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Linear stability of a ferrofluid centred around a
current-carrying wire
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Investigated first is the linear stability of a Newtonian ferrofluid centred on a rigid wire,
surrounded by another ferrofluid with a different magnetic susceptibility. An electric
current runs through the wire, generating an azimuthal magnetic field that produces a
magnetic stress at the interface of the fluids. Three-dimensional disturbances to the system
are considered, and the linearised Navier–Stokes equations are solved analytically in terms
of an implicit expression for the growth rate of the disturbance. The growth rate is found
numerically for arbitrary Reynolds number, and given explicitly in the inviscid and Stokes
regimes. Investigated next is a ferrofluid whose magnetic susceptibility varies radially,
centred on a rigid wire, subject to a non-uniform azimuthal field. It is proven that if the
gradient of the susceptibility is positive anywhere in the fluid, then the system is linearly
unstable. Moreover, it is proven that applying an axial field can stabilise disturbances for
both continuous and discontinuous susceptibilities.

Key words: magnetic fluids

1. Introduction

The instability of liquid jets and cylindrical columns of ideal fluids has been researched
rigorously for over a century. The well-known Plateau–Rayleigh instability describes
the break-up of a capillary jet into droplets, for linear axisymmetric perturbations of
wavelengths longer than the radius of the jet (Rayleigh 1878). It has been shown in
the ferro-hydrodynamic literature that the Plateau–Rayleigh instability for a ferrofluid jet
can be stabilised by a sufficiently strong azimuthal magnetic field (Bashtovoi & Krakov
1978; Arkhipenko et al. 1980; Rannacher & Engel 2006). Ferrofluids are colloidal fluids,
consisting of magnetic solids such as magnetite, suspended in a carrier solution, usually
water, kerosene or oils. The liquid becomes magnetised in the presence of a magnetic
field, and to prevent agglomeration, the nanoparticles are either electrically charged or
coated in a surfactant. An investigation into the stability of jets or columns of ferrofluid
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could be useful for technological, industrial and biomedical applications. In industry, they
are most commonly used for dynamic sealing and heat dissipation (Scherer & Figueiredo
Neto 2005), and there has been investigation into their use in inkjet printing (Charles 1987;
Abdel Fattah, Ghosh & Puri 2016) and three-dimensional printing (Löwa et al. 2019),
where the jet disintegrates into drops that are then directed by a magnetic field. Moreover,
there have been recent biomedical advances in their use in hyperthermia treatment (Zhang,
Gu & Wang 2007) and magnetic drug targeting, experimentally (Asfer, Saroj & Panigrahi
2017) and theoretically (Voltairas, Fotiadis & Michalis 2002; Gonella et al. 2020).

The governing equations are discussed in § 2, and in § 3, the linear stability of a
column of ferrofluid centred on a straight rigid wire, surrounded by another ferrofluid
of different magnetic susceptibility, is investigated. A current runs through the wire,
producing an azimuthal magnetic field, resulting in a magnetic stress at the interface
of the fluids. The critical parameter is the magnetic Bond number, which measures the
ratio between the capillary pressure and magnetic forcing from the current through the
wire. The linear stability of a ferrofluid jet has been studied in the literature but with
limiting assumptions. Arkhipenko et al. (1980) consider an irrotational inviscid ferrofluid
jet, and show that increasing the current such that B > 1 produces a stable system. Of
the previous works, Bashtovoi & Krakov (1978) and Rannacher & Engel (2006) consider
non-axisymmetric disturbances, where they assume an inviscid irrotational system, but
the experimental work performed by Arkhipenko et al. (1980) and Bourdin, Barci &
Falcon (2010) suggests that viscous effects are important in the development of the
instability. Cornish (2018) considers the highly viscous limit, and Canu & Renoult (2021)
consider a Newtonian ferrofluid jet, surrounded by a Newtonian non-magnetic fluid.
Both works consider axisymmetric disturbances, and the results obtained by Canu &
Renoult (2021) show that accounting for viscosity agrees better with the experimental
results of Arkhipenko et al. (1980) and Bourdin et al. (2010) than the inviscid system.
Moreover, Canu & Renoult (2021) highlight the importance of having a surrounding
liquid to mirror experimental conditions and for drug targeting applications. Blyth & Parau
(2014) and Doak & Vanden-Broeck (2019) also consider the effect of a non-magnetic fluid
surrounding the jet, but in the inviscid limit. Korovin (2004) considers the surrounding
liquid being a ferrofluid, filling a cuvette, rather than an infinite domain. Performing
axisymmetric perturbations localised to the interface between the two fluids, the dispersion
relation is derived using a modified equation of motion. He finds the thickness of the inner
fluid to be of importance, and that the drops produced from the perturbation are different
to when a gas is the surrounding medium. Thus we allow both fluids to be ferrofluids,
and consider both axisymmetric and non-axisymmetric disturbances to the system with
arbitrary Reynolds number. We give an analytical solution to the perturbed linearised
Navier–Stokes equation and an implicit expression for the growth rate of the disturbance.
For a given Reynolds number, a numerical root solver is used to find the growth rate for
given wavenumbers, magnetic susceptibilities, strength of current and the wire radius. In
the inviscid and highly viscous limits, a dispersion relation is obtained analytically, giving
a stability condition.

