited recently by Panholzer [13], who considered several classes of random trees,
including simply generated families and Pólya trees. In these investigations, a class of
trees is considered, and a type of random walk on it is exercised. Starting at the root,
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certain nodes are accessed, and at each node, a randomly selected edge emanating
from it is chosen at random (all edges coming out of a node being equally likely).
The process is perpetuated until it is no longer possible to proceed. When the
process is stopped, the path inscribed in the tree by climbing reaches a leaf.

We would like to consider the climbing of a class of random digital trees called
the “trie.” However, we think the “model of randomness” should be changed from the
usual uniform choice of edges to a climbing model that conforms with the manner in
which these tries are randomly generated. The trie emerges from keys that are taken
from a data generator that emits bits of data, with 1’s having probability p and 0’s
having probability q ¼ 1 2 p. So, at each node of the trie, a simple Bernoulli
random variable will govern the direction of the next turn. The process might not
necessarily end on a leaf, as it might terminate at a null node, but it always generates
a key (not necessarily in the trie).

The general interpretation of this climbing is that a typical key is being “sampled”
from the database. Hence, we call this strategy typical climbing. In the absence of
knowledge of the key generating probability, we consider an alternative strategy
called uninformed climbing, in which we follow the right and left nexus with equal
probability. Motivated by these sampling schemes, we also consider the case of
sampling extremal data. In all of the cases, we develop asymptotic distributions for
the length of the total distance climbed. One might be able to get exact expressions,
too. For example, by purely combinatorial arguments, we compute the exact distri-
bution of the climbing pathlength in extremal sampling to show that such exact
expressions are possible in principle.

The plan of the article is as follows. For economy of notation, variables are reused in
sections that are self-contained. For example, in Section 4, Sn, with moment generating
function fn (t), will be the number of nodes on the path of typical climbing. These two
symbols will be reused for the number of nodes on the path of uninformed and extremal
climbing, and the corresponding moment generating functions, in Sections 5 and 6.
Section 2 gives an overview of the trie structure and other terminology. In Section 3
the methodology is outlined. Analysis of typical climbing is pursued in Section 4,
where in the biased case, we find a Gaussian limit for an appropriately normalized
version of the climbing pathlength. Technicalities for asymptotically accurate mean
and variance calculation are discussed in Subsection 4.1. Analysis of uninformed climb-
ing is pursued in Section 5, where in the biased case, we also find a Gaussian limit. By
contrast, we demonstrate in Section 6 that the extremal climbing pathlength does not
possess a nontrivial limit under any scaling. We devote Subsection 6.1 to a combinatorial
derivation of the exact distribution of the pathlength of extremal climbing.

2. TRIES

The trie is a data structure suitable for digital data (bits, hexadecimal strings, words,
DNA strands, etc.), which are prevalent in science and technology. The trie was
invented independently by De La Briandais [2] and Fredkin [5] for information
retrieval. Tries have numerous applications as a data structure for computer files,
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telecommunication signals, DNA, and so forth because of the digital nature of these
data. Tries also provide a model for the analysis of several important algorithms, such
as Radix Exchange Sort (see Knuth [8]) and Extendible Hashing (see Fagin,
Nievergelt, Pippenger, and Strong [3]).

A binary trie is a digital tree consisting of internal nodes, each having one or two
children, and leaves that hold data (keys). The trie grows from n keys according to a
construction algorithm. If n ¼ 0, the insertion algorithm terminates. If n ¼ 1, a leaf is
allocated for the key given. If n � 2, an internal node is allocated as a root of the tree;
keys starting with zero go to the left subtree, and keys starting with 1 go to the right.
The construction proceeds recursively in the subtrees, but at level ‘, the (‘ þ 1)st bit of
the key is used for branching. When the algorithm terminates, each key is in a leaf by
itself, and the root-to-leaf paths correspond to minimal prefixes sufficient to dis-
tinguish the keys. Figure 1 illustrates a trie with five keys:

X1 ¼ 00111 . . . ,

X2 ¼ 11011 . . . ,

X3 ¼ 00011 . . . ,

X4 ¼ 01010 . . . ,

X5 ¼ 11111 . . . :

For ease of exposition, we will assume our data to be in binary representation of
numbers in [0, 1]. We can always insert a binary point to the left of a binary string to
turn it into a number from this range. The binary case lays out the methodology for
any size alphabet. The case of a larger alphabet can be handled similarly; it just
involves more details.

