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DOMINATION AND REGULARITY

ANAND PILLAY

Abstract. We discuss the close relationship between structural theorems in (generalized)

stability theory, and graph regularity theorems.

§1. Introduction and preliminaries. We point out analogies between
domination theorems in model theory and graph regularity theorems
in various “tame” contexts, showing that these are essentially the same
theorems, modulo compactness and the pseudofinite yoga, and if one is not
so concerned with optimal or explicit bounds.
The motivation comes partly from our joint works with Conant and Terry
[5, 6],where “tame” regularity theorems in a group environment areobtained
from structural theorems (sometimes new) concerning stable and NIP
groups. The stable case extended work of Terry and Wolf [19] which dealt
with the special case of vector spaces over Fp but with different methods.
We will give later precise statements of all theorems (as well as references
to other works). But for now we give a heuristic introduction to the notions
in this paper.
First on the graph-theoretic side we recall the regularity theorems which
specialize the well known Szemerédi regularity theorem or lemma. We will
focus on bi-partite graphs. Szemerédi regularity concerns all finite graphs
(V ,W ,E) (where as usual the graph relation E is a subset of V ×W). It
says that one can partition the vertex sets V ,W into a small number of sets
V1, ... ,Vn,W1, ... ,Wm such that outside a small exceptional set of pairs (i, j),
the induced subgraphs (Vi,Wj,E ∩ (Vi×Wj)) are almost regular, namely
sufficiently large induced subgraphs have approximately the same density.
I am writing it first in this informal way, so as to convey the idea. But here
is a precise statement of Szemerédi’s regularity lemma: For every å > 0, there
is a natural number Nå , such that for every finite graph (V ,W ,E), there are
partitions V =V1∪···∪Vn andW =W1∪···∪Wm with n,m≤Nå , and also
an exceptional set Σ of pairs (i, j) with 1≤ i ≤ n and 1≤ j ≤m, such that,

1. |
⋃
(i,j)∈ΣVi×Wj| ≤ å|V ×W |,

2. For each (i, j) /∈ Σ, the graph (Vi,Wj,E∩ (Vi×Wj)) is å-regular.
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104 ANAND PILLAY

The å-regularity of a finite graph (V ,W ,E) means that whenever V ′ ⊆V ,
W ′ ⊆W , |V ′| ≥ å|V |, and |W ′| ≥ å|W |, then the densities of (V ′,W ′,E ∩
(V ′×W ′)) and (V ,W ,E) differ by at most å, where the density of (V ,W ,E)
is |E|/|V ×W |, and likewise for (V ′,W ′,E∩ (V ′×W ′)).
(We are omitting here a certain additional condition that the sizes of the
Vi are almost the same, and likewise for theWj.)
Tame versions of Szemerédi regularity place restrictions on the class of
finite graphs (V ,W ,E) considered, and try to get stronger conclusions. The
kind of restrictions are: omitting a certain collection of induced subgraphs,
being uniformly definable in some nice structure, or being the collection of
finite induced subgraphs of some given graph definable in a nice structure.
The improvements in the conclusions typically replace almost regularity
by the stronger condition of almost homogeneity (and sometimes outright
homogeneity so giving a Ramsey-type theorem) and sometimes remove the
need for the exceptional set.
Our use of the expression “homogeneity” here is rather nonstandard, and
is in analogy with calling a subsetY of a setX homogeneous with respect to
a given partition of the set of unordered pairs of X, if all unordered pairs of
elements ofY are in the same member of the partition. So homogeneity of a
graph (V ,W ,E) would mean either complete or empty, and å-homogeneity
means that either all but an å-proportion of V ×W is in the relation E, or
all but an å-proportion of V ×W is not in the relation E.
On the model theory side, we work with theories T, or formulas φ(x,y) in
a given theory, which are well-behaved in various senses, and we consider a
Keisler measure ì on the x-sort (sometimes written ìx) over a saturated
model M, possibly restricted to definable sets in the Boolean algebra
generated by instances of φ(x,y). The domination statements have the form:
there is a small modelM0, and a suitable space S of types overM0, such that
if ì0 is the measure on S induced by ì then we have (generic) domination
of the x sort X say by S via the tautological map ð : X → S taking a ∈ X
to its type overM0: for any suitable formula ø(x) overM, there is a closed
subset Σø of S of ì0-measure 0, such that for each p ∈ S \Σø, not both

ð–1(p)∩ø(M) and ð–1(p)∩¬ø(M) are “ì-wide”. Here ì-wideness of an
intersection of definable sets means that every finite subintersection has
positive ì-measure.
This is actually closely related to a stationarity statement: ì is the unique
nonforking extension of its restriction toM0. And we also see an exceptional
set Σ appearing, as in the graph regularity statement.
The work with Conant and Terry mentioned earlier is concerned with
regularity (and structure) theorems in the context of finite groups G
equipped with a distinguished subset A. These give rise to bipartitite graphs
of the form (G,G,E) where (a,b) ∈ E iff ab ∈ A. Under assumptions (k-
stable, k-NIP) on the relation E, we obtained strong theorems on the
structure of the set A and its translates, where local stable and NIP group
theory played a major role. We refer the reader to the papers [5, 6], and
we will not explicitly discuss these group results any further in the current
paper.
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DOMINATION AND REGULARITY 105

