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Let « » RN be a smooth bounded domain. Let

Lu :=

NX

i;j = i

@i(gij (x)@j u); x 2 «

be a second-order strongly elliptic di® erential operator with smooth symmetric
coe± cients. Let B denote the Dirichlet or the Neumann boundary operator. We
prove the existence of a smooth potential a : ¹« ! R such that all su± ciently small
vector ¯elds on RN + 1 can be realized on the centre manifold of the semilinear
parabolic equation

ut = Lu + a(x)u + f(x; u; ru); t > 0; x 2 « ;

Bu = 0; t > 0; x 2 @« ;

by an appropriate nonlinearity f : (x; s; w) 2 ¹« £ R £ RN 7! f (x; s; w) 2 R.
For N = 2, n, k 2 N, we prove the existence of a smooth potential a : ¹« ! R such

that all su± ciently small k-jets of vector ¯elds on Rn can be realized on the centre
manifold of the semilinear parabolic equation

ut = Lu + a(x)u + f(x; u) ¢ ru; t > 0; x 2 «

Bu = 0; t > 0; x 2 @ « ;

by an appropriate nonlinearity f : (x; s) 2 ¹« £ R 7! f (x; s) 2 R2 (here, ¢̀’ denotes the
scalar product in R2 ).

1. Introduction

Let N > 2 and « » RN be a bounded domain of class C2;® with 0 < ® < 1. Let L
be a di¬erential operator of the form

Lu =

NX

i;j = 1

@i(gij(x)@ju): (1.1)

We assume throughout that L is uniformly elliptic and its coe¯ cient functions
satisfy gij 2 C1;® ( ·« ) and gij = gji for i; j = 1; : : : ; N . For a 2 C ® ( ·« ), de ne

Lau := Lu + a(x)u: (1.2)
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Consider the semilinear parabolic equations

ut = Lau + f (x; u; ru); t > 0; x 2 « ;

u(x; t) = 0; t > 0; x 2 @« ;

)

(1.3)

and

ut = Lau + f (x; u; ru); t > 0; x 2 « ;

@u

@¸
(x; t) = 0; t > 0; x 2 @« :

9
=

; (1.4)

Here, f : (x; s; w) 2 ·« £ R £ RN 7! f(x; s; w) 2 R is some `smooth’ nonlinearity
and @u=@¸ denotes the conormal derivative G(x)ru ¢ ¸ , where G(x) := (gij(x))ij

and ¸ is the outward normal to @« . To study (1.3) and (1.4), we shall rewrite these
problems in a more abstract way. Set

X := Lp( « ) for some p; 1 < p < 1:

The operator La with Dirichlet (respectively Neumann) boundary conditions on
@« de nes a sectorial operator Aa on X with domain W 2;p( « ) \ W 1;p

0 ( « ) (respec-
tively W 2;p

N ( « ), where W 2;p
N ( « ) is the space of all functions in W 2;p( « ) that satisfy

the Neumann condition on @« in the sense of traces). The operator A0 generates
the corresponding family X ¬ of fractional power spaces and, if p > N , one can  x
¬ , 0 < ¬ < 1, with (N + p)=(2p) < ¬ < 1, so that X ¬ » C1( ·« ) with continuous
inclusion. If f is continuous on ·« £ R £ RN and locally Lipschitz continuous with
respect to (s; w), then the formula

f̂ (y)(x) := f (x; y(x); ry(x)); y 2 X ¬ ; x 2 ·« ; (1.5)

de nes the locally Lipschitz continuous Nemitski operator

f̂ : X ¬ ! X:

We can rewrite problems (1.3) and (1.4) in the form

_y = Aay + f̂ (y): (1.6)

It is well known that the solutions of (1.6) de ne a local semi®ow on X ¬ . It
is known that for N = 1 the dynamics of (1.6) is very simple, as all bounded
solutions are convergent. On the other side, if the nonlinearity f is independent of
gradient terms, then the local semi®ow generated by (1.6) is gradient like, and so
the dynamics is again rather simple and non-chaotic. The situation is completely
di¬erent if N > 2 and if f depends explicitly on gradient terms. It has recently been
proved that the dynamics of (1.6) can be very complicated, in fact even `arbitrary’.
A  rst result of this kind was given by Pol´aµcik in [7]. More speci cally, he proved
that every  nite jet of a vector  eld on Rn can be realized on the centre manifold
of (1.6) by an appropriate nonlinearity f , provided the kernel of the operator La

(with Dirichlet boundary conditions on @« ) has dimension n and the corresponding
eigenfunctions satisfy a certain non-degeneracy condition (which we call the Pol¶a·cik
condition). In this case, n = N or n = N + 1 and Pol´aµcik also gave examples of
operators satisfying this condition, both with n = N (and « being the unit ball)
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and n = N + 1 (with « being smooth and smoothly di¬eomorphic to the unit ball),
and with L = ¢, the Laplace operator. In [15], Rybakowski showed that under
the Pol´aµcik condition actually all su¯ ciently smooth and su¯ ciently small vector
 elds v on Rn can be realized on the centre manifold of (1.6) by an appropriate
nonlinearity f . The method of proof used in [15] (the Nash{Moser implicit mapping
theorem) leads to a loss of derivatives: f is less smooth that v. In [10], Pol´aµcik and
Rybakowski, using a non-canonical imbedding of the centre manifold, proved that
if La has analytic coe¯ cients and the Pol´aµcik condition holds, then a vector  eld
realization result holds without loss of derivatives. They also showed that there are
real analytic functions a on RN such that the operator ¢u + a(x)u satis es the
Pol´aµcik condition on a ball of RN with n = N + 1. In [12], the present author
improved the result of [10], removing the analyticity assumption for the coe¯ cients
of La and avoiding the use of non-canonical imbeddings of the centre manifold.

The above-mentioned vector  eld realizations lead to a restriction in the choice
of the dimension N of the spatial domain « : to get realizability of any vector  eld
of Rn we have to choose n = N or n = N + 1. Therefore, the question arises: what
is the least possible space dimension that allows arbitrary dynamics in (1.6)? In [8],
it was shown by Pol´aµcik that every  nite jet of a vector  eld on Rn can be realized
on the centre manifold of (1.6) by an appropriate polynomial nonlinearity f and an
appropriate two-dimensional domain (close to a square). As a consequence, a dense
(in the C1 topology) subset of vector  elds can be realized, up to ®ow equivalence,
on the centre manifold of (1.6). Let us mention in passing that it is often the case
that density results are su¯ cient for detecting chaotic phenomena. In [8], the form
of the nonlinearity f involves high powers of the gradient of the solution u. On
the other hand, when modelling scienti c phenomena by equations (1.3) and (1.4),
one usually tries to make the convection terms (i.e. the terms depending on ru)
as simple as possible. In [13], it is shown that arbitrary jets can be realized on the
centre manifold of (1.6) even for functions f depending on the gradient in a linear
fashion.

All the above realization results were proved only on very particular domains,
di¬eomorphic to a ball or close to a square, and for operators of the form ¢ + a(x).
One can ask if it is possible to extend such results to the case of arbitrary (su¯ -
ciently regular) domains and general second-order elliptic operators in divergence
form.