Suppose we have n � 0 keys, each given as an (infinite) string representing its
expansion into binary bits. We assume the Bernoulli( p) model of randomness,
according to which the bits within a key are independent with probability p of a bit
being 1 and probability q of it being 0 (with p þ q ¼ 1), and the keys themselves
are independent. The data entropy in this model is

hp ¼ �( p ln pþ q ln q):

FIGURE 1. A trie with five keys.
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The ideal unbiased Bernoulli model is equivalent to sampling from a uniform
distribution, a realistic assumption under hashing schemes, where the primary goal
is to achieve uniformity.

3. METHODOLOGY

Two main tools in the ensuing analysis are the Mellin transform and poissoniza-
tion–depoissonization. These methods are now standard and we will not produce
the details in any great length, but refer the reader to standard sources on such
material.

The Mellin transform of a function f (x) isð1

0
f (x)xs�1 ds

and will be denoted by f *(s). The Mellin transform usually exists in vertical strips, in
the s complex plane, of the form

a , < s , b

for real numbers a , b. We will denote this strip by ka, bl. The function f (x) can be
recovered from its transform by a line integral

f (x) ¼ 1
2pi

ðcþi1

c�i1
f �(s)x�s ds

for any c [ (a, b). Usually, such an integral is computed asymptotically (as x!1)
by shifting the line of integration an arbitrary distance to the right of the existence strip
and compensating for the shift by the residues of the poles between the two lines of
integration. There often is a small residual error of the form O(x2M) for an arbitrary
large positive number M. For a survey of the uses of the Mellin transform in the
analysis of algorithms, see Flajolet, Gourdon, and Dumas [4].

Certain complicated types of functional equation appear in the formulation of
recurrence for pathlength under all climbing strategies. These types of recurrence
equation are not easy to solve. However, poissonized versions are amenable to
asymptotic analysis via the Mellin transform. In this context, poissonization
means considering an analogous problem, but with a Poisson random number
of keys instead of fixed n. The number of keys is taken to be a Poisson
random variable with parameter z. The required asymptotic results for the fixed
population are then extracted from the poissonized model by depoissonization,
which usually means using the same results for the poissonized model after
replacing z with n. This operation is justified by checking some regularity con-
ditions, but it also introduces an asymptotically negligible error. We consider
this as a standard program and will not give details, but refer the reader to the
original work of Jacquet and Szpankowski [7] or its presentation in textbook
style in Szpankowski [15].
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4. TYPICAL CLIMBING

In typical sampling, we climb a trie by following an algorithm that emulates the natural
frequency of bits. We start at the root and access nodes. At each node accessed, we gen-
erate an independent Bernoulli( p) random variable. If this variable yields zero, we
follow the left edge if it exists (otherwise, the climbing is stopped), and if the value gen-
erated is 1, we follow the right edge if it exists (otherwise, the climbing is stopped).

Let Sn be the number of nodes on the path inscribed in the trie by the typical
climbing. For example, given the trie of Figure 1, typical climbing might produce
the key X4 in two steps with conditional probability pq, in which case S5 ¼ 3 (count-
ing the node containing X4). It might also reach the only null node in the trie (left of
the root’s right child) with probability pq, in which case S5 ¼ 2. If the null node is
reached, we take our typical sample to be 0.100000 . . . .

Note that Sn can be linked to the depth Dn of a randomly chosen key, after an
additional key is added to the initial n keys. If we are inserting the (n þ 1)st key,
this will follow the path of Sn. If the climbing terminates at an empty node, Sn

and Dnþ1 are the same, but if the climbing terminates at a key, we need to insert
a number of additional nodes. The number of additional nodes is geometrically
distributed because we have to break the tie—there will be a number (zero or
more) of bits in the new key agreeing with bits in the key colliding with it past
the point of collision: Each agreement occurs with probability p2 þ q2, but sooner
or later, one disagreement (with probability 1 2 p2 2 q2) will break the tie. This
geometric random variable is independent of the structure of the trie; it is distributed
like the depth of two keys in a trie of size 2, but the total amount of modification to
Sn to become Dnþ1 is dependent on Sn. More precisely, if X(r) is the prefix of length r
of a digital key X, then

Dnþ1 ¼ Sn þ ~D21{<n
j¼1{X(Sn )

nþ1¼X(Sn )
j }} ¼ Sn þ ~D2

Xn

j¼1

1{X(Sn )
nþ1¼X(Sn )

j },

where 1E is the indicator function of an event E and D̃2 is an independent copy of D2.
The dependence in the sum introduces complications, but the analytic approach that
follows is transparent and systematic enough to cover cases that cannot be linked
easily to the depth, such as the case of climbing without the knowledge of p,
where we generate right and left moves with equal probability.