We will go through three model-theoretic situations where there is a
domination statement; smoothmeasures, generically stablemeasures inNIP
theories, and φ-measures where φ(x,y) is stable. In each environment we will
concludemoreor less directly, via compactness, the relevant graph-regularity
statement for suitable classes of finite graphs. These statements are already
in the literature in various forms and we will give full references.
This paper is expository in the sense that we are discussing known
theorems. On the other hand, we are giving rather different approaches
and proofs, which do not appear already in the literature, so there is also an
“original research” aspect or component to the paper. We will try to make
the paper relatively self-contained, but we will have to assume familiarity
with some basic model-theoretic methods and techniques, and we will also
have to refer to the literature in various places.
This paper is based partly on seminar talks the author gave at the Institut
Henri Poincaré in spring 2018 during the trimester on Model theory,
Combinatorics and Valued Fields. Thanks to the IHP for its hospitality
and to the organizers of the trimester and the seminars. Thanks to Gabriel
Conant and Caroline Terry for many discussions. For the record I would
also like to thank Udi Hrushovski who already in 2012 pointed out to me
(and our co-author) connections between the Lovasz–Szegedy paper [13]
and our paper [11] (in particular generic compact domination). Thanks to
Christopher Hawthorne who pointed out a correction needed in the proof
of Proposition 4.1. And finally, thanks to the referee for some comments,
especially the suggestions to add some explanations and details in a few
places.
No additional background is needed on the combinatorial side, as all the
relevant statements (rather than proofs) are transparent.
On the model theory side we will make use of Keisler measures in an NIP
and (formula-by-formula) stable environment. But we will make precise a
few things which are not made explicit in the literature although should be
considered folklore.
Our model theory notation is standard. T denotes a complete theory in a
language L and we will work in a very saturated or monster modelM of T.
The book [17] is a useful reference for material on the NIP side, but we
will usually refer to the original sources [9] and [10] for Keisler measures,
and [11] for generically stable and smooth measures. Insofar as stability is
concerned, [16] is a reference, although we take our definition of forking to
be Shelah’s.
For φ(x,y) an L-formula, by a φ-measure ì over M we mean a finitely
additive probability measure on the Boolean algebra of φ-formulas overM,
where by a φ-formula over M we mean a (finite) Boolean combination of
instances φ(x,b) of φ(x,y) with b ∈M, and instances x = c of x = z with
c ∈M. So as to be rigorous we should call this a ∆-measure overM where
∆ = {φ(x,y),x = z}. A special case of a φ-measure over M, is a complete
φ-type overM, where the values are either 1 (for in the type) or 0 (for not in
the type). When we talk about a global measure or type, it means over the
monster modelM.
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106 ANAND PILLAY

As usual a φ-measure over M can be identified with a regular Borel
probability measure on the space Sφ(M) of complete φ-types over M.
Regularity of a Borel measure on a compact topological space means that
the measure of a Borel set can be approximated from above and below
by open and closed sets, respectively. In the present situation where the
space is profinite, it implies, for example, that the measure of an open set
is approximated by the measures of the clopen sets contained in it, and
similarly the measure of a closed set is approximated by the measures of the
clopen sets containing it. See the beginning of Section 4 of [10].
A φ-measure overM is said to be smooth if it has a unique extension to
a φ-measure over any larger model.
A characteristic property of φ-measures when φ(x,y) is stable is the
following (see also Lemma 1.7 of [12]):

Fact 1.1. Let φ(x,y) be stable (for T). Then any φ-measure, ìx, over a
modelM is of the form

∑
i∈I αipi where pi is a complete φ-type overM, the

αi are positive real numbers,
∑
i∈I αi = 1, and where I is either {1, ... ,n} for

some n, or I = N.

Proof. We give a proof, for completeness, as this has not been made
so explicit in earlier papers. We do induction on Shelah’s φ-rank Rφ(–)
from Section 3, Chapter 1 of [16] where its basic properties are given (and
where really we mean ∆-rank where ∆ = {φ(x,y),x = z}). Let p1, ... ,pk be
the finitely many complete φ-types of maximal φ-rank n say. Without loss
of generality p1, ... ,pr have positive ì-measures, (say α1, ... ,αr, respectively)
and pr+1, ... ,pk have ì-measure 0.
Working in the space Sφ(M) let U be the complement of {p1, ... ,pr}, an
open set whose ìx-measure is â = 1 – (α1+ ···+αr), which we can assume
to be positive (otherwise already ì = α1p1 + ···+αrpr). By the remarks
above on regular measures, we can find clopen U1 ⊂ U2 ··· ⊂ Ui ⊂ ··· ⊂ U ,
and positive reals â1 < â2 < ··· < âi < ··· such that ì(Ui) = âi for all i and
limi→∞âi = â .
Now U1 and each Ui+1 \Ui are φ-definable sets of positive measure and
with φ-rank < n. So we can apply induction, to write each of ì|U1, ...,
ì|(Ui+1 \Ui), ...as a suitable

∑
j ãjqj. Summing all of these, after suitably

scaling, and adding to α1p1+ ···+αrpr gives the required expression of ì.
(Exact details are left to the interested reader.) ⊣

The following is not required, but included for completeness.