For a non-ferrofluid jet, Christiansen (1955) found axisymmetric modes to be the most
unstable (for non-axisymmetry with inertial effects), and we prove that this is true when
the inner ferrofluid has a larger susceptibility than the outer. In this case, the system is
linearly unstable to axisymmetric disturbances only, and B > 1 results in stability of all
wavelengths, supporting previous works. In contrast, when the outer fluid has a larger
susceptibility, axisymmetric and non-axisymmetric modes are unstable, and as the wire

942 A20-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.324


Linear stability of a ferrofluid centred around a wire

radius shrinks, non-axisymmetric disturbances become the most unstable at low Reynolds
number. Moreover, increasing the current in the wire will not suppress all unstable modes
if the outer fluid has a higher susceptibility than the inner fluid. Bashtovoi & Krakov (1978)
show that adding an axial field will stabilise an inviscid irrotational ferrofluid column, and
we prove this for our system in both the inviscid and highly viscous regimes, irrespective
of which fluid has a higher susceptibility. We show numerically that this holds for arbitrary
Reynolds number too.

When a magnetic fluid is subject to a non-uniform magnetic field, the magnetic particles
are attracted to the region of highest field intensity to obtain the minimum energy
configuration (Scherer & Figueiredo Neto 2005). The results outlined in § 3 and the
analysis performed by Zelazo & Melcher (1969) for a two-fluid layer in a planar domain
agree that when the field decreases outwards (upwards), and the stronger ferrofluid is the
inner (lower) fluid, magnetic forcing is stabilising. Yet if the field decreases outwards
(upwards), and the stronger ferrofluid is the outer (upper) fluid, then magnetic forcing is
destabilising due to the region with largest magnetic susceptibility not being located where
the field is strongest. This motivates the investigation of the stability of one ferrofluid,
whose susceptibility varies continuously with radius, centred on a current-carrying wire,
with an associated field decreasing as the reciprocal of the radius. In § 4, we prove that
the stability of the system is determined by the sign of the gradient of the susceptibility
with respect to the field strength, and prove that adding an axial field can suppress the
instability.

Some works have used nonlinear theory to analyse the behaviour of a ferrofluid jet. Blyth
& Parau (2014) use a fully nonlinear numerical model to show that axisymmetric solitary
waves propagate at the surface of an inviscid column of ferrofluid, and compare their
results with the experimental work by Bourdin et al. (2010), who show the existence of
axisymmetric periodic and solitary waves at the interface of a ferrofluid jet in a cylindrical
domain. Doak & Vanden-Broeck (2019), as well as studying the linear stability, use a
numerical model to find stable travelling wave solutions on a ferrofluid jet. Cornish (2018)
uses weakly nonlinear stability theory and long wave theory for both a highly viscous and
an inviscid axisymmetric jet, studying the resultant drop formation. In this paper, we focus
solely on linear stability analysis.

There is a direct analogue between a ferrofluid subject to a magnetic field
in ferro-hydrodynamics and a dielectric exposed to a gradient electric field in
electro-hydrodynamics (Zelazo & Melcher 1969; Rosensweig 1985). Nayyar & Murty
(1960) and Garcia et al. (1997) study, respectively, the stability of inviscid and viscous
dielectric liquid columns, subject to a longitudinal electric field. Nayyar & Murty (1960)
use an energy argument to show that the electric field has a stabilising effect. Garcia
et al. (1997) consider axisymmetric perturbations to the system and produce a dispersion
relation, showing that viscous dissipation and dielectric forces at the interface work to
stabilise the system. A crucial difference between the dielectric work on jets and the
problem in this paper is the presence of a wire and the associated azimuthal field.