Let fn(t) be the moment generating function of Sn. Let Ln and Rn be respectively
the number of keys in the left and right subtrees (so Ln þ Rn ¼ n). In view of the
Bernoulli model, Ln ¼

L
Binomial (n, q). The subtrees themselves are random tries

on their respective order, which follows from the independence structure assumed
in the data. The variable Sn satisfies a basic recurrence:

SnjLn ¼
1þ SLn with probability q

1þ ~SRn with probability p:

8<
:
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Here and in the sequel, a tilded random variable stands for a random variable distrib-
uted like the untilded version and is conditionally independent of it. We have the con-
ditional expectation

E[eSntjLn] ¼ e(1þSLn )tqþ e(1þ~SRn )tp:

By a standard double expectation, we get

E[eSnt] ¼ E[e(1þSLn )tq]þ E[e(1þ~SRn )tp]:

By the binomial distribution of Ln, we get by conditioning

fn(t) ¼ E[eSnt]

¼
Xn

‘¼0

E[e(1þS‘)t]q
n

‘

� �
q‘pn�‘ þ

Xn

‘¼0

E[e(1þSn�‘)t]p
n

‘

� �
q‘pn�‘:

Toward poissonization we construct the supergenerating function A(z, t) ¼P
n¼0
1 (fn(t)/n!)zn. First, we multiply both sides of the latter equality by zn and sum

over all possible values of n to get

X1
n¼2

fn(t)
n!

zn ¼ qet
X1
n¼2

Xn

‘¼0

znf‘(t)
1

‘! (n� ‘)! q‘pn�‘

þ pet
X1
n¼2

Xn

‘¼0

znfn�‘(t)
1

‘! (n� ‘)! q‘pn�‘:

The sums in this last equation are then extended to start from n ¼ 0, after introducing
the necessary adjustments for n ¼ 0 and n ¼ 1. Subsequently,

A(z, t) ¼ qetepzA(qz, t)þ peteqzA(pz, t)

þ 1� et þ zet � ( p2 þ q2)e2tz� 2pqetz:

Direct poissonization of A(z, t) runs into a problem in the existence of the Mellin
transform. The difficulty is that when we multiply both sides of the equation by e2z,
the right-hand side has the loose term (1 2 et ) e2z. Formally, its Mellin transform is
(1 2 et )G(s) and its domain of existence is <s . 0. The remaining terms, however,
impose domains of existence in a strip with a negative real part. Hence, there will
be no common domain of intersection.

To circumvent the difficulty, we deal with a shifted supermoment generating
function. As we will see shortly, in this way the right-hand side has a difference of
exponential terms, for which a domain of existence is consistent with the rest of
the expression. Set

B(z, t) ¼ e�z(A(z, t)� 1):
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The function B(z, t) has the interpretation:

B(z, t) ¼ E[eSN(z)t]� e�z,

where N(z) is a Poisson random variable with parameter z; that is, B(z, t) is the pois-
sonized moment generating function of the climbing pathlength, modified by an
exponentially negligible error, from which we obtain the functional equation

B(z, t) ¼ et( pe�pzA( pz, t)þ qe�qzA(qz, t)þ ( p2 þ q2)ze�z(1� et)� e�z)

¼ et( pB( pz, t)þ qB(qz, t)þ p(e�pz � e�z)þ q(e�qz � e�z)

þ ( p2 þ q2)ze�z(1� et)):

The Mellin transform of this function is

B�(s, t) ¼ etG(s)( p�sþ1 þ q�sþ1 � 1þ ( p2 þ q2)(1� et)s)
1� et( p�sþ1 þ q�sþ1)

, (1)

where we treated a term like e2pz 2 e2z as e2pz 2 1 2 (e2z 2 1), with each shifted
exponential function having a Mellin transform representation in terms of the
Cauchy–Saalschütz gamma function in the domain k21, 0l; that is, such a term
has the Mellin transform ( p2s 2 1)G(s) in that domain. Now, the Mellin transform
B*(s, t) exists in the domain

�1 , <s , s0(t),

where s0 (t) is the only real solution to the equation

p�sþ1 þ q�sþ1 ¼ e�t: (2)

Observe that s0 (t) is a continuous function of t, with value 0 at t ¼ 0. We thus can
find a neighborhood around t ¼ 0 for which s0(t) is arbitrarily close to zero. We will
keep jtj small enough for the entire strip ks0 (t), 2s0 (t)l to be contained in k21/4,
1/4l.