Corollary 1.2. If φ(x,y) is stable and ìx is a φ-measure over M. Then
ì is smooth if and only if ì is a weighted sum of realized φ-types, i.e., of the
form

∑
i∈I αitpφ(ai/M) with ai ∈M, where again I is an initial segment of N.

Finally we discuss pseudofiniteness.

Definition 1.3. Let M be an L-structure and A an arbitrary (not
necessarily definable) subset of a sort X inM. We say that A is pseudofinite
in M if for any sentence ó in the language L together with an additional
predicate symbol P on sort X, if (M,A) |= ó then there is an L-structureM ′

and a finite subset A′ of X(M ′) such that (M ′,A′) |= ó.
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IfM is 1-sorted and A isM itself then we say thatM is pseudofinite.

From the definition, finite implies pseudofinite.

Remark 1.4. Suppose A is definable by a formula φ(x,b) in the structure
M. Then pseudofiniteness of A in M is equivalent to; for every L-formula
ø(y) ∈ tpM(b) there is an L-structureM ′ and b′ ∈M ′ satisfying ø(y) such
that φ(x,b′)(M ′) is finite.

The following is routine.

Lemma 1.5. For M an L-structure and A a subset of a sort X in M, the
following are equivalent:

1. A is pseudofinite in M,
2. Let Σ be the set of L(P)-sentences which are true of every (M ′,A′) where
M ′ is an L-structure, and A′ is a finite subset of the interpretation of the
sort X in M ′. Then (M,A) |= Σ.

3. (M,A) is elementarily equivalent to some ultraproduct of L(P)-structures
(M ′,A′) where A′ is finite.

We will now talk about the standard model V of set theory and saturated
elementary extensions V∗ of V. It doesn’t really make so much sense, but
really we work with some small fragment of set theory including the natural
numbers, the reals and all arithmetic operations on them together with
cardinality maps for finite sets. The reader can work out for himself or
herself the appropriate rigorous statements.

Proposition 1.6. Suppose (M,A) is pseudofinite. Then there is a (saturated
if you wish) elementary extension V∗ of V and some (M∗,A∗) in V∗ such that

1. (M∗,A∗) is elementarily equivalent to (M,A),
2. A∗ is finite in the sense of V∗, and
3. Wheneverø is a formula of set theory which is true inV∗ of (M∗,A∗) then
there is (M,A) (in the standard model ), such that ø is true of (M,A)
and A is finite.
Moreover suppose that (M,A) is a model of the common theory of
(Mn,An) for n < ù where An is finite and of increasing size, and A is
infinite, then (M∗,A∗) can be chosen to satisfy also

4. Whenever ø is a formula of set theory true of (M∗,A∗) in V∗ then ø is
true of infinitely many (Mn,An) in V.

Proof. This is a compactness argument. Consider the complete diagram
of V together with set of formulas ø(y,z) true of every (M,A) in V where
M is an L-structure and A a finite subset of the appropriate sort, as well
as the formulas expressing that (y,z) is elementarily equivalent (in L(P)) to
(M,A). It is finitely satisfiable (inV), so has a (saturated if you wish) model.
The moreover statement is also clear. ⊣

Remark 1.7. Typically we take V∗ to be saturated so (M∗,A∗) will be
appropriately saturated, so isomorphic to (M,A) assuming the latter was
already saturated (assuming some set theory and appropriate choices of
degree of saturation).
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Given V∗ and (M∗,A∗) as in Proposition 1.6, as A∗ is finite in the sense
of V∗, every internal subset Z of A∗ has a finite cardinality in the sense
of V∗ (i.e., |Z| ∈ N∗) and we obtain the nonstandard normalized counting
measure ì∗ on the Boolean algebra of internal subsets of A∗ which takes
Z to |Z|/|A∗|, a number in [0,1]∗. For Z a definable (inM∗) subset of the
ambient sort X in which A∗ lives, define ì∗(Z) = ì∗(Z∩A∗). So ì∗ gives a
“nonstandard” Keisler measure on the sort X in M∗, in the sense that the
values of ì∗ are in the nonstandard unit interval (as well as finite additivity,
etc.). We define ì to be the standard part of ì∗ (restricted to definable sets)
and we see that that ì is a Keisler measure on the sort X in the L-structure
M∗, which we call the pseudofinite Keisler measure on X given by A∗ (and
the ambient structure V∗).
The following is important (and well-known). It can be proved by an
adaptation of the material in Section 2.2 of [4]. In any case we follow the
notation and context of Proposition 1.6 and the above construction.

Proposition 1.8. Assuming Th(M∗) is NIP, then the pseudofinite Keisler
measure on the sort X is generically stable, namely definable over and finitely
satisfiable in some small model M0.

In the light of the proposition above, this may be the right time to remind
the reader of the notions of forking, definability, and finite satisfiability, in
the context of Keisler measures.
A Keisler measure over a model M does not fork over A ⊆M if every
formula with positive measure does not fork over A.
When T is NIP, M =M is the monster model, and A =M0 is a model
(small elementary substructure ofM), then ì does not fork overM0 iff ì is
Aut(M/M0)-invariant.
A global Keisler measure ì is definable over a (small) model (elementary
substructure ofM)M0 if it isAut(M/M0)-invariant, and for eachL-formula
φ(x,y), the map taking tp(b/M0) to ì(φ(x,b)) is continuous. ì is finitely
satisfiable in M0 if each formula overM with positive ì-measure is satisfied
by an element (or tuple) fromM0.