2. Magnetic force and stress tensor

We assume that the magnetisation M is collinear with the magnetic field H such that
M = χH , where χ is the magnetic susceptibility. The field satisfies

∇ × H = 0, (2.1)
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and the induced field B satisfies

∇ · B = 0. (2.2)

Equation (2.1) allows us to define a magnetic potential φ such that

H = ∇φ. (2.3)

Due to collinearity, B = μ0(1 + χ)H , where μ0 is the magnetic permeability of the fluid,
and therefore

∇ · ((1 + χ)∇φ) = 0. (2.4)

At an interface, we require continuity of the normal component of B,

[μ0(1 + χ)∇φ · n] = 0, (2.5)

and continuity of the tangential component of H ,

[∇φ · τ ] = 0, (2.6)

where n and τ are respectively the unitary normal and tangential vectors to the interface,
and the square brackets denote the jump across it.

Rosensweig (1985) gives the stress tensor for a Newtonian isothermal ferrofluid as

T = −μ0

(∫ H

0
χH dH + 1

2 H2
)

I − pI + BHT + η(∇u + (∇u)T ), (2.7)

where H = |H |, η is the viscosity, p is the pressure, u is the velocity of the fluid, and
strictive effects have been neglected on account of there being no physiochemical phase
change in the flow. The force density due to magnetic effects, for a ferrofluid subject to H ,
is

f = −∇
(
μ0

∫ H

0
(1 + χ)H dH

)
+ μ0(1 + χ)H ∇H, (2.8)

and if χ is independent of H , then

f = −μ0H2

2
∇χ. (2.9)

Now, f appears in the Navier–Stokes equation as

ρ
Du
Dt

+ ∇p = η∇2u + f , (2.10)

where ρ is the density of the fluid. Taking the curl of (2.10) gives

ρ
Dω

Dt
= η((ω · ∇)u + ∇2ω)+ μ0H ∇χ × ∇H, (2.11)

where ω = ∇ × u. Equation (2.11) holds for both (2.8) and (2.9), and it follows that if
H = H(χ), then we have a stationary state.
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Fluid 2

Fluid 1

z

r
Interface between

fluids 1 and 2

a

χ2

χ1

J

J = J0ez

J0 eθ
2πr

H =

θ

Figure 1. Schematic of the two-fluid system.

3. Two-fluid system

3.1. Formulation of the problem
We consider a column of ferrofluid, fluid 1, with magnetic susceptibility χ = χ1, centred
on a rigid wire with radius a. We choose the cylindrical system (r, θ, z) such that r and
θ are the radial and azimuthal coordinates, and z points along the wire. In the stationary
state, fluid 1 is in the region a < r < R and is surrounded by another ferrofluid, fluid 2,
whose domain is unbounded, with susceptibility χ = χ2. Both fluids are incompressible
and isothermal, with constant density ρ, viscosity η, and permeability μ0. A steady
electric current J = J0ez runs through the wire, producing an azimuthal magnetic field
H = J0/2πreθ , where ez is the unit vector in the z direction, and eθ is the unit vector in
the anticlockwise, azimuthal direction. The set-up is shown in figure 1.

Take R as the length scale, and define a = a∗R. We non-dimensionalise pressure
as p = σp∗/R, where σ is the surface tension, and non-dimensionalise the field as
H = J0H∗/2πR, and pick the time scale, T , to be T = ηR/σ , such that the velocity is
non-dimensionalised as u = σ/ηu∗. The starred variables are dimensionless, but we drop
the stars from here on. Equation (2.10) becomes

Re
Du
Dt

+ ∇p = ∇2u + Bf , (3.1)

where

Re = ρσR
η2 (3.2)

is the Reynolds number, and

B = μ0J2
0

4π2Rσ
(3.3)
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is the magnetic Bond number. Since

χ = 0, for r ≤ a,
χ = χ1, for a < r < R,
χ = χ2, for r ≥ R,

⎫⎬
⎭ (3.4)

χ is always constant, resulting in f = 0 in (3.1), and magnetic effects are felt only at the
interface.