4.1. The Mean Climbing Pathlength in Typical Climbing

We will need a few technicalities for the proof, and we discuss them first. The inverse
Mellin transform involved in the mean requires a computation of residues at the roots
of the characteristic equation

1� p�sþ1 � q�sþ1 ¼ 0: (3)

The roots of this equation have been studied. The following special case is known (e.g.,
see Szpankowski [15], who attributed the result to Jacquet [6] and Schachinger [14]).
We present the result as written in Drmota, Reznik, Savari, and Szpankowski [private
communication].

LEMMA 1: Let p , q. There are countably infinitely many simple solutions (charac-
teristic roots) of 1 2 p2sþ1 2 q2sþ1 ¼ 0. The roots satisfy the following:

ON CLIMBING TRIES 139

https://doi.org/10.1017/S0269964808000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000089


(i) s0 ¼ 0 is always a root.
(ii) If b is a root, then 0 � <b � r, where r is the unique real positive solution

of 1 2 p2sþ1 þ q2sþ1 ¼ 0. Moreover, for every integer k, there exists a
unique root sk with imaginary part (2k 2 1)p/jln pj , = sk � (2k þ
1)p/jln pj. Consequently sk, for k ¼ 0, +1, +2, . . . , are all the roots.

(iii) If ln p/ln q ¼ m/r (where gcd (m, r) ¼ 1 for positive integers m and r),
there are m 2 1 roots, s1, s2, . . . , sm21, with real part greater than zero.
The rest of the roots are in the form

sk ¼ sk mod m þ
2piðk � k mod mÞ

ln p
for k � m and k , 0:

(iv) If ln p/ln q is irrational, then <sk . 0 for all k = 0.

A symmetrical statement applies when p . q, but in this case, r is defined as the posi-
tive root of 1 þ p2sþ1 2 q2sþ1 ¼ 0.

THEOREM 1: Let Sn be the number of nodes on the path of typical climbing of a trie on
n keys from the Bernoulli( p) model. Then

E[Sn] ¼ ln n

hp
þ 1

hp
(g� 1� ln pþ 2pq� ln q)

� 1
2 h2

p

( p ln2pþ 2 ln p ln qþ q ln2 q)þ h1( ln n)

þ o(1),

Var[Sn] ¼ pq( ln p� ln q)2

h3
p

ln nþ o( ln n),

where h1(.) is the function given by the Fourier expansion

h1(u) ¼
� 1

hp

X1
k¼�1
k=0

(1þ ( p2 þ q2)smk)G(smk)e�smku

0

8><
>:

if
ln p

ln q
¼ m

r
is rational with gcd(m, r) ¼ 1

otherwise

(with smk a nonzero solution of p2sþ1 þ q2sþ1 ¼ 1 with real part zero). In either
case, h1 is uniformly bounded by a small number.1 The o(ln n) term in the variance
might also have small bounded oscillations.

C. Christophi and H. Mahmoud140

https://doi.org/10.1017/S0269964808000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000089


PROOF: In order to calculate the mean, we take the first derivative of (1) with respect
to t and evaluate for t ¼ 0, yielding

@

@t
B�(s, t)jt¼0 ¼ �

G(s)(1þ ( p2 þ q2)s)
1� q�sþ1 � p�sþ1

:

This is the Mellin transform of the expected poissonized pathlength SN(z) and exists in
k0, 1l.

The roots of the characteristic equation (3) determine the asymptotics of the
mean. According to Lemma 1, in the case when ln p/ln q is rational, there are roots
aligned and equispaced on the vertical axis of the s complex plane, and the rest of
the characteristic roots fall in the right half of the s complex plane, whereas in the
case where ln p/ln q is irrational, all of the roots fall in the right half of the s
complex plane except for s0 ¼ 0.