§2. The distal case. Thedistal regularity theorem [2] is an attractive
generalization of a result of Fox et al. [7] giving a strong regularity theorem
for the class of finite subgraphs of a semialgebraic graph.
Our treatment here is related to that of Simon [18], but we make more
explicit the connection with compact domination.
The relevant structural theorem concerns arbitrary smooth Keisler
measures. Recall that a Keisler measure ìx over M is smooth if it has a
unique extension over any elementary extension N containingM. A global
Keisler measure ìx is said to be smooth over a small submodelM0 if ì is the
unique extension overM of ì|M0, where rememberM denotes the monster
model.
Here is the domination theorem for smooth measures, which is basically
just a restatement of smoothness. The “tautological map ” from a sort X to
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a type space SX (M0) was discussed in the previous section and is precisely
the map taking a ∈ X to tp(a/M0).

Proposition 2.1. Fix a complete theory T, a sort X, and a saturated model
M andKeislermeasureì onX overM.LetM0 be a small elementary submodel
of M and ð : X → SX (M0) the tautological map. Suppose ì is smooth over
M0. Then for every definable (with parameters fromM) subset Y of X there is
a closed subset Σ of SX (M0) of ì0-measure 0 such that for every p ∈ SX (M0)
either ð–1(p)⊆ Y or ð–1(p)∩Y = ∅.

Proof. Otherwise the (closed) set Σ of p ∈ SX (M0) such that p(x) is
consistent with each of x ∈Y and x /∈Y , has ì0-measure = α> 0. Let (ì0)Σ
be the localization of ì0 to Σ. Then (ì0)Σ has two different extensions to
a measure over M, one giving Y measure 1 and one giving it measure 0.
It follows that ì0 itself has two different extensions to M, contradicting
smoothness. ⊣

More explanation. I am adding here a few details concerning the proof
above. First why is Σ closed? Consider a formula φ(x,b) with parameters b
which are not necessarily in M0. Consider now the set of p(x) ∈ SX (M0)
which are consistent with the formula φ(x,b). Let q(y) be tp(b/M0).
Consider the expression∃y(q(y)∧è(x,y)). Then this expression is equivalent
in the saturated model M to a partial type Γ(x) over M0, and the closed
set determined by Γ(x) is precisely the set of p(x) ∈ SX (M0) consistent with
è(x,b). This argument explains why Σ is closed.
Secondly, the “localization (ì0)Σ is defined as: for any Borel subset B of
SX (M0), (ì0)Σ(B) = ì(B∩Σ)/ì(Σ).
The last part of the proof, namely that (ì0)Σ has the two different
extensions, goes precisely as in the proof of the Claim in the proof of
Theorem 5.4 in [11].
The following strong regularity (or Ramsey-type) statement is a simple
compactness argument applied to Proposition 2.1.

Corollary 2.2. Let (V ,W ,R) be a bipartite graph definable in a structure
M. Let ì be a smooth Keisler measure on V overM, and í an arbitrary Keisler
measure on W over M. Let å > 0. Then there are partitions V = V1∪ ···∪Vn
and W =W1∪···∪Wm of V, W respectively into definable sets, and a set Σ of
pairs (i, j) ∈ [n]× [m] of indices such that

1. (ì× í)(∪(i,j)∈Σ(Vi×Wj))< å and

2. for (i, j) /∈ Σ, Vi×Wj is homogeneous for R, namely Vi×Wj is either
contained in R or disjoint from R.

Proof. Wemay assumeM to be saturated. LetM0 be a small elementary
submodel ofM such that ì is smooth overM0 and R(x,y) is definable over
M0. We make use of Proposition 2.1 with X = V .
Fix å > 0. For any b, Let Eb the closed ì0-measure 0 subset of SV (M0)
outside of which each fiber of ð is either contained in or disjoint from
R(x,b). Clearly Eb depends only on q= tp(b/M0) and so we write it as Eq.
Let Zq be anM0-definable set containing Eq and with ì0-measure < å. By
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compactness we can partition V \Zq into M0-definable sets Vq,1, ... ,Vq,nq
such that for each i, ð–1(Vq,i) is either contained in R(x,b) (for some/all b
realizing q) or disjoint fromR(x,b) (for some/all b realizing q). We can now,
by compactness, replace q by a formula (or M0-definable set) Wq in q, so
that for each i ≤ nq either Vq,i is contained in R(x,b) for all b ∈Wq, or Vq,i
is disjoint from R(x,b) for all b ∈Wq.
Doing this for each q and applying compactness gives us a partition
Wq1 , ... ,Wqm ofW intoM0-definable sets, and for each j=1, ... ,m a partition
V = Vqj ,1∪Vqj ,2∪···∪Vqj ,nqj ∪Zqj , such that ì0(Zqj) = 0 for all j, and for all
j, i,
(*) ð–1(Vqj ,i) is either contained in R(x,b) for all b ∈Wqj or is disjoint
from R(x,b) for all b ∈Wqj .
LetV1, ... ,Vt be a common refinement of this finite collection of partitions
of V. We claim that this partition, together with the partitionWq1 , ... ,Wqm
of W is as required. We have to identify the exceptional set Σ of pairs.
So let Σ = {(i,qj) : Vi ⊆ Zqj}. For each qj, ∪{Vi×Wqj : Vi ⊆ Zqj} = Zqj ×
Wqj which has ì× í measure < åí(Wqj). So summing over the qj we get
(ì× í)(∪(i,qj)∈Σ(Vi ×Wqj)) < å. And for (i,qj) /∈ Σ, Vi will be contained