A  rst a¯ rmative answer to this question was given by Rybakowski and the
present author in [14]. More speci cally, they proved that the vector  eld realization
result from [10] is valid for the Laplacian on an arbitrary bounded domain « of
class C2;® , 0 < ® < 1.

The goal of this paper is to extend all the above realization results to the case
of a general second-order elliptic operator on an arbitrary spatial domain, both
with Dirichlet and Neumann boundary conditions. In order to achieve this result,
we prove a `localization lemma’ (lemma 4.1 below), which is the key that makes it
possible to apply the techniques developed in [14] to the general situation.

For more realization results see the bibliography. In particular, the recent pa-
per [2] proves realization of jets (and consequently of a dense subset of vector
 elds) in the class of spatially homogeneous equations, i.e. equations of the form
ut = ¢u + f(u; ru). In this case, the open set « acts like a parameter and, since
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the nature of the problem itself excludes the possibility of perturbing the linear
part by non-homogeneous potential functions a(x), the methods developed in [14]
and in the present paper can’t be used to yield a jet realization result in the class
of spatially homogeneous functions on arbitrary open domains.

The paper is organized as follows. In x 2 we introduce general conditions for
realizability of jets and vector  elds. In x 3 we brie®y recall the perturbation results
of [14]. In x 4 we state and prove the above-mentioned `localization lemma’. Finally,
in xx 5 and 6 we show that the conditions introduced in x 2 actually are satis ed
by any symmetric strongly elliptic second-order di¬erential operator in divergence
form on an arbitrary spatial domain, both with Dirichlet and Neumann boundary
conditions.

2. Vector ¯eld and jet realizations

Let La be the di¬erential operator de ned by (1.1) and (1.2), with Dirichlet or
Neumann boundary conditions, and let Aa be the corresponding sectorial operator
in X = Lp( « ) (p > N ). Since « is bounded and La is formally self-adjoint, the
spectrum of Aa is pure point and consists of a sequence of real numbers tending
to +1; every eigenvalue has the same  nite geometric and algebraic multiplicity.
De ne

X0 := ker Aa

and suppose that

n := dim X0 > 1:

Let P be the L2( « )-orthogonal projection of X onto X0. Fix an arbitrary L2-
orthonormal basis ¿ 1; : : : ; ¿ n of X0 and write

¿ (x) := ( ¿ 1(x); : : : ; ¿ n(x)):

Note that the assignment

Q : Rn ! X0; Q¹ := ¹ ¢ ¿ =
nX

i = 1

¹ i ¿ i

is a linear isomorphism. Finally, let X (respectively X + ) be the generalized eigen-
space of all eigenvalues with negative (respectively positive) real part.

We  rst consider vector  eld realizations. Let Ym be the set of all functions

f : (x; s; w) 2 ·« £ R £ RN 7! f(x; s; w) 2 R

such that, for all 0 6 k 6 m, the Fŕechet derivative Dk
(s;w)f exists and is continuous

and bounded on ·« £ R £ RN . Ym is a linear space which becomes a Banach space
when endowed with the norm

jf jm := sup
(x;s;w) 2 ·« £R£RN

sup
06k6m

jDk
(s;w)f (x; s; w)j L k((R£RN )k;R):

For f 2 Ym, formula (1.5) de nes the Nemitski operator f̂ : X ¬ ! X of class Cm
b .
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We can apply to (1.6) the standard theory of centre manifolds: we can  nd an
open neighbourhood U m in Ym, 0 2 U m, and a map

: (f; ¹ ) 2 U m £ Rn 7! f ( ¹ ) 2 X ¬ © X +

with the following properties.

(1) 0( ¹ ) ² 0.

(2) is of class Cm
b .

(3) The set
Mf := fQ¹ + f ( ¹ ) j ¹ 2 Rng

is the global centre manifold of (1.6).

(4) If vf : Rn ! Rn is de ned by

vf ( ¹ ) := Q 1P0f̂(Q¹ + f ( ¹ )); ¹ 2 Rn;

then the ®ow on Mf is described by the ordinary di¬erential equation (ODE)
in Rn

_¹ = vf ( ¹ ):

As we will see below, it turns out that if n = N or n = N +1, then the vector  eld
vf is arbitrary in the following sense: given any su¯ ciently small map v : Rn ! Rn

of class Cm
b , there exists an appropriate nonlinearity f 2 Ym such that vf = v.

Let us recall the following fundamental concept.

Definition 2.1. We say that the operator La satis es the Pol¶a·cik condition on «
with Dirichlet (or Neumann) boundary conditions if dim ker Aa = N + 1 and for
some (hence every) basis ¿ 1; : : : ; ¿ N + 1 of ker Aa, R(x) 6= 0 for some x 2 « , where

R( ¿ 1; : : : ; ¿ N + 1)(x) := det

0
B@

¿ 1(x) r¿ 1(x)
...

...

¿ N + 1(x) r ¿ N + 1(x)

1
CA ; x 2 « :

Remark 2.2. We have n = N +1 in case the Pol´aµcik condition holds. One can also
de ne a (weaker and less interesting) version of the Pol´aµcik condition with n = N
(cf. [15]).

For m 2 N0, let Cm
b (Rn; Rn) be the set of all maps

v : Rn ! Rn

such that, for all 0 6 k 6 m, the Fŕechet derivative Dkv exists and is continuous
and bounded on Rn.

Cm
b (Rn; Rn) is a linear space which becomes a Banach space when endowed with

the norm
jvjm := sup

y 2 Rn

sup
06k6m

jDkv(y)j L k((Rn)k;Rn):

The following result was proved in [12].
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Theorem 2.3. Assume La satis¯es the Pol¶a·cik condition on « , with Dirichlet
(or Neumann) boundary conditions. Then there exists ² m > 0 such that for every
v 2 Cm

b (Rn; Rn), with jvjm 6 ² m, there exists f 2 U m such that

Q 1P0f̂ (Q¹ + f ( ¹ )) = v( ¹ ); ¹ 2 Rn:

In [10] Pol³aµcik and Rybakowski proved that, if « is a ball in RN , then, for a
suitable potential function a, the operator ¢ + a satis es the Pol³aµcik condition on
« with Dirichlet boundary condition. In [14], Rybakowski and the present author
extended this result to the case of an arbitrary smooth bounded domain. In x 5
below we will prove that, for an arbitrary principal part L of the form (1.1), both
with Dirichlet and Neumann boundary conditions on @« , it is possible to construct
a potential a : ·« ! R such that La satis es the the Pol³aµcik condition on « .

Next we consider jet realizations. Fix k 2 N and arbitrary integers q1; : : : ; qk such
that 1 6 ql 6 l for l = 1; : : : ; k. Let E = E(q1; : : : ; qk) be the set of all functions
f : ·« £ R £ R ! R of the form

f (x; y; s; z) =

kX

l= 1

al(x; y)sl ql zql ; ((x; y); s; z) 2 ·« £ R £ R; (2.1)

where al 2 H2( « ) for l = 1; : : : ; k. We can identify E with (H2( « ))k; with the norm
induced by this identi cation, E becomes a Banach space whose topology is stronger
than the topology of locally uniform convergence of all derivatives Dh

(s;z)f(x; y; s; z),
h = 0; : : : ; k + 1 on ·« £ R £ R.