The inverse Mellin transform is

E[SN(z)] ¼ O(z�M)þ
X1

k¼�1

Res
s¼sk

z�sG(s)(1þ ( p2 þ q2)s)
1� q�sþ1 � p�sþ1

� �
,

where M . r � a is any arbitrary large positive number.
The main contribution comes from s0 ¼ 0, as it is the only double pole; the rest

are simple. We obtain

E[SN(z)] ¼
ln z

hp
þ 1

hp
(g� 1� ln pþ 2pq� ln q)

� 1
2h2

p

( p ln2 pþ 2 ln p ln qþ q ln2 q)þ h1( ln z)þ o(1):

By standard depoissonization we arrive at the same expression for E[Sn], and only the
error term is modified by the depoissonization error of O(n21 ln n), which comes on
top of the Mellin inversion error of o(1).

In order to calculate the second moment, we take the second derivative of (1)
with respect to t and evaluate at t ¼ 0. We have

@2

@t2
B�(s, t)jt¼0 ¼ �

G(s)

(1� q�sþ1 � p�sþ1)2 [1þ 3( p2 þ q2)s

� (1� ( p2 þ q2)s)(� q�sþ1 � p�sþ1)]:

This is the Mellin transform of the expected value of S2
N(z). In the inverse Mellin

transform, the main contribution comes from sk ¼ 0. After depoissonization, we get

E[S2
n] � 1

h2
p

ln2 nþ 1
h3

p

((1� p2) ln2 q� ( p2 � 2p) ln2 p� 2pq ln p ln q

� (4p3 � 8p2 þ 6pþ 2gq� 2) ln q� (4p2qþ 2gp� 2p) ln p) ln n:
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The variance follows from the first two moments, after straightforward algebraic
simplification. B

Curiously, the variance in the unbiased case is O(1) (in this case, all of the poles
lie on the vertical axis of the s complex plane). In the biased case (p = q), we have
growth in the variance with the number of keys, which admits the existence of an asymp-
totic distribution for the typical climbing pathlength (after an appropriate normalization).

THEOREM 2: Let Sn be the number of nodes on the path of typical climbing of a trie on
n keys from a biased Bernoulli( p) model. Then

Sn � 1
hp

� �
ln nffiffiffiffiffiffiffi

ln n
p !D N 0,

pq

h3
p

( ln p� ln q)2

 !
:

PROOF: We take jtj small enough so that ks0(t), 2s0(t)l#k2(1/4), (1/4)l. The inverse
Mellin transform of (1) yields

B(z, t) ¼ �
X1

k¼�1

Res
s¼sk(t)

B�(s, t)z�s½ � þ O(z�M)

for any fixed M . r. Hence,

E[eSN(z)t] ¼ �G(s0(t))(e�t � 1þ ( p2 þ q2)(1� et)s0(t))z�s0(t)

p�s0(t)þ1 ln pþ q�s0(t)þ1 ln q
:

� 1
p�s0(t)þ1 ln pþ q�s0(t)þ1 ln q

�
X1
k¼�1
k=0

(G(sk(t))(e�t � 1þ ( p2 þ q2)(1� et)sk(t))z�sk(t))þ O(z�M):

We isolated the role of s0(t) because, as we will see shortly, it provides the dominant
asymptotics when t is in a neighborhood of zero (where the gamma function also
becomes very large), contrasting the finite limit of G(sk(t)), as t! 0, for each k =
0. Depoissonization gives

E[eSnt] � �G(s0(t))(e�t � 1þ ( p2 þ q2)(1� et)s0(t))n�s0(t)

p�s0(t)þ1 ln pþ q�s0(t)þ1 ln q
:

The essential root s0(t) is a continuous infinitely differentiable function of t.
For t! 0, s0(t) has the expansion

s0(t) ¼ s0(0)þ s00(0)t þ s000(0)
t2

2
þ O(t3):

It is clear from (2) that s0(0) ¼ 0. Also, s00(0) ¼ 2 1
hp

and s000(0) ¼ 2
pq
h3

p
(ln p 2 ln q)2,

as can be seen from the derivatives of (2). Further, we use the local expansions 1 2
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ex ¼ 2x þ O(x2) and G(x) ¼ 1
x þ gþ O(x), near x ¼ 0. After substituting t by y/ln n,

for fixed y , we obtain

E[eSn(y=
ffiffiffiffiffi
ln n
p

)] � n� s0(0) y=
ffiffiffiffiffi
ln n
pð Þþs000 (0)(y 2=2 ln n)þO(1= ln3=2 n)ð Þ

s0(0) p�s0 y=
ffiffiffiffiffi
ln n
pð Þþ1 ln pþ q�s0 y=

ffiffiffiffiffi
ln n
pð Þþ1 ln q

� �

� eln n (y=hp

ffiffiffiffiffi
ln n
p

)�(s00(0)y2=2 ln n)ð Þ
s00 (0)( p ln pþ q ln q)