in Vqj ,i for some i, so by (*) Vi ×Wqj is either contained in or disjoint
from R. ⊣

The notion of a distal first order theory T was introduced by Pierre Simon
in his thesis (see [17]). One of the characterizations of distality is that T has
NIP and every generically stable measure is smooth. Among distal theories
are o-minimal theories (such as RCF), the theory of Qp, and Th(Z,+,<).
So here is the distal regularity theorem, stated for suitable families of finite
graphs.

Proposition 2.3. Let G = (Gi : i ∈ I) be a family of finite (bipartite) graphs
G = (V ,W ,R) such that one of the following happens:

(i) The graphs are uniformly definable in some model M of a distal theory
T,

(ii) For some model M of some distal theory T, there is a graph (V ,W ,R)
definable in M such that G is the family of finite (induced ) subgraphs
of (V ,W ,E), or

(iii) Everymodel (V ,W ,R) of the common theory of theGi’s is interpretable
in a model of some distal theory.

THEN, for any å there is Nå , such that for every (V ,W ,R) ∈ G, there are
partitions V =V1∪···∪Vn, and W =W1∪···∪Wm, with n,m<Nå such that
for some “exceptional” set Σ of pairs (i, j) (with 1≤ i ≤ n and 1≤ j ≤m),
(**) the cardinality of ∪(i,j)∈Σ(Vi×Wj) is < å|V ||W |, and for all (i, j) /∈ Σ,
Vi×Wj is either contained in R or disjoint from R.

Proof. Context (ii) is the one dealt with in [2] and which generalizes [7].
Note that Context (i) would be vacuous when T is o-minimal as we have
finite bounds on the cardinalities of uniformly definable finite sets, but for
the p-adics and/or Presburger, it is nonvacuous.
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The proof of the proposition uses Propositions 1.6 and 1.8 (with a
possible variant in Context (iii)). We focus here on Context (i). Suppose
the conclusion fails. So for some fixed å, no finite N works. So we can find
N1 <N2 < ··· , and counterexamples GN1 for N1, GN2 for N2 , etc. in G with
the cardinalities of the vertex sets increasing. GNi being a “counterexample”
for Ni means the obvious thing: there do NOT exist partitions of the vertex
sets of GNi into at most Ni parts and an exceptional set of pairs of indices
such that (**) in the statement of the proposition holds (for å, the partitions,
and the exceptional set of pairs of indices).
Proposition 1.6 gives us a (saturated) model M∗ of T in some V∗ and
definable G∗ = (V∗,W∗,R∗) inM∗ such that V∗,W∗ are finite in the sense
of V∗ and the moreover clause 4 holds. Let ì∗, í∗ be the nonstandard
normalized counting measures on V∗ and W∗, given by the construction
following Remark 1.7, and let ì and í be the corresponding pseudofinite
Keisler measures. By Proposition 1.8 ì is generically stable, so smooth
as Th(M∗) is distal. Apply Corollary 2.2 to (V∗,W∗,R∗) with say å/2,
to get (definable) partitions V∗

1 , ... ,V
∗

n of V and W
∗

1 , ... ,W
∗

m of W , and
an exceptional set Σ of pairs (i, j) satisfying the conclusions of Corollary
2.2. Choose å/2 < ä < å. We can express the existence of the partitions,
that (ì∗ × í∗)(∪(i.j)∈E(V

∗

i ×W
∗

j )) < ä and that for (i, j) /∈ Σ, V
∗

i ×W
∗

j is
homogeneous for R∗, by the truth of a formula ø of set theory forM∗,G∗

in V∗. (There is nothing really more to say here. We have just to quantify
over the V∗

i ,W
∗

j , and Σ. The interested reader is invited to write down the

formula ø.)
The moreover clause of Proposition 1.6 tells that ø is true for infinitely
many of the (M,GNk) in V, and for Nk > n,m, we get a contradiction. ⊣

§3. TheNIP case. The regularity lemma for finite graphs (V ,W ,R) where
the relation R is “k-NIP” (or has VC-dimension bounded by k) has a nice
and elementary direct proof in [3] (in the greater generality of hypergraphs).
Combinatorial sources are [1], [13], and [8] (where the latter also deals
with the hypergraph version). However we want to again deduce this k-NIP
regularity from a domination statement, so we work in the context where
such statements are currently available, namely inside a NIP theory.
We first recall the notion “ì-wide”. If ìx is a (say global) Keisler measure
and Γ(x) is a partial type over a small set, we say that Γ(x) is ì-wide if every
finite conjunction of formulas in Γ has ìmeasure strictly greater than zero.
Again we start with the (generic) domination theorem for generically
stable measures.