Initially, both fluids are at rest and the interface between the two fluids is located at
r = 1. We consider perturbations to the surface such that the surface is located at

r = 1 + ε Re(Ŝζ ), (3.5)

where ζ = exp (i(kz + mθ)+ st), ε � 1, k,m are real and positive wavenumbers, Ŝ may
be a complex constant (or it could be unity), and s is the growth rate of the disturbance
and could be complex. In (3.5), the real part of the perturbation is taken, and this is done
from here on for the other variables, but it is not written explicitly. The normal vector to
the surface becomes

n =
(

1,−εimŜζ
r

,−εikŜζ

)T

, (3.6)

and the tangential vectors are

τ1 = (εikŜζ, 0, 1)T, τ2 =
(
εimŜζ

r
, 1, 0

)T

. (3.7a,b)

The perturbed pressure p(i) and velocity u(i), where i = 1, 2 for fluids 1 and 2, are

p(i) = p0 + ε p̂(i)(r) ζ and u(i) = ε û(i)(r) ζ, (3.8a,b)

where p0 is constant. The perturbations satisfy

∇ · û = 0 and s Re û + ∇p̂ = ∇2û. (3.9a,b)

In component form we have

(rû)′ + imv̂ + ikrŵ = 0, (3.10)

r2p̂′ = −2imv̂ − û + r2û′′ + rû′ − (m2 + k̄2r2)û, (3.11)

imrp̂ = −v̂ + 2imû + r2v̂′′ + rv̂′ − (m2 + k̄2r2)v̂, (3.12)

ikr2p̂ = r2ŵ′′ + rw′ − (m2 + k̄2r2)ŵ, (3.13)

where ′ denotes the first derivative with respect to r, and k̄ = √
k2 + s Re. The general

solution is in terms of the modified Bessel functions of the first and second kind, In(z) and
Kn(z), respectively, where we write In,Kn when z = kr, and Īn, K̄n when z = k̄r, but give
the argument otherwise. The general solution of (3.9a,b) is modified from Saville (1971)
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and Mestel (1996) to account for the inner wire at r = a, and is found to be

p̂(i) = c(i)1 Im + c(i)2 Km, (3.14a)

û(i) = − 1
(s Re)2r

(
c(i)1 (krIm+1 + mIm)+ c(i)2 (mKm − krKm+1)

)

− ik
k̄

(
c(i)3 Īm+1 + c(i)4 K̄m+1

)
+ 2m

k̄r

(
c(i)5 Īm + c(i)6 K̄m

)
, (3.14b)

v̂(i) =
(

−c(i)3 k

k̄
+ 2ic(i)5

)
Īm+1 + 2im

k̄r

(
c(i)5 Īm + c(i)6 K̄m

)
−
(

c(i)4 k

k̄
+ 2ic(i)6

)
K̄m+1

− im

(s Re)2r

(
c(i)2 Km + c(i)1 Im

)
, (3.14c)

ŵ(i) = −ik

(s Re)2

(
c(i)1 Im + c(i)2 Km

)
+ c(i)3 Īm − c(i)4 K̄m, (3.14d)

for constants c(i)1 , . . . , c(i)6 . To satisfy u(2) → 0 as r → ∞, Re(k̄) > 0 and c(2)1 = c(2)3 =
c(2)5 = 0.

We perturb the magnetic potential such that

φ(l) = θ + ε φ̂(l)(r) ζ, (3.15)

where l = 0, 1, 2 for the wire, inner fluid and outer fluid, respectively. Equation (2.4) gives

r2φ̂′′(l) + φ̂′(l) − (m2 + k2r2)φ̂(l) = 0, (3.16)

with general solution

φ̂(r)(l) = q(l)1 Im + q(l)2 Km, (3.17)

for constants q(l)1 , q(l)2 . For φ̂(0) regular at r = 0,

φ̂(0) = q(0)1 Im, (3.18)

and imposing φ(2) → 0, as r → ∞ gives

φ̂(2) = q(2)2 Km. (3.19)

Equations (2.5) and (2.6) give

(1 + χ2)φ̂
′(2) − (1 + χ1)φ̂

′(1) + im(χ1 − χ2)Ŝ = 0, φ̂(1) = φ̂(2) (3.20a,b)

at r = 1, and

(1 + χ1)φ̂
′(1) − φ̂′(0) = 0, φ̂(1) = φ̂(0) (3.21a,b)

at r = a, determining the constants q(0)1 , q(1)1 , q(1)2 , q(2)2 given in (A1)–(A4) in Appendix A.
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At r = a,

û(1) = 0, (3.22)

and at r = 1,

û(1) = û(2). (3.23)