:

Therefore,

E e(Sn�(( ln n)=hp)) y=
ffiffiffiffiffiffi
ln n
pð Þ

h i
! e�(s00(0)=2)y2

,

with the right-hand side being the moment generating function of a normal random
variate with mean 0 and variance 2s 000(0). B

Note that Theorem 2 and its proof can stand alone without the need for the devel-
opment of the mean and variance of Theorem 1. However, the mean and variance given
by the shortcut in Theorem 2 are only the leading terms in the full expansion provided
by the more elaborate residue calculation of Theorem 1. One would not even detect the
oscillations in the mean and variance with the method used in Theorem 2.

5. CLIMBING WITH THE LACK OF KNOWLEDGE OF p

If one is uninformed about p, one might be inclined to plead ignorance and simply
generate moves in the random walk to the right and left subtrees with equal prob-
ability, hoping that this will average good and bad cases, achieving a sampling strat-
egy that is not too much worse than typical climbing.

The result presented next indicates that the average speed of climbing is im-
proved in uninformed climbing on average. Of course, the two strategies coincide
when p ¼ q ¼ 1/2, but uninformed climbing requires less time than typical climbing
as p gets away from 1/2, and the uninformed strategy speeds up considerably near the
extremal values p ¼ 0 and p ¼ 1. However, the improved performance in the unin-
formed search comes at the expense of the quality of sampling, as less probable
keys are given more weight than their actual probability.

The techniques are much the same as in typical climbing. We will only set up the
problem, show the salient intermediate steps, and state the analogous results without
proof.

Let Sn be the number of nodes on the path inscribed in the trie by the uninformed
climbing and let fn(t) be its moment generating function. For example, given the trie
of Figure 1, uninformed climbing might produce in two steps the key X4, with S5 ¼ 3,
or the null node (corresponding to a key value 0.100000. . .), in which case, Sn ¼ 2. In
either case, the key is generated with probability 1/4.

ON CLIMBING TRIES 143

https://doi.org/10.1017/S0269964808000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000089


The length Sn satisfies a basic recurrence:

SnjLn ¼
1þ SLn with probability 1

2

1þ ~SRn with probability 1
2 :

(

By a standard double expectation, we get

E[eSnt] ¼ 1
2

E[e(1þSLn )t]þ 1
2

E[e(1þ~SRn )t]:

Toward poissonization, we reintroduce the supergenerating function A(z, t) ¼P
n¼0
1 (fn(t)/ n!)zn, and after manipulation similar to that in the case of typical climb-

ing (mutatis mutandis, of course), we reach

A(z, t)� 1 ¼ 1
2

et(epzA(qz, t)þ eqzA( pz, t)� 2þ z� zet):

As earlier, we reintroduce

B(z, t) ¼ e�z(A(z, t)� 1)

to work with a shifted function possessing a Mellin transform. We first obtain the
functional equation

B(z, t) ¼ 1
2

et(B( pz, t)þ B(qz, t)þ ze�z(1� et)þ e�pz þ e�qz � 2e�z),

the Mellin transform of which is

B�(s, t) ¼ etG(s)( p�s þ q�s � 2þ (1� et)s)
2� et( p�s þ q�s)

,

existing in the strip k21, s0(t)l, and s0(t) being the only real root of the equation

p�s(t) þ q�s(t) ¼ 2e�t:

We take jtj small enough so that ks0(t), 2s0(t)l # k21/4, 1/4l. After all of the manipu-
lation and the residue calculation, we reach the result for this random walk.