For f 2 E and $ 2 R2, de ne the function f $ : ·« £ R £ R2 ! R by

f$(x; y; s; w) := f (x; y; s; $ ¢ w); ((x; y); s; w) 2 ·« £ R £ R2:

Formula (1.5) (with f replaced by f $) de nes the Nemitski operator f̂ $ : X ¬ ! X
of class C 1 .

Again, we can apply to (1.6) the standard theory of centre manifolds. Let Bn
1 (0)

be the unit ball centred at 0 in Rn; we can  nd an open neighbourhood U in E,
0 2 U , and a map

: (f; ¹ ) 2 U £ Bn
1 (0) » E £ Rn 7! f ( ¹ ) 2 X ¬ © X +

with the following properties.

(1) ( ¹ ) ² Q¹ .

(2) is of class Ck + 1.

(3) The set

Mloc
f := fQ¹ + f ( ¹ ) j ¹ 2 Bn

1 (0)g

is a local invariant manifold of (1.6).

(4) If vf : Bn
1 (0) ! Rn is de ned by

vf ( ¹ ) := Q 1P0f̂ $(Q¹ + f ( ¹ )); ¹ 2 Bn
1 (0);
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then the local ®ow on Mloc
f is described by the ODE in Bn

1 (0)

_¹ = vf ( ¹ ):

De ne the map

ª : U » E ! Ck
b (Bn

1 (0); Rn);

ª (f )( ¹ ) := Q 1 ¯ P0 ¯ f̂$ ¯ (Q + f )( ¹ ); ¹ 2 Bn
1 (0):

Simple computations shows that ª is of class C1 and

Dª (0)f ( ¹ ) = (Q 1 ¯ P0 ¯ f̂$)(Q¹ ):

Let Jk
0 (Rn) denote the set of all k-jets on Rn mapping 0 into itself. Equivalently,

h 2 Jk
0 (Rn) if and only if h is a polynomial on Rn of order 6 k with h(0) = 0. We

say that a jet h can be realized in (1.6) by the nonlinearity f if the kth order Taylor
polynomial of the vector  eld vf is equal to h. We introduce the linear bounded
operator

T k : Ck
b (Bn

1 (0); Rn) ! Jk
0 ;

(T kv)( ¹ ) =

kX

i = 0

1

i!
Div(0) ¹ i; v 2 Ck

b (Bn
1 (0); Rn); ¹ 2 Rn:

If D(T k ¯ ª )(0) is surjective onto Jk
0 , then the classical surjective mapping theorem

implies that all su¯ ciently small k-jets h 2 Jk
0 (Rn) can be realized in (1.6) by an

appropriate nonlinearity f 2 E .
It can be proved that D(T k ¯ ª )(0) is surjective, provided a certain algebraic

independence condition is satis ed by the basis ¿ 1; : : : ; ¿ n of ker Aa (see [13]). In
order to state this condition, we introduce the following notations. Given ® ,  2 Nn

0 ,
we say that ® 6  if and only if ® i 6  i, i = 1; : : : ; n. If ® 2 Rn

0 , $ 2 R2, set
¿ ® := ¿ ® 1

1 ¢ ¢ ¢ ¿ ® n
n , ¿ i$ := $ ¢ r ¿ i and ¿ ®

$ := ¿ ® 1

1$ ¢ ¢ ¢ ¿ ® n
n$. Moreover, set

° j := (0; : : : ; 0; 1| {z }
j

; 0; : : : ; 0) 2 Nn
0 :

With these notations, the algebraic independence condition reads as follows.

(IC) For every l = 1; : : : ; k and for every q, 1 6 q 6 l, the functions
» X

® 6  ; j® j= q

1

® !( ® )!
¿  ® + ° j ¿ ®

$

¼

j = 1;:::;n; j j = l

are linearly independent.

The following result was proved in [13].

Theorem 2.4. Let n and k 2 N. Assume dim ker Aa = n and assume there is an
L2( « )-orthonormal basis ¿ 1; : : : ; ¿ n of ker Aa and a vector $ 2 R2 such that (IC)
is satis¯ed up to the order k. Then there is an open neighbourhood B of 0 in Jk

0 (Rn)
such that every jet h 2 B can be realized in (1.6) by a a nonlinearity f 2 E.
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Remark 2.5. As in [8], theorem 2.4 can be strengthened to obtain realizability
of Cm-families of jets; this implies that a dense set of vector  elds in Rn can be
realized, up to ®ow equivalence, in equation (1.6) by an appropriate nonlinearity f
of the form (2.1).

Remark 2.6. Choosing ql = 1 for all l = 1; : : : ; k, we obtain a jet realization result
for nonlinearities which are polynomials in u and which are linear functions of ru.

In [13], Rybakowski and the present author showed that, given n, k 2 N, there ex-
ists a smooth bounded domain « and a potential a : « ! R such that the operator
¢ +a(x; y) with Dirichlet boundary condition has an n-dimensional kernel spanned
by eigenfunctions ¿ 1; : : : ; ¿ n satisfying (IC) up to the order k with $ = (0; 1). In x 6
below we will prove that, for an arbitrary principal part L of the form (1.1) on an
arbitrary domain « , and both with Dirichlet and Neumann boundary conditions,
given n, k 2 N, it is possible to construct a potential a : ·« ! R and a vector
$ 2 R2 such that dim ker Aa = n and (IC) is satis ed up to the order k by an
appropriate basis of ker Aa.

3. Perturbation and convergence of eigenfunctions

This and the next sections are devoted to the construction of potential functions
a such that the corresponding operators La have the properties described in x 2.
First, we recall two general results on perturbation and convergence of eigenvalues
and eigenfunctions of self-adjoint operators in Hilbert spaces. The reader is referred
to [14] for a detailed discussion.

Consider a second-order elliptic di¬erential operator L of the form (1.1) on an
open bounded smooth domain « » RN , and let a 2 C ® ( ·« ). Moreover, let D be
an open bounded domain with ·D » « . De ne the following sequence of di¬erential
operators on « :

Lku = Lau +  kbk(x)u; x 2 « ;

u(x) = 0; x 2 @« ;

or

Lku = Lau +  kbk(x)u; x 2 « ;

@u

@¸
(x) = 0; x 2 @« :

Here,  k, k 2 N, are positive real numbers and bk, k 2 N, are (coe¯ cient) func-
tions. It was proved in [14] that under appropriate hypotheses on  k and bk, the
eigenvalues of Lk converge, as k ! 1, to the eigenvalues of the following `limit’
di¬erential operator L 1 on D:

L 1 u = Lau; x 2 D;

u(x) = 0; x 2 @D:

H1 convergence of the corresponding eigenfunctions was also proved. The hypothe-
ses are, essentially, that  kbk(x) is very small on D but very large outside of D. To
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give a uni ed treatment for the di¬erent boundary conditions, it is more convenient
to work, not with di¬erential operators, but rather with the corresponding bilinear
forms or even with certain abstract bilinear forms as we shall now explain.