Proposition 3.1. Suppose T is NIP. Let ì be a global generically stable
measure on the definable set (or sort) X and assume that ì does not fork
over M0 (so is definable over M0). Let ð : X → SX (M0) be the tautological
map, and let ì0 be the induced measure on SX (M0). Then for every definable
(with parameters from M) subset Y of X, there is a closed set Σ ⊆ SX (M0)
of ì0-measure 0, such that for each p ∈ SX (M0)\Σ, either p∪{x ∈ Y} is not
ì-wide, or p∪{x /∈ Y} is not ì-wide (and maybe both are not ì-wide).

https://doi.org/10.1017/bsl.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2020.40


112 ANAND PILLAY

Proof. We deduce this formally from the basic results in [11]. First by
Proposition 3.3 of [11], ì is the unique global nonforking extension of its
restriction to M0. Let P be the space of global complete types p(x) which
do not fork over M0, and let ð′ be the restriction map from P to SX (M0).
Then by Theorem 5.4 of [11], P is dominated by (SX (M0),ð′,ì) in the sense
that for any formula φ(x) overM the set Σ of p ∈ SX (M0) such that ð′

–1(p)
intersects both (the clopen determined by) φ(x) and (the clopen determined
by) ¬φ(x), has ì0 measure 0. Note that Σ is closed, as in the Explanation
following the proof of Proposition 2.1. Recall that ð :X→ SX (M0) takes a∈
X(M) to tp(a/M0). Now suppose that p(x) ∈ SX (M0)\Σ. If p(x)∪{φ(x)}
is ì-wide, then as ì does not fork over M0, p(x)∪{φ(x)} does not fork
overM0, so extends to some p′ ∈ P . Likewise if p(x)∪{¬φ(x)} is ì-wide, it
extends to some p′′ ∈ P . As p /∈ Σ, we conclude that not both p(x)∪{φ(x)}
and p(x)∪{¬φ(x)} are ì-wide. ⊣

A simple compactness argument applied to Proposition 3.1 again gives a
strong regularity theorem.

Corollary 3.2. Suppose T is NIP and (V ,W ,R) is a graph definable in
a model M of T. Let ì be a generically stable measure on V over M and
í any Keisler measure on W over M. Fix å > 0. Then there are partitions
V = V1∪ ···∪Vn and W =W1∪ ···∪Wm of V ,W into definable sets, and an
exceptional set Σ of pairs (i, j) of indices such that

1. The ì× í measure of ∪(i,j)∈ΣVi×Wj is < å, and

2. For any (i, j) /∈ Σ, either (ì⊗ í)((Vi ×Wj) ∩ R) < åì(Vi)í(Wj) or
(ì⊗ í)((Vi×Wj)\R)< åì(Vi)(í(Wj).

Proof. We follow the proof of Corollary 2.2, but with å-homogeneous in
place of homogeneous (using definability overM0 of ì), and paying slightly
more attention to the exceptional set. We will sometimes use an expression
such as “for some/all b realizing q, ...” to mean that the truth of the ... is
independent of which b is chosen.
Again assumeM to be saturated, and suppose ì does not fork overM0.
Fix å > 0. We use Proposition 3.1 with X = V . For each q ∈ SW (M0) we
find closed Eq ⊆ SV (M0) of ì0-measure 0, such that for each p ∈ SV (M0)\
Eq and some/any b realizing q, at most one of p(x)∪ {R(x,b)}, p(x)∪
{¬R(x,b)} is ì-wide. Let Zq be an M0-definable set containing Eq and
of ì0-measure < å/2. By compactness we can partition V \Zq into M0-
definable sets Vq1 , ... ,Vq,nq such that for each i, either ì(Vq,i ∩R(x,b)) = 0
for some/all b realizing q, or ì(Vqi \R(x,b)) = 0 for some/all b realizing
q. Following a request from the referee, we will discuss briefly how this
compactness argument goes, although a similar argument was already used
in the proof of Corollary 2.2. Fix some type p(x) ∈ SV (M0) \Zq. Without
loss of generality, p(x)∪{R(x,b)} is not ì-wide (for some/any b realizing
q). By definition of ì-wideness, there is a formula øp(x) ∈ p(x) such that
ì(øp(x)∧R(x,b)) = 0 for some/any b realizing q. Theøp (as p varies) cover
SV (M0)\Zq, so we can choose a finite subcover, and then modify it to make
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the formulas disjoint. Of course this is all dependent on the choice of q, so
we get our partition of V \Zq into the Vq,i as claimed.
We may assume that ì(Vq,i)> 0 for each i (otherwise just add it to Zq).
Now we use definability of ì over M0 to find an M0-definable set Wq
containing q such that for each i = 1, ... ,nq exactly one of the following
holds:
(i)q for all b ∈Wq, ì(Vq,i∩R(x,b))< (å2/2)ì(Vq,i).
(ii)q for all b ∈Wq, ì(Vq,i \R(x,b))< (å2/2)ì(Vq,i).
By compactness we can find q1, ... ,qm such thatWq1 , ... ,Wqm partitionW.
Again we find a common refinementV1, ... ,Vr of the finitely many partitions
Vqj ,1, ... ,Vqj ,nj ,Zqj of V.
Then V = V1 ∪ ··· ∪Vr and W = Wq1 ∪ ··· ∪Wqm will be the desired
partitions. We have to check that it works.
We have to identify the exceptional set of pairs of indices.
To that avail, let us fix some qi and call it q, and we focus on the subgraph
(V ,Wq,R|(V×Wq)). Let I = {i : 1≤ i≤ nq : and (i)q above holds}. Let J be
the rest of the indices i between 1 and nq, namely where (ii)q holds.
Let B⊆V×Wq be ∪i∈I((Vq,i×Wq)∩R)∪∪i∈J((Vq,i×Wq)\R). It is then
clear that the following holds.