THEOREM 3: Let Sn be the number of nodes on the path of uninformed climbing of a
trie on n keys from the Bernoulli( p) model. Then

E[Sn] ¼ 2 log1=pq nþ ln2 pþ (1� 2g) ln ( pq)þ ln2 q

ln2 ( pq)
þ h2( ln n)þ o 1ð Þ,

Var[Sn] � 2( ln p� ln q)2

ln3 1
pq

ln n,
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where h2(.) is a function given by the Fourier expansion

h2(u) ¼
� 1

hp

P1
k¼�1
k=0

G(smk)(2þ skm)e�smku if ln p
ln q ¼ m

r is rational with gcd(m, r) ¼ 1

0 otherwise

8><
>:

(with smk a nonzero solution of p2s þ q2s ¼ 2 with real part equal to zero), which is
bounded by a very small number. The lower-order term in the variance can also have
small bounded oscillations. Moreover, in the biased case,

Sn � 2 log1=pq nffiffiffiffiffiffiffi
ln n
p !D N 0,

2( ln p� ln q)2

ln3 1
pq

 !
:

6. EXTREMAL SAMPLING

To develop a sense for the extremes of the data present in the trie, a sampler might
take after the extremal strategy of following a leftmost (for smallest) or a rightmost
(for largest) path. Of course, the two strategies are symmetric with respect to the
roles of p and q, and we only analyze one of them.

Let us reintroduce Sn as the number of nodes on the leftmost path and let fn(t) be
its moment generating function. For instance, given the trie of Figure 1, the extremal
leftmost climbing samples the key X3, and S5 ¼ 4. If the leftmost path reaches a null
node, we augment the corresponding prefix of zeros with a 1 to construct a represen-
tative sample of the smallest data.

The problem can be thought of in terms of the longest run of consecutive zeros.
This case is connected to the maximum and second largest of independent and iden-
tically distributed geometric variables—let Zi be the number of initial zeros in the key
Xi and let Z(i) be the ith order statistics of Z1, . . . , Zn. Then Zi are identically distrib-
uted geometric variables and

Sn ¼
Z(2) þ 1 if Z(1) ¼ Z(2)

Z(2) þ 2 otherwise:

	

One might be able to obtain a result for Sn from this representation. However, order
statistics of independent and identically distributed discrete random variables are
somewhat intricate because of the possible ties. We will proceed with our systematic
analytic method.

The basic conditional recurrence is

SnjLn ¼ 1þ SLn ,

for n � 2, giving

E[eSntjLn] ¼ e(1þSLn )t:
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Hence,

E[eSnt] ¼
Xn

‘¼0

E e(1þS‘)t

 � n

‘

� �
q‘pn�‘:

Toward poissonization, we reintroduce the generating function A(z, t) ¼P
n¼0
1 zn(fn(t)/n!), where fn(t) ¼ E[eSnt]. By steps similar to previous derivations

in the other two strategies, we can easily establish the relation

A(z, t)� 1� zet ¼ etepzA(qz, t)� et(1þ pzþ qzet):

As we did in Section 4 for typical sampling, we do not poissonize A(z, t) directly, but
we poissonize the shifted version A(z, t) 2 1, for the same technical reason to over-
come existential problems of the Mellin transform. The routine is pretty much the
same and we omit its details. One obtains the Mellin transform

B�(s, t) ¼ etG(s)(q�s � 1þ sq(1� et))
1� q�set

: (4)

THEOREM 4: Let Sn be the number of nodes on the path of extremal climbing of a trie
on n keys from the Bernoulli( p) model. Then

E[Sn] ¼ log1=q nþ 2qþ ln q� 2g
2 ln q

þ h3( ln n)þ o(1),

Var[Sn] ¼ 1
12
þ p2

6 ln2 q
þ 2q

ln q
� q2

ln2 q
þ o(1),

where h3(.) is the function given by the Fourier expansion

h3(u) ¼
1

ln q

P1
k¼�1
=0

G(sk)(1þ skq)e�sku if ln p
ln q is rational

0 otherwise

8><
>:

(with sk ¼ 2pik/ln q), which is bounded by a very small number. The o(1)
term in the variance might also have small bounded oscillations. Furthermore,
Sn 2 blog1=qnc does not have a nontrivial limit in distribution under any scaling.

PROOF: Themeanandvariancearecomputedby the samepoissonization–depoissonization
routine, aided by the Mellin transform and residue calculation as was done for typical
and uninformed climbing.