In what follows, all vector spaces are over the reals.

Definition 3.1. Let V be a vector space and a : V £V ! R be symmetric bilinear
form on V . If ¶ 2 R, u 2 V n f0g satisfy

a(u; v) = ¶ hu; vi for all v 2 V ;

then we say that ¶ is a proper value of a and u is a proper vector of a, corresponding
to ¶ . The dimension of the span of all proper vectors of a corresponding to ¶ is
called the multiplicity of ¶ . If the set of proper values of a is countably in nite
and if each proper value has  nite multiplicity, then the repeated sequence of the
proper values of a is the uniquely determined non-decreasing sequence ( ¶ n)n2 N
which contains exactly the proper values of a and the number of occurrences of
each proper value in this sequence is equal to its multiplicity.

The following theorem was proved in [14].

Theorem 3.2. Assume the following hypotheses.

(1) « » RN is a bounded domain and D » RN is a Lipschitz domain with ·D » « .
Given a function u de¯ned on D, u~ denotes the trivial extension of u to « .

(2) b, bk : ·« ! R, k 2 N, are continuous functions and  k, k 2 N, are positive
real numbers. Moreover, b(x) > 0 for x 2 « n D, bk ! b uniformly on ·« ,
 k ! 1,

inf
x 2 « ; k 2 N

f kbk(x)g > 1 and sup
x 2 D

f kjbk(x)jg ! 0:

(3) V is a closed linear subspace of H1( « ) such that whenever u 2 H1
0 (D), then

u~ 2 V . V is endowed with the scalar product of H1( « ).

(4) k ¢kD (respectively k ¢ k) denotes the H1(D)- (respectively H1( « )-) norm, j ¢ jD
(respectively j¢j) denotes the L2(D)- (respectively the L2( « )-) norm and h¢; ¢iD

(respectively h¢; ¢i) denotes the L2(D)- (respectively L2( « )-) scalar product.

(5) a : V £ V ! R is a symmetric bilinear form and there are constants d, C,
¬ 2 R, ¬ > 0, such that, for all u, v 2 V ,

ja(u; v)j 6 Ckukkvk;

a(u; u) > ¬ kuk2 djuj2:

Let a 1 : H1
0 (D) £ H1

0 (D) ! R be the restriction of a to H1
0 (D). For k 2 N, let

( ¶ k
n)n 2 N be the repeated sequence of proper values of the symmetric bilinear form

ak : V £ V ! R de¯ned by

ak(u; v) = a(u; v) +  k

Z

«

bk(x)u(x)v(x) dx
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and (uk
n)n 2 N be an L2( « )-orthonormal sequence of corresponding proper vectors of

ak. Moreover, let ( · n)n2 N be the repeated sequence of proper values of a 1 .
Then there is an increasing function ¿ : N ! N and a sequence (vn)n2 N in H1

0 (D)
such that for every n 2 N, vn is a proper vector of a 1 corresponding to · n, the
subsequence

( ¶ ¿ (k)
n )k 2 N of ( ¶ k

n)k 2 N

converges to · n and the subsequence

(u ¿ (k)
n )k 2 N of (uk

n)k 2 N

converges to vn~ in V , as k ! 1.

As a consequence of this theorem, we will get that, if, for some D » « and
for some a 2 C ® ( ·« ), the operator La restricted to D, with Dirichlet boundary
condition on @D, has an n-dimensional kernel, and the corresponding eigenfunc-
tions satisfy the Pol´aµcik condition (or the algebraic independence condition), then,
for su¯ ciently large k, the operators Lk de ned above on « have n eigenvalues
closed to zero and the corresponding eigenfunctions satisfy the Pol´aµcik condition
(or the algebraic independence condition). The next result will show that we can
further perturb the operator Lk and get an n-dimensional kernel with corresponding
eigenfunctions still satisfying the Pol´aµcik condition (or the algebraic independence
condition).

We use the following notation. If X is a normed space and r > 0, then Br(c)
denotes the open ball in X of radius r centred at c. Moreover, Br := Br(0). Given
normed spaces X and Y , we denote by L (X; Y ) the space of all bounded linear
operators from X to Y , endowed with the operator norm. Given a real Hilbert
space H, L s ym (H; H) is the (closed) linear subspace of L (H; H) consisting of all
symmetric operators.

By Sp we denote the ( nite-dimensional) space of all real symmetric p£p matrices,
endowed with an arbitrary norm. The spectrum of A is denoted by spec A.

Let H be an in nite-dimensional real Hilbert space, and let A : dom A ! H be
linear, symmetric, bounded below and with compact resolvent. Then it follows that
the spectrum of A is a countable set of real eigenvalues of  nite multiplicity. This
set is bounded below. We can therefore uniquely de ne a non-decreasing sequence
( ¶ n)n 2 N which contains exactly the eigenvalues of A, each one repeated according
to its multiplicity. We call ( ¶ n)n 2 N the repeated sequence of eigenvalues of A.

Definition 3.3. We say that the triple (H; G ; A) is of type [p; M; ² ; ³ ] if and only
if the following properties hold.

(1) G is a closed linear subspace of L s ym (H; H).

(2) p is a positive integer, M , ² and ³ are positive reals.

(3) Let ( ¶ n)n 2 N be the repeated sequence of the eigenvalues of A. There exist
real numbers ® 1 and ® 2 and l 2 N0 such that, setting ¶ 0 = 1,

0 < ® 2 ® 1 < M;

¶ l < ® 1 4² < ® 1 < ¶ l+ 1 6 ¶ l + p < ® 2 < ® 2 + 4 ² < ¶ l + p + 1:
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(4) There exists an H-orthonormal set of vectors ¿ j, j = 1; : : : ; p, in dom A such
that A¿ j = ¶ l + j ¿ j , j = 1; : : : ; p, and such that the operator T : G ! Sp,

B 7! (hB¿ i; ¿ ji)ij ;

is such that
T (B1) ¼ B ³ ;

i.e. the image of the unit ball (at zero) in G contains the ³ -ball (at zero) in
Sp.

The following theorem was proved in [14].

Theorem 3.4. For every (p; M; ² ; ³ ) 2 N £ R + £ R + £ R + , there exists a posi-
tive number ¬ 0 = ¬ 0(p; M; ² ; ³ ) with the following property. Whenever the triple
(H; G ; A) is of type [p; M; ² ; ³ ], l, ® 1 and ® 2 are as in de¯nition 3.3 (with respect
to the triple (H; G ; A)), 0 < ¬ 6 ¬ 0 and ( · 1; : : : ; · p) 2 Rp is non-decreasing with
j · j ¶ l+ jj < ¬ for j = 1; : : : ; p, and if D is an arbitrary linear dense subspace of
G , then there exists a B 2 D with jBj < (1=2)³ ¬ , such that, if ( ¶ n(B))n 2 N denotes
the repeated sequence of eigenvalues of A + B and ¶ 0(B) := 1, then

¶ l(B) < ® 1 3 ² < ® 1 ² < ¶ l+ 1(B) 6 ¶ l+ p(B) < ® 2 + ² < ® 2 + 3 ² < ¶ l + p+ 1(B)
(3.1)

and
¶ l + j(B) = · j ; j = 1; : : : ; p:

More details about the results described in this section can be found in [14].