At the interface of the fluids, there is a normal stress condition

[n · T · n] = σ ∇ · n, (3.24)

and two tangential stress conditions

[n · T · τ1] = 0, (3.25)

[n · T · τ2] = 0. (3.26)

Non-dimensionalising (3.24), substituting the perturbed variables, linearising, and
invoking continuity of the normal component of B, we obtain

(m2 + k2 − 1 + B(χ1 − χ2))Ŝ = imB(χ1φ̂
(1) − χ2φ̂

(2))+ p̂(1) − p̂(2) − 2û′(1) + 2û′(2)
(3.27)

at r = 1. Similarly, (3.25) and (3.26) give

v̂′(1) − v̂′(2) = 0 (3.28)

and

ŵ′(1) − ŵ′(2) = 0 (3.29)

at r = 1. Equations (3.22), (3.23) (3.27)–(3.29) determine the constants c(i)1 , . . . , c(i)6 given
in (A13)–(A21).

The growth rate appears in the kinematic condition at r = 1:

sŜ − û(i) = 0. (3.30)

Consequently, substituting û(i) into (3.30), we obtain

s = −gf ( f1(k2 + m2 − 1 + B(χ1 − χ2))+ f2B(χ1 − χ2)
2m2), (3.31)

where g, f1, f2 > 0. Here, g, f1, f2 are functions of m, k, a, χ1, χ2, and f is a function of
k̄,m, k, a, χ1, χ2, all given in (A10)–(A12). Since k̄ is a function of s, f is a function of s,
and therefore (3.31) is an implicit relation that must be solved numerically.

3.2. Highly viscous and inviscid limits
In the limit Re → 0, f → fv , where fv > 0 and fv is no longer a function of s, given in
(A22). The growth rate in the highly viscous regime, sv , is expressed explicitly as

sv = −gfv( f1(k2 + m2 − 1 + B(χ1 − χ2))+ f2B(χ1 − χ2)
2m2). (3.32)

In the inviscid limit, η → 0, and a more appropriate scaling for time, TI , is TI =√
R3ρ/σ . Since TI = √

Re T , we substitute s = sI/
√

Re into (3.31), where sI is the inviscid
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Figure 2. Viscous growth rate, a = 0.1, χ1 = 5, χ2 = 1: (a) B = 0, (b) B = 0.1, (c) B = 0.25, (d) B = 4.

growth rate. Taking the limit as Re → ∞ gives f → fI/sI , where fI > 0 and fI is no longer
a function of s, given in (A23). Consequently,

s2
I = −gfI( f1(k2 + m2 − 1 + B(χ1 − χ2))+ f2B(χ1 − χ2)

2m2). (3.33)

More simply, (3.33) can be obtained by taking the limit η → 0 in the governing equations
from the outset, and applying the boundary conditions for an inviscid system (η = 0),
namely û(1) = 0 at the wire, and û(1) = û(2), (3.27), (3.29) at the interface.

Since fI, fv > 0, the system is stable (or neutrally stable), in both the inviscid and highly
viscous regimes, if and only if

f1(k2 + m2 − 1 + B(χ1 − χ2))+ f2B(χ1 − χ2)
2m2 ≥ 0. (3.34)

Note that in the inviscid regime, if (3.34) holds, then the system is neutrally stable as the
growth rate is imaginary. If the inner fluid has a higher susceptibility than the outer fluid,
then the system can be unstable only as a result of capillary forces. Only axisymmetric
modes can be unstable when k < 1, and increasing the current in the wire will stabilise
the system provided that B(χ1 − χ2) > 1. Figures 2 and 3 show the growth rate of the
modes being dampened as the current in the wire is increased for the viscous and inviscid
regimes, respectively.

On the other hand, when the outer fluid has a higher susceptibility, capillary and
magnetic forces may be destabilising. Increasing the current, thereby increasing the
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Figure 3. Inviscid growth rate, a = 0.1, χ1 = 5, χ2 = 1: (a) B = 0, (b) B = 0.1, (c) B = 0.25, (d) B = 4.

magnetic forcing at the interface, renders non-axisymmetric modes unstable, as well as
axisymmetric modes, and for sufficiently large B, all modes m can be rendered unstable.
Figures 4–6 show that increasing B results in an increase in unstable modes, and increases
the magnitude of their growth rates. Moreover, in the highly viscous regime, figure 5
shows m = 1, k → 0, is the most unstable mode for a = 0.1, and in fact s → ∞ as k → 0,
whereas when a = 0.5 in figure 6, m = 0 remains the most unstable mode. Performing a
series expansion on the viscous growth rate as a, k → 0, we find s ∼ ln(ka) when m = 1,
thus s → ∞ in the limit, but s converges to a constant when m = 0 or m > 1, a result seen
in the context of electro-hydrodynamics too (Saville 1971; Mestel 1996). It is important to
note that when comparing the inviscid regime with the viscous regime, sI and sv are on
different time scales.