We restrict jtj , 1/lnð1=qÞ. The distribution is found from the inverse of the
Mellin transform (4). The poles of the transform are the roots of the equation

q�set ¼ 1;

that is, they are at the points sk(t) ¼ 1
ln q

� �
(t þ 2pik), for k ¼ 0, +1, +2, . . . .
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So,

B(z, t) ¼ �
X1

k¼�1

Res
s¼sk(t)

B�(s, t)z�s½ � þ O(z�M),

for any fixed M . 21/ln q. Hence,

E[eSN(z)t] ¼ � 1
ln q

X1
k¼1

(G(sk(t))

� (1� qsk(t) þ qsk(t)þ1(1� et)sk(t))z�sk(t))þ O(z�M):

It helps put the result in a concise form to define the function

{x} ¼ x� bxc:

Depoissonization gives the same expression with n replacing z and an adjustment in
the error term. We then have

E[e(Sn�blog1=q nc)t] � 1

ln 1
q

X1
k¼�1

G
t þ 2pik

ln q

� �

� 1� q(tþ2pik= ln q) þ q(tþ2pik= ln q)þ1(1� et)
t þ 2pik

ln q

� �

� n�(2pik= ln q)e{log1=q n}t:

We can write this as

E[e(Sn�blog1=q nc)t] � (g(t)þ hn(t))e{log1=q n}t,

with g(t) being equal to the zeroth term in the sum and hn(t) collecting all of the
remaining terms. It is clear that no increasing scale of t will give a nontrivial limit.

It is well known that the function flog1/q ng is dense in the interval [0, 1); see, for
example, Kuipers and Niederreiter [9]. For any fixed t in the range jtj , 1/ln(1/q), the
function hn(t) provides additional oscillations around g(t), and, of course, the small
error term can be made smaller than any arbitrary fixed number. Hence, no limit distri-
bution exists. For a more detailed account of how such arguments work, see Christophi
and Mahmoud [1]. B

6.1. The Exact Distribution

Some of the exact distributions within the scope of this research might be amenable to
direct combinatorial methods. We illustrate this for extremal climbing, to show that it
can be done in principal.
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THEOREM 5: Let Sn be the number of nodes on the path of leftmost climbing of a trie on
n � 2 keys from the Bernoulli( p) model. Then, for k � 2,

Prob(Sn ¼ k) ¼ nqk�1(q(1� qk�1)n�1 � (1� qk�2)n�1)þ (1� qk)n � (1� qk�1)n

and Prob(Sn ¼ 0) ¼ 0 and Prob(Sn ¼ 1) ¼ pn.

PROOF: The boundary cases Prob(Sn ¼ k), for k ¼ 1, 2, are trivial. We will develop
the result in terms of the number of edges S0n ¼ Sn 2 1. Let k � 2. We dissect the
event fS0n ¼ kg into two disjoint subsets. One of the two subsets, A1, corresponds
to the case where the tree goes down the left path k edges and then turns right,
with all of the keys having a string of k zeros as a prefix continuing with 1 at position
k þ 1 (there must be at least two such keys). This construction leaves a null node dan-
gling at the leftmost position in the tree. This event can occur by having r keys, r ¼ 2,
. . . , n, in the subtree, the root of which is a sibling of the leftmost null node; the prob-
ability for any specific r to have this particular key structure is (qkp)r. The rest of the
n 2 r keys are not allowed to have a prefix of k zeros, otherwise they would disturb
the pattern. The probability for these other keys not to have the forbidden prefix is

(1 2 qk)n2r. The r keys can be chosen in
n
r

� �
ways. Hence,

Prob(A1) ¼
Xn

r¼2

n
r

� �
( pqk)r(1� qk)n�r:

The second event, A2, corresponds to the case where there is exactly one key at the end
of a leftmost path with k internal vertices on it. By combinatorial arguments similar to
that for A1, we see that

Prob(A2) ¼
Xn�1

r¼1

(r þ 1)
n

r þ 1

� �
( pqk�1)rqk(1� qk�1)n�r�1:

Now,

Prob(S0n ¼ k) ¼ Prob(A1 < A2)

¼
Xn

r¼2

n

r

� �
( pqk)r(1� qk)n�r

þ
Xn�1

r¼1

(r þ 1)
n

r þ 1

� �
( pqk�1)rqk(1� qk�1)n�r�1:

The sums can be reduced via the binomial theorem. B
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Note

1. As an instance, when (ln p)/(ln q) ¼ (2/3), h1(ln n) is bounded uniformly in n by 0.752 � 10214.
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14. Schachinger, W. (1993). Beiträge zur Analyse von Datenstrukturen zur Digitalen Suche. Dissertation,

Technische Universität Wien, Vienna.
15. Szpankowski, W. (2001). Average case analysis of algorithms on sequences. New York: Wiley.

ON CLIMBING TRIES 149

https://doi.org/10.1017/S0269964808000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964808000089