4. Localization

Let N > 2 and « » RN be an open bounded domain with C2;® boundary. Let L be
a second-order strongly elliptic di¬erential operator of the form (1.1). As we have
seen, the problem of realization of vector  elds and jets in scalar parabolic partial
di¬erential equations (PDEs) reduces to the problem of constructing a potential
function a in such a way that the operator La with Dirichlet or Neumann boundary
conditions has a high-dimension kernel, spanned by eigenfunctions satisfying certain
non-degeneracy conditions. As a  rst step towards this direction, we will prove a
sort of `localization lemma’. The content of this lemma is essentially the following.
We can always  nd some small subdomain D » « and some potential a on «
in such a way that the operator La restricted to D with Dirichlet condition on
@D satis es the above-mentioned properties, provided we are able to construct a
potential a0 on some other open bounded domain S in such a way that the operator
¢ + a0 on S with Dirichlet condition on S satis es the same properties.

Lemma 4.1. Let « and L be as above. Moreover, let S » RN be another open
bounded domain; assume S has C2;® boundary. Let us suppose there exists a function
a0 2 C ® ( ·S) such that the operator ¢+a0(x) on S with Dirichlet boundary condition
on @S has an n-dimensional kernel, spanned by L2(S)-orthonormal eigenfunctions
¿ 1; : : : ; ¿ n, and that the set of functions

f ¿ i ¿ j; 1 6 i 6 j 6 ng
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is linearly independent. Then, for every ° > 0, there exist an invertible a± ne trans-
formation W ° : RN ! RN , an open bounded domain D ° »» « and a potential
a ° 2 C ® ( ·« ), with the following properties.

(1) D ° = W ° (S).

(2) The operator La ° restricted to D ° , with Dirichlet boundary condition on @D °

has an n-dimensional kernel spanned by the L2(D ° )-orthonormal functions
ã °

1; : : : ; ã °
n.

(3) k(det DW ° )
1=2ã °

i (W ° (¢)) ¿ i(¢)kH1(S) < ° , i = 1; : : : ; n.

Proof. First, observe that, since S has a C2;® boundary, we can assume that
a0 2 C ® (RN).

We indicate by ¶ m, m 2 N, the repeated sequence of the eigenvalues of the
operator ¢+a0(x) on S with Dirichlet boundary condition on @S; in the hypothesis,
we have assumed that this operator has an n-dimensional kernel, so there is an l > 1
such that ¶ l < ¶ l + 1 = ¢ ¢ ¢ = ¶ l+ n = 0 < ¶ l + n + 1.

We proceed in several steps.

Step 1. Take ·x 2 S and x0 2 « . Let G0 := G(x0), where G(x) := (gij(x))ij .
G0 is a symmetric positive de nite N £ N matrix, so we can take an invertible
N £ N matrix Q such that G0 = QQT . We de ne the a¯ ne transformation

Z : RN ! RN ;

x 7! x0 + Q(x ·x)

and we set D1 := Z(S). Finally, we de ne

~a : D1 ! R;

~a(x) := a0(Z 1(x)):

The operator ¢ + a0(x) on S with Dirichlet boundary condition on @S has the
same repeated sequence of eigenvalues of the operator div(G0r) + ~a(x) on D1

with Dirichlet boundary condition on @D1. In particular, this last operator has an
n-dimensional kernel spanned by the L2(D1)-orthonormal functions

~¿ i(x) := (det Q) 1=2 ¿ i(Z
1(x)); i = 1; : : : ; n:

Obviously, the set of functions

f~¿ i
~¿ j; 1 6 i 6 j 6 ng

is linearly independent.

Step 2. For » > 0 su¯ ciently small, we consider the di¬erential operators

L » := div(G(x0 + » (x x0))r) + ~a(x); x 2 D1;

on D1 with Dirichlet boundary condition on @D1; note L0 = div(G0r) + ~a(x). We
indicate by ¶ »

m, m 2 N, the repeated sequence of eigenvalues of L » .
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Let A » be the abstract self-adjoint closed operator in L2(D1) de ned by L » ; since
the boundary of D1 is of class C2;® and the coe¯ cients gij are in C1;® , it follows
that, for all » , the domain of A » is H2(D1) \ H1

0 (D1). Moreover, the map

» 7! A » ;

[0; » 0[! L (H2(D1) \ H1
0 (D1); L2(D1))

is continuous. This implies that ¶ »
m ! ¶ m as » ! 0 for all m; then we can  nd

numbers ® 1, ® 2 2 R, M , ² 2 R + , such that 0 < ® 2 ® 1 < M and, for all su¯ ciently
small » ,

¶ »
l < ® 1 4 ² < ® 1 < ¶ »

l+ 1 6 ¢ ¢ ¢ 6 ¶ »
l+ n < ® 2 < ® 2 + 4 ² < ¶ »

l+ n+ 1;

in particular, the set
f¶ »

l+ 1; : : : ; ¶ »
l + ng

is a spectral set of A » and we can consider the corresponding spectral projection
P » and the corresponding spectral invariant subspace X » . By the general formula

P» =
1

2 º i

Z
( ± A » ) 1 d ± ;

it follows that the map

» 7! P » ;

[0; » 0[! L (L2(D1); H2(D1) \ H1
0 (D1))

is continuous. By using the spectral projection P » , together with the Grahm{
Schmidt orthonormalization algorithm, we can  nd, for all » , an L2(D1)-ortho-
normal basis ½ »

1 ; : : : ; ½ »
n of X » , with

½ »
i ! ~¿ i as » ! 0

in H2(D1) \ H1
0 (D1) for all i = 1; : : : ; n. In order to apply theorem 3.4, we need a

basis of eigenfunctions ; to overcome this di¯ culty, we proceed in the following way.
For all » > 0, we can  nd an orthogonal n £ n matrix R» = (r »

ij)ij such that the
functions

À »
i :=

nX

j = 1

r »
ij ½ »

j ; i = 1; : : : n;

are an L2(D1)-orthonormal basis of eigenfunctions of X » , with

A » À »
i = ¶ »

i À »
i ; i = 1; : : : ; n:

By compactness, we can  nd a sequence ( » k)k 2 N, with » k ! 0 as k ! 1, and an
orthogonal matrix R = (rij)ij , such that

R » k ! R as k ! 1:

It follows that, for all i = 1; : : : ; n,

À » k

i !
nX

j = 1

rij
~¿ j =: À i as k ! 1

https://doi.org/10.1017/S0308210500000226 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000226