3.3. Arbitrary Reynolds number
A numerical root solver in the program Maple is used on (3.31) for specific values
of k, a,m, χ1, χ2,B,Re, to find the associated growth rate of the mode. The stability
condition (3.34) appears to hold for all Reynolds numbers. Figure 7 is the growth rate
plotted when a = 0.1, k = 0.5, χ1 = 1, χ2 = 5, B = 0.1, for a range of Reynolds numbers,
showing two stable branches when m = 1 and an unstable branch for m = 0. Given a stable
mode, as Re → 0, there are two branches, both real: one branch tends to sv , and the other
tends to −∞, the latter a result of Re → 0 for the chosen time scale. As Re is increased,
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Figure 4. Inviscid growth rate, a = 0.1, χ1 = 1, χ2 = 5: (a) B = 0, (b) B = 1, (c) B = 10.
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Figure 6. Viscous growth rate, a = 0.5, χ1 = 1, χ2 = 5: (a) B = 0, (b) B = 1, (c) B = 10.

the two branches meet and then split, becoming complex conjugates of each other, tending
towards ±sI , where sI is purely imaginary for a stable mode. Given an unstable mode, we
get one branch, starting at sv and tending to |sI|. There exists a branch that tends to the
negative inviscid root, −|sI |, but this is invalid for finite Re, since the boundary conditions
require Re(k̄) ≥ 0. When χ2 > χ1, and a, k are sufficiently small, m = 1 is more unstable
than m = 0. Yet for all k, m = 1 is the most unstable mode only for sufficiently small Re.
This is shown in figure 8, where the growth rate is plotted against k for different Reynolds
numbers, showing that when Re = 0.001, 0.1, m = 1 is the most unstable mode, but for
the other Reynolds numbers shown, it is not. We find that increasing the current in the wire
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Figure 7. Growth rate plotted when a = 0.1, k = 0.5, χ1 = 1, χ2 = 5 and B = 0.1 for arbitrary Re. Panels (a)
and (b) plot, respectively, the real and imaginary parts of s. The m = 0 branch is purely real, but the m = 1
branch starts as real for low Re and then becomes a complex conjugate pair.

stabilises the system if χ1 > χ2 for all Reynolds numbers. Figures 7 and 9, where χ2 > χ1,
show that increasing B from B = 0.1 to B = 0.5 renders the mode m = 1 unstable, and we
find that for all Reynolds numbers, increasing the current does not stabilise the system if
χ2 > χ1, but renders more modes unstable.

3.4. Stabilisation with an axial field
To stabilise the system, irrespective of whether χ2 > χ1 or χ1 > χ2, we consider
H0 = (0, 1/r, Z)T, Z constant, thereby adding an axial field. It follows that

φ0 = θ + Zz, (3.35)

and we perform analysis analogous to that in § 3.1. The general solutions (3.14), (3.17) still
hold, and φ̂(0), φ̂(2) are still given by (3.18) and (3.19), respectively. At r = a, we apply
(3.21) and (3.22). At r = 1, we apply (3.23), (3.28), (3.29), but (2.5), (2.6), (3.24) now
give

(1 + χ2)φ̂
′(2) − (1 + χ1)φ̂

′(1) + i(m + kZ)(χ1 − χ2)Ŝ = 0, φ̂(1) = φ̂(2), (3.36a,b)

and

(m2 + k2 − 1 + B(χ1 − χ2))Ŝ = i(m + kZ)B(χ1φ̂
(1) − χ2φ̂

(2))

+ p̂(1) − p̂(2) − 2û′(1) + 2û′(2). (3.37)

We now obtain

s = −gf ( f1(k2 + m2 − 1 + B(χ1 − χ2))+ f2B(χ1 − χ2)
2(Zk + m)2), (3.38)

sv = −gfv( f1(k2 + m2 − 1 + B(χ1 − χ2))+ f2B(χ1 − χ2)
2(Zk + m)2), (3.39)

s2
I = −gfI( f1(k2 + m2 − 1 + B(χ1 − χ2))+ f2B(χ1 − χ2)