Claim 1. (ì⊗ í)(B)< (å2/2)í(Wq).
Let Σq,1 = {i ∈ [r] :Vi ⊆Zq}, and Σq,2 = {i ∈ [r] : (ì⊗í)((Vi×Wq)∩B)≥
åì(Vi)í(Wq)}, and let Σq = Σq,1⊔Σq,2.

Claim 2.
∑
i∈Σq
(ì⊗ í)(Vi×Wq)< åí(Wq).

Proof of Claim 2. Note that
∑

i∈Σq,1

(ì⊗ í)(Vi×Wq)≤ (ì⊗ í)(Zq×Wq)< (å/2)í(Wq)

So it suffices to prove that
∑

i∈Σq,2

(ì⊗ í)(Vi×Wq)< (å/2)í(Wq).

If not then by the definition of Σq,2,

(ì⊗ í)(B)≥
∑

i∈Σq,2

(ì⊗ í)((Vi×Wq)∩B)≥
∑

i∈Σq,2

åì(Vi)í(Wq)

= å
∑

i∈Σq,2

(ì⊗ í)(Vi×Wq)≥ (å
2/2)í(Wq),

which contradicts Claim 1. This completes the proof of Claim 2.

Now suppose t /∈ Σq.

Case (i). Vt ⊆ Vq,i for some i ∈ I .
So (Vt×Wq)∩B= (Vt∩Wq)∩R and has ì⊗ í measure < åì(Vt)í(Wq).

Case (ii). Vt ⊆ Vq,i for some i ∈ J.
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Likewise we have that (ì⊗ í)((Vt×Wq)\R)< åì(Vt)í(Wq).

Now let the global exceptional set Σ = {(i,qj) : i ∈ Σqj : i = 1, ... ,r, j =
1, ... ,m}, andwe see fromClaim 2 (aswell as theCase (i), Case (ii) discussion
above) that that the conclusions (i) and (ii) of Corollary 3.2 are satisfied. ⊣

The application to families of finite graphs is almost identical to
Proposition 2.3, with a similar proof, but we state it anyway.

Proposition 3.3. Let G = (Gi : i ∈ I) be a family of finite (bipartite) graphs
G = (V ,W ,R) such that one of the following happens:

(i) The graphs are uniformly definable in some model M of an NIP theory
T,

(ii) For some model M of some NIP theory T, there is a graph (V ,W ,R)
definable in M such that G is the family of finite (induced ) subgraphs
of (V ,W ,E), or

(iii) Everymodel (V ,W ,R) of the common theory of theGi’s is interpretable
in a model of some NIP theory.

THEN, for any å there is Nå , such that for every (V ,W ,R) ∈ G, there are
partitions V =V1∪···∪Vn, and W =W1∪···∪Wm, with n,m<Nå such that
for some some “exceptional” set Σ of pairs (i, j) (with 1≤ i≤ n and 1≤ j≤m),

(a) the cardinality of ∪(i,j)∈ΣVi×Wj is < å|V ||W |, and

(b) for all (i, j) /∈ Σ, either |(Vi×Wj)∩R|< å|Vi||Wj| or |(Vi×Wj)\R|<
å|Vi||Wj|

Remark 3.4.

(i) Note that Corollary 3.2 depends only on the Keisler measure ì satis-
fying the generic domination statement over M0 in Proposition 3.1,
as well as being definable overM0 (i.e., full generic stability of ì and
NIP-ness of T are not needed).

(ii) Likewise, ifR(x,y) is φ(x,y), assuming the domination statement and
definability for a φ-measure ì, Corollary 3.2 will hold.