410 M. Prizzi

in H2(D1) \ H1
0 (D1). Of course, À 1; : : : ; À n are an orthonormal basis of the n-

dimensional kernel of L0 = div(G0r) + ~a(x). Moreover, we claim that the set of
functions

fÀ i À j ; 1 6 i 6 j 6 ng

is still linearly independent. In fact, let
X

16i6j6n

aij À i À j ² 0; aij 2 R; 1 6 i 6 j 6 n:

De ne

~aii := aii; 1 6 i 6 n;

~aij := 1
2 aij ; 1 6 i < j 6 n;

~aij := 1
2
aji; 1 6 j < i 6 n:

The matrix (~aij)ij is symmetric. Next, de ne

~bij :=

nX

h;k = 1

rhi~ahkrkj ; i; j = 1; : : : ; n:

Since the matrix (rij)ij is orthogonal, the matrix (~bij)ij is also symmetric. Moreover,
~bij = 0 for i; j = 1; : : : ; n, if and only if ~aij = 0 for i, j = 1; : : : ; n. Finally, de ne

bii := ~bii; 1 6 i 6 n;

bij := 2~bij ; 1 6 i < j 6 n;

bij := 0; 1 6 j < i 6 n:

Then we have

0 ²
X

16i6j6n

aij À i À j

=

nX

i;j = 1

~aij À i À j

=

nX

i;j = 1

~aij

³ nX

h= 1

rih
~¿ h

´³ nX

k = 1

rjk
~¿ k

´

=
nX

h;k = 1

³ nX

i;j = 1

rih~aijrjk

´
~¿ h

~¿ k

=

nX

h;k = 1

~bhk
~¿ h

~¿ k

=
X

16h6k6n

bhk
~¿ h

~¿ k:

Since the set of functions
f~¿ i

~¿ j; 1 6 i 6 j 6 ng

https://doi.org/10.1017/S0308210500000226 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000226


Perturbation of elliptic operators 411

is linearly independent, it follows that bij = 0 for 1 6 i 6 j 6 n and, consequently,
also aij = 0 for 1 6 i 6 j 6 n. This proves the claim.

For c 2 C0( ·D1), let Bc 2 L s ym (L2(D1); L2(D1)) be the map

(Bcu)(x) = c(x)u(x); u 2 L2(D1); x 2 D1:

Note that
jBcj L (L2(D1);L2(D1)) = jcjC0( ·D1): (4.1)

Let G be the set of all Bc with c 2 C0( ·D1). It follows that G is a closed linear
subspace of L s ym (L2(D1); L2(D1)). Now, since the functions f À i À j; 1 6 i 6 j 6 ng
are linearly independent, it is easy to see that the operator T : G ! Sp,

B 7! (hBÀ i; À ji)ij

is surjective. By the open mapping theorem there is a ³ > 0 such that

T (B1) ¼ B ³ :

For k 2 N let Tk : G ! Sp be the map

B 7! (hBÀ » k

i ; À » k

j i)ij :

Then Tk ! T in L ( G ; Sp), so it is easy to see that

Tk(B1) ¼ B³ for k large enough.

Moreover, we have

¶ » k

l < ® 1 4 ² < ® 1 < ¶ » k

l + 1 6 ¶ » k

l+ n < ® 2 < ® 2 + 4 ² < ¶ » k

l+ n+ 1 for k large enough.

(4.2)

Set p := n and let ¬ 0 = ¬ 0(p; M; ² ; ³ ) be as in theorem 3.4. For all large k, there is
an ¬ k > 0 such that j ¶ » k

l + j j < ¬ k < ¬ 0 for j = 1; : : : ; n and ¬ k ! 0 as k ! 0. Thus,
by theorem 3.4 (with A := A » k

, · j := 0, ¶ l + j := ¶ » k

l+ j for j = 1; : : : ; n and D equal
to the set of all Bc where c is a C ® (RN ) function), there exists, for each large k,
a C ® (RN) function ck : RN ! R such that jckjC0( ·D1) < (1=2)³ ¬ k and such that if
(^¶ » k

n )n 2 N denotes the repeated sequence of eigenvalues of A » k
+ Bck

, then

^¶ » k

l < 3² < ² < ^¶ » k

l+ 1 6 ^¶ » k

l + n < ² < 3² < ^¶ » k

l + n (4.3)

and
^¶ » k

l+ j = 0; j = 1; : : : ; n: (4.4)

Moreover, since
A » k + Bck ! A0 as k ! 1

in L (H2(D1) \ H1
0 (D1); L2(D1)), by using again the spectral projection P» k on the

kernel of A » k + Bck , together with the Grahm{Schmidt L2(D1)-orthonormalization
algorithm, we can  nd an L2(D1)-orthonormal basis ~¿ » k

1 ; : : : ; ~¿ » k
n of ker(A » k + Bck )

with
~¿ » k

i ! ~¿ i as k ! 1

in H2(D1) \ H1
0 (D1) for all i = 1; : : : ; n.
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Summarizing, we have found a sequence of positive numbers » k, » k ! 0 as
k ! 1, and a sequence of potentials c µ 2 C ® (RN), ck ! 0 in C0( ·D1) as k ! 1,
such that, for all (su¯ ciently large) k, the operator

L » k + ck(x) = div(G(x0 + » k(x x0))r) + ~a(x) + ck(x); x 2 D1;

on D1, with Dirichlet boundary condition on @D1, has an n-dimensional kernel
spanned by L2(D1)-orthonormal functions ~¿ » k

1 ; : : : ; ~¿ » k
n , with

~¿ » k

i ! ~¿ i as k ! 1

in H2(D1) \ H1
0 (D1) for i = 1; : : : ; n.

Step 3. For all » > 0, we de ne the homothety

O » : RN ! RN ; x 7! x0 + » (x x0)

and we de ne

D » := O » (D1) = fy 2 RN j y = x0 + » (x x0); x 2 D1g:

If » is su¯ ciently small, then ·D » » « . So, for su¯ ciently large k, we can consider
the operator

div(G(x)r) + ( » k) 2~a(x0 + ( » k) 1(x x0)) + ( » k) 2ck(x0 + ( » k) 1(x x0))

= div(G(x)r) + ( » k) 2~a((O» k ) 1(x)) + ( » k) 2ck((O » k ) 1(x)) (4.5)

on D » k with Dirichlet boundary condition on @D » k . This operator has the same
repeated sequence of eigenvalues of the operator

( » k) 2 div(G(x0 + » k(x x0))r) + ( » k) 2~a(x) + ( » k) 2ck(x) (4.6)

on D1 with Dirichlet boundary condition on @D1. In particular, the operator (4.5)
has an n-dimensional kernel spanned by the L2(D » k

)-orthonormal functions

ã » k

i (x) := ( » k) N=2 ~¿ » k

i (x0 + ( » k) 1(x x0))

= ( » k) N=2 ~¿ » k

i ((O » k
) 1(x)); i = 1; : : : ; n:

Now we de ne Wk := O » k
¯ Z, Dk := Wk(S) = D » k and

ak(x) := ( » k) 2~a((O » k ) 1(x)) + ( » k) 2ck((O » k ) 1(x))

= ( » k) 2a0((Wk) 1(x)) + ( » k) 2ck((O» k
) 1(x)):

We  nally estimate, for i = 1; : : : ; n,

k(det DWk)1=2ã » k

i (Wk(¢)) ¿ i(¢)kH1(S)

= k(det Q)1=2( » k)N=2ã » k

i (Wk(¢)) ¿ i(¢)kH1(S)

= k(det Q)1=2 ~¿ » k

i ((O 1
» k

¯ Wk(¢)) ¿ i(¢)kH1(S)

= k(det Q)1=2 ~¿ » k

i (Z(¢)) ¿ i(¢)kH1(S)

= (det Q)1=2k~¿ » k

i (Z(¢)) ~¿ i(Z(¢))kH1(S) ! 0

as k ! 1.
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Now, with  xed ° > 0, we choose a su¯ ciently large k and we set W ° := Wk,
D ° := Dk and a ° := ak and we have concluded.

5. The Pol¶a·cik condition

Let « » RN be an open bounded connected set with C2;® boundary. Let L be a
di¬erential operator of the form (1.1). The next result shows that we can always
construct a potential a such that La satis es the Pol´aµcik condition on « .

Theorem 5.1. Let « and L be as above. Then, both for Dirichlet and Neumann
boundary conditions on @« , there exists a potential a 2 C ® ( ·« ) such that the oper-
ator La satis¯es the Pol¶a·cik condition on « .

Proof. Our starting point is the existence (established in [10]) of a function a0

such that the operator ¢ + a0(x) satis es the Pol´aµcik condition on the unit ball
B » RN with Dirichlet boundary conditions on @B. In this case there is a basis of
ker ¢ + a0(x) given by functions

¿ i(x) =
w(jxj)

jxj xi; x 2 B; i = 1; : : : ; N;

and
¿ N + 1(x) = v(jxj); x 2 B;

where w, v : R ! R are analytic functions such that

w(0) = 0; w0(0) 6= 0; v(0) 6= 0; v0(0) = 0: (5.1)

We claim that

the functions ¿ i ¿ j, 1 6 i 6 j 6 N + 1, are linearly independent.

In fact, let » ij , 1 6 i 6 j 6 N + 1, be real numbers with
X

16i6j6N + 1

» ij ¿ i ¿ j ² 0:

Evaluating this expression at x = 0 and using (5.1), we obtain » N + 1;N + 1 = 0. Thus

w(jxj)2

jxj2
X

16i6j6N

» ijxixj ² w(jxj)v(jxj)
jxj

X

16i6N

» i;N + 1xi for x 6= 0:

Since
w(jxj)2

jxj2
6= 0 and

w(jxj)v(jxj)
jxj

6= 0 for jxj small;

it follows that 
X

16i6N

» i;N + 1xi

= o(jxj) for x ! 0:

However, this implies that » i;N + 1 = 0 for i = 1; : : : ; N . Hence
X

16i6j6N

» ijxixj ² 0;
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which immediately implies that » ij = 0 for 1 6 i 6 j 6 N . The claim is proved.
Now we can apply lemma 4.1, with S = B, n = N + 1 and a0 given by the

construction in [10]. Following the terminology of lemma 4.1, we claim that, if
we choose a su¯ ciently small ° , then the corresponding operator La ° restricted to
D ° = W ° (S) satis es the Pol´aµcik condition on D ° with Dirichlet boundary condition
on @D ° . First, we observe that

0
B@

ã °
1(W ° (x)) rxã °

1(W ° (x))
...

...
ã °

N + 1(W ) rxã °
N + 1(W ° (x))

1
CA

=

0
B@

ã °
1(W ° (x)) (rã °

1)(W ° (x))
...

...
ã °

N + 1(W ° (x)) (rã °
N + 1)(W ° (x))

1
CA ¯

³
1 0

0 DW ° (x)

´
:

Since DW ° (x) is constant and invertible, we have that, if x 2 D ° = W ° (S), then

R(ã °
1; : : : ; ã °

N + 1)(x) 6= 0

if and only if

R(ã °
1(W ° (¢)); : : : ; ã °

N + 1(W ° (¢)))(W 1
° x) 6= 0:

9
>=

>;
(5.2)

Let
U0 := fx 2 S j R( ¿ 1; : : : ; ¿ N + 1)(x) 6= 0g:

Since U0 is open and, as ° tends to zero,

(det DW ° )
1=2ã °

i (W ° (¢)) ! ¿ i(¢)

in H1(S) for i = 1; : : : ; N + 1, it follows that, for su¯ ciently small ° and for some
x 2 U0,

R(ã °
1(W ° (¢)); : : : ; ã °

N + 1(W ° (¢)))(x) 6= 0

and hence, by (5.2),
R(ã °

1; : : : ; ã °
N + 1)(W ° (x)) 6= 0:

This proves the claim. A similar argument shows that, if ° is su¯ ciently small, then
the functions ã °

i
ã °

j , 1 6 i 6 j 6 N + 1, are linearly independent.
Summarizing, we have obtained the following intermediate result. We have found

an open set D » « and a function ·a 2 C ® ( ·« ) such that the operator L·a restricted
to D satis es the Pol´aµcik condition on D, with Dirichlet boundary condition on
@D. Moreover,

for every basis ã 1; : : : ; ã N + 1 of the kernel of L·a on D

with Dirichlet boundary condition on @D,

the functions ã iã j , 1 6 i 6 j 6 N + 1

are linearly independent.

9
>>>=

>>>;
(5.3)

Now we proceed as in the proof of theorem 4.4 in [14]. Let H := L2( « ), V :=
H1

0 ( « ) if we are working with Dirichlet boundary condition on @« , V := H1( « )
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if we are working with Neumann boundary condition on @« . If d 2 C0( ·« ), de ne
gd : V £ V ! R by

gd(u; v) =

Z

«

G(x)ru ¢ rv dx +

Z

«

d(x)uv dx;

where G(x) := (gij(x))i;j . If d 2 C ® ( ·« ), regularity theory of PDEs implies that,
both for Dirichlet and Neumann boundary conditions, ¶ is an eigenvalue of Ld and
u is a corresponding eigenfunction if and only if ¶ is a proper value of gd and u is a
corresponding proper vector. (In fact, every proper vector of gd lies in C2;® ( ·« ).) Let
b 2 C0( ·« ) be such that b(x) = 0 for x 2 ·D and b(x) > 0 for x =2 D. Furthermore,
let ( k)k 2 N be an arbitrary sequence of positive numbers tending to 1. Finally, for
k 2 N, let bk 2 C ® ( ·« ) be a function such that

sup
x 2 «

jbk(x) b(x)j <
1

k
 k:

Let Lk := L·a +  kbk , gk := g·a +  kbk and let g 1 be the restriction of ga to H1
0 (D). We

are now in a position to apply theorem 3.2: for k 2 N let ( ¶ k
n)n2 N be the repeated

sequence of proper values of gk and (uk
n)n 2 N be an H-orthonormal sequence of

corresponding proper vectors of gk. Moreover, let ( · n)n 2 N be the repeated sequence
of proper values of g 1 .