§4. The stable case. The stable regularity theorem concerns finite graphs
(V ,W ,R) where the edge relation R(x,y) is k-stable, and gives a partition
into almost homogeneous subgraphs but without any exceptional set. The
original statement and proof are in [15] and involve finite combinatorics in
the presence of the Shelah 2-rank and give optimal bounds. A pseudofinite
proof making use of local stability theory was given in [14]. The proof we
present here is a simplification of the latter. There is no explicit use of any
local ranks, other than ingredients in the proof of Fact 1.1.
We first discuss the methods and relationship with the previous proofs.
Fix a complete theory T and a stable formula φ(x,y), where x is of sort X.
Let ì be a φ-measure onX over a saturated model sayM. LetM0 be a small
model such that ì does not fork overM0 (i.e., every φ-formula overM0 with
positive measure does not fork overM0). Now every complete φ-type p over
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M0 has a unique nonforking extension over M (i.e., to a complete φ-type
over M). It follows that for each p ∈ Sφ(M0) and any b ∈M at most one
of p∪{φ(x,b)}, p∪{¬φ(x,b)} is ì-wide. So we have domination of X by
Sφ(M0) (but with no exceptional sets). So we can run the proof of Corollary
3.2, but note that it nevertheless gives a possibly nonempty set of exceptional
pairs (i, j) in the regularity statement. Somore is needed, and this is precisely
Fact 1.1.
Remember that a bipartite graph (V ,W ,R) (or rather the edge relation R
on this graph) is k-stable if there do not exist a1, ... ,ak ∈ V , b1, ... ,bk ∈W
such that R(ai,bj) iff i ≤ j. Given an L-structure M and L-formula φ(x,y)
we get a corresponding bipartite graph (X ,Y ,R) (where X is the x-sort in
M,Y the y-sort inM andR the interpretation of φ(x,y) inM). The formula
φ(x,y) is stable for Th(M) iff (X ,Y ,R) is k-stable for some finite k. φ∗ is the
same formula as φ except the roles of variable and parameter variable are
interchanged.
We first give the strong regularity theorem (analogues of Corollaries 2.2
and 3.2) for arbitrary graphs where the edge relation is stable.

Proposition 4.1. Let (V ,W ,R) be a graph definable in some structure M
where the relation R(x,y) is stable. Identify R with the L-formula defining
it. Let ìx be a Keisler measure on V over M. Then for each å > 0 there are
partitions V = V1∪ ···∪Vn of V and W =W1∪ ···∪Wm of W into definable
sets such that

1. for each i, j, either for all b ∈Wj, ì(Vi \R(x,b)) ≤ åì(Vi), or for all
b ∈Wj, ì(Vi∩R(x,b))≤ åì(Vi).

2. Each Vi can defined by an R-formula, and each Wj by a R
∗-formula.

Proof. By Fact 1.1, ì|R =
∑
i∈I αipi, for some countable I (which we

may assume to be ù or a proper initial segment of ù), complete R-types pi
overM, and αi with 0 < αi ≤ 1 such that

∑
iαi = 1. The pi are assumed to

be distinct.
Note that ì(pi) = αi > 0 for i ∈ I . Fix å > 0. For each i ∈ I , let Vi be a
formula (a clopen) in pi such that ì(Vi)<αi/(1 – å). Let B be SR(M)\{pi :
i∈ I}. SoB is Borel andì(B)= 0. Let ä =(α0/(1 – å)) –ì(V0), and letU ⊇B
be open such thatì(U)<ä. ThenU together with theVi form an open cover
of SR(M0), so let U ,V0, ... ,Vn be a finite subcover. We may assume that
V0, ... ,Vn are disjoint (and we still have that Vj ∈ pj and ì(Vj)<αj/(1 – å)).
Let V ′

0 be the complement of (V1 ∪ ··· ∪Vn) in SR(M). So V ′

0 is clopen
and p0 ∈ V ′

0 ⊆ U ∪V0. Moreover by the choice of U we have that ì(V ′

0) <
α0/(1 – å).
Thus, if we replace V0 by V ′

0, we get that V0, ... ,Vn are clopen sets
partitioning SR(M) (in other words R-definable sets which partition V),
with pi ∈ Vi, and ì(Vi \pi)< åì(Vi).
Now we partition W using the R-definitions of p0, ... ,pn: For each i =
0, ... ,n theR-definition of pi is aR∗-formulaøi(y) overM (with the property
that for all b∈M,R(x,b)∈ pi iffM |=øi(b)). For each subset J of {1, ... ,n},
letWJ be the set defined by ∧i∈Jøi(y)∧∧i /∈J¬øi(y). So theWJ partitionW
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into R∗-definable sets. V = V0∪ ···∪Vn andW = ∪JWJ will be the desired
partitions of V ,W .
We have to check that the conclusions hold.Note that for each i∈ {0, ... ,n}
and J ⊆ {1, ... ,n}, we have either

(a) for all b ∈WJ , R(x,b) ∈ pi, or
(b) for all b ∈WJ , ¬R(x,b) ∈ pi.

In case (a), for all b ∈WJ , ì(Vi \R(x,b))≤ ì(Vi \{pi})< åì(Vi). In case
(b) for all b ∈WJ , ì(Vi∩R(x,b))≤ ì(Vi \{pi})< åì(Vi).
So we have the desired partition and the proof is complete. ⊣

The stable regularity lemma (or a suitable version) for families of finite
graphs now follows as earlier:

Corollary 4.2. Fix k and let G be the family of finite graphs (V ,W ,R)
where the relationR is k-stable. Then for any å > 0, there is N such that for each
(V ,W ,R) ∈ G there are partitions V = V1∪ ···∪Vn and W =W1∪ ···∪Wm
with n,m<N such that for each i and j, either |(Vi×Wj)∩R| ≤ å|Vi||Wj| (so
the induced graph on Vi,Wj is almost empty) or |(Vi×Wj) \R| ≤ å|Vi||Wj|
(so the induced graph on Vi,Wj is almost complete).
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