Then, using theorem 3.2 and passing to a subsequence if necessary, we may
assume that there is a sequence (vn)n 2 N in H1

0 (D) such that for every n 2 N, vn is
a proper vector of g 1 corresponding to · n, ( ¶ k

n)k 2 N converges to · n and (uk
n)k 2 N

converges to vn~ in V , as k ! 1. Set p = N + 1. There are numbers ® 1, ® 2 2 R,
M , ² 2 R + and l 2 N, such that

0 < ® 2 ® 1 < M;

· l < ® 1 4 ² < ® 1 < 0 = · l+ 1 = · l + p < ® 2 < ® 2 + 4 ² < · l + p+ 1:

For c 2 C0( ·« ) let Bc 2 L s ym (H; H) be the map

(Bcu)(x) = c(x)u(x); u 2 H; x 2 « :

Note that

jBcj L (H;H) = jcjC0( ·« ): (5.4)

Let G be the set of all Bc with c 2 C0( ·« ). It follows that G is a closed linear
subspace of L s ym (H; H). Now (5.3) easily implies that the operator T : G ! Sp,

B 7! (hB(vl + i~); vl + j~i)ij

is surjective. By the open mapping theorem there is a ³ > 0 such that

T (B1) ¼ B ³ :

For k 2 N, let Tk : G ! Sp be the map

B 7! (hBuk
l + i; uk

l + ji)ij :
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Then Tk ! T in L ( G ; Sp), so it is easy to see that

Tk(B1) ¼ B³ for k large enough:

Moreover, we have

¶ k
l < ® 1 4 ² < ® 1 < ¶ k

l + 1 6 ¶ k
l+ p < ® 2 < ® 2 + 4² < ¶ k

l + p+ 1 for k large enough:

(5.5)

Let ¬ 0 = ¬ 0(p; M; ² ; ³ ) be as in theorem 3.4. For all large k, there is an ¬ k > 0 such
that j ¶ k

l + j j < ¬ k < ¬ 0 for j = 1; : : : ; p and ¬ k ! 0 as k ! 0. Thus, by theorem 3.4
(with A := Lk, · j := 0, ¶ l + j := ¶ k

l + j for j = 1; : : : ; p and D equal to the set
of all Bc where c is a C ® ( ·« ) function), there exists, for each large k, a function
ck 2 C ® ( ·« ) such that jckjC0( ·« ) < ( 1

2) ³ ¬ k and such that if (^¶ k
n)n 2 N denotes the

repeated sequence of eigenvalues of L·a + ck +  kbk and (ûk
n)n2 N is an H-orthogonal

sequence of the corresponding eigenfunctions, then

^¶ k
l < ® 1 3 ² < ® 1 ² < ^¶ k

l+ 1 6 ^¶ k
l + p < ® 2 + ² < ® 2 + 3 ² < ^¶ k

l + p+ 1 (5.6)

and

^¶ k
l+ j = 0; j = 1; : : : ; p: (5.7)

Now the assumptions of theorem 3.2 are satis ed, with bk replaced by (1= k)ck +bk.
Therefore, using theorem 3.2 again and passing to a subsequence if necessary, we
may assume that there is a sequence (v̂n)n2 N in H1

0 (D) such that for every n 2 N,
v̂n is a proper vector of g 1 corresponding to · n, (^¶ k

n)k 2 N converges to · n and
(ûk

n)k 2 N converges to v̂n~ in V , as k ! 1.
Finally, H1( « )-convergence of uk

n to v̂n~ as k tends to in nity implies easily that,
for su¯ ciently large k, the operator La, a = ·a + ck +  kbk, satis es the Pol´aµcik
condition on « . The theorem is proved.

6. The algebraic independence condition

Let « » R2 be an open bounded domain with a C2;® boundary and let L be a
di¬erential operator of the form (1.1). In this section we want to prove that, for both
Dirichlet and Neumann boundary conditions on @« , we can construct a potential
a 2 C ® ( ·« ) such that the operator La has a kernel of a prescribed dimension n,
spanned by eigenfunctions satisfying the algebraic independence condition (IC) in
x 2 up to a prescribed order k, with an appropriate $ 2 R2.

Theorem 6.1. Let « and L be as above and let n, k 2 N. Then, for both Dirichlet
and Neumann boundary conditions on @« , there exists a potential a 2 C ® ( ·« ) with
the following properties.

(1) The operator La has an n-dimensional kernel.

(2) There exists a vector $ 2 R2 and an L2( « )-orthonormal basis u1; : : : ; un of
the kernel of L such that the algebraic independence condition (IC) in x 2 is
satis¯ed up to the order k.
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Proof. As in the proof of theorem 5.1, our starting point is the existence (established
in [13]) of such a potential for a suitable smooth bounded domain when L = ¢,
with Dirichlet boundary conditions, and with $ = (0; 1). So we can always take
a bounded smooth domain S and a smooth potential a0 : ·S ! R such that the
following hold.

(1) The operator ¢ + a0(x; y) on S with Dirichlet boundary condition on @S has
an n-dimensional kernel.

(2) There is an L2(S)-orthonormal basis ¿ 1; : : : ; ¿ n of the kernel of ¢ + a0(x; y)
such that (IC) is satis ed up to the order k with $ = (0; 1), i.e. for every
l = 1; : : : ; k and every q, 1 6 q 6 l, the functions

» X

® 6  ; j ® j = q

1

® !( ® )!
¿  ® + ° j ¿ ®

y

¼

j = 1;:::;n; j j = l

are linearly independent.

Moreover, the functions ¿ i ¿ j , 1 6 i 6 j 6 n are linearly independent. Now, as
in the proof of theorem 5.1, we apply lemma 4.1; following the therminology of
lemma 4.1, we obtain that, if we choose a su¯ ciently small ° , then, for some smooth
potential a ° , the kernel of La °

on D ° with Dirichlet condition on @D ° is spanned
by L2(D ° )-orthonormal functions ã °

1; : : : ; ã °
n such that for every l = 1; : : : ; k, and

for every q, 1 6 q 6 l, the functions
» X

® 6  ; j ® j = q

1

® !( ® )!
ã ° (W ° (¢)) ® + ° j ã ° (W ° (¢)) ®

y

¼

j = 1;:::;n; j j = l

are linearly independent on S. Since, for i = 1; : : : ; n,

ã °
i (W ° (¢))y = (rã °

i )(W ° (¢)) ¢ $ ° ;

where $ ° is the second column of the (constant) matrix DW ° (¢), we reach that, for
every l = 1; : : : ; k and for every q, 1 6 q 6 l, the functions

» X

® 6  ; j ® j = q

1

® !( ® )!
ã ° (¢) ® + ° j ã °

$(¢) ®

¼

j = 1;:::;n; j j = l

are linearly independent on D ° . Moreover, the functions ã °
i

ã °
j, 1 6 i 6 j 6 n, are

linearly independent on D ° . Finally, we conclude, arguing exactly as in the proof
of theorem 5.1, applying theorems 3.2 and 3.4.

Remark 6.2. The present result generalizes naturally to any space dimension
N > 2 (see [8]).
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