2(Zk + m)2), (3.40)

analogously to (3.31), (3.32) and (3.33). Equations (3.39) and (3.40) show that a
sufficiently large kZ will stabilise all modes in the inviscid and highly viscous regimes,
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Figure 10. Schematic of the system.

irrespective of the sign of (χ1 − χ2), provided that B /= 0, and this result appears to hold
for all Reynolds numbers. Although extremely long waves in the z direction, k → 0, would
remain unstable, by physical restrictions of the system, k is bounded from zero.

4. Continuous magnetic susceptibility

Now we allow χ to depend on position and the field. We consider one incompressible,
isothermal, ferrofluid whose susceptibility varies radially. The ferrofluid is centred on
the wire as shown in figure 10. Since χ varies with position, the magnetic forcing acts
throughout the fluid. In § 3, magnetic forcing gave rise to an instability if χ1 < χ2; we
thus expect that dχ/dr > 0 will lead to an instability, as a result of the regions of fluid
with largest χ being drawn to the regions of strongest field. Yet since there is no longer
forcing due to surface tension at an interface, we expect dχ/dr < 0 to be stable, as both χ
and the strength of the field decrease with the radius.

Zelazo & Melcher (1969) require the physical properties of the ferrofluid, αi, to obey

Dαi

Dt
= 0, (4.1)

but not the field dependent parts of χ . Here we assume

Dχ
Dt

= 0, (4.2)

so that a displaced fluid parcel retains its dependence on H and its physical properties.
Since χ is no longer constant, f /= 0 in (3.1). We choose the same scaling as in § 3 to

non-dimensionalise the equations. Non-dimensionalising (2.11) gives

Re
Dω

Dt
= (ω · ∇)u + ∇2ω + BH ∇χ × ∇H. (4.3)

Equation (4.3) is satisfied by u = 0, χ = χ0(r), H = H0(r), and it follows from (3.1) that
p satisfies

∇p = −B(H0(r))2

2
∇χ0(r), (4.4)
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Linear stability of a ferrofluid centred around a wire

giving p = p0(r), for a stationary state. Consider a perturbation to this stationary state such
that

χ = χ0(r)+ εχ1 + O(ε2), H = H0 + εH1 + O(ε2), u = εu1 + O(ε2), (4.5a–c)

and

|H | = H = H0 + εH1 + O(ε2), where H0 =
√

H0 · H0,H1 = H0 · H1

H0
. (4.6)

Substituting into (4.3) and linearising gives

Re
∂ω1

∂t
= ∇2ω1 + BH0 (∇χ0 × ∇H1 + ∇χ1 × ∇H0) , (4.7)

where ω1 = ∇ × u1. To satisfy (2.4)–(2.6), H0 = (1/r)eθ and χ0(r) is any function of r.
We consider perturbations such that

ω1 = ∇ × (û(r) ζ ), χ1 = χ̂ (r) ζ (4.8)

and
H1 = ∇(φ̂(r) ζ ), (4.9)

to give

H1 = im
r
φ̂(r) ζ ; (4.10)

note that H1 is defined by (4.6), and H1 /= |H1|.
Consequently, (4.7) in component form is

(s Re − L)ω̂r + 2im
r2 ω̂θ = 0, (4.11a)

(s Re − L)ω̂θ − 2im
r2 ω̂r = B

(
mkχ ′

0φ̂

r2 − ikχ̂
r3

)
, (4.11b)

(s Re − D)ω̂z = B

(
−m2χ ′

0φ̂

r3 + imχ̂
r4

)
, (4.11c)

where

ω̂r = imŵ
r

− ikv̂, ω̂θ = ikû − ŵ′, ω̂z = 1
r

(
(rv̂)′ − imû

)
, (4.12)

L = d2

dr2 + 1
r

d
dr

− m2

r2 − k2 − 1
r2 , (4.13)

D = d2

dr2 + 1
r

d
dr

− m2

r2 − k2. (4.14)

Also, û satisfies (3.10), (3.22) and u → 0 as r → ∞. Substituting the perturbed variables
and linearising (4.2) gives

sχ̂ = −χ ′
0û, (4.15)

and therefore χ = 0 at r = a, and χ → 0 as r → ∞. Equation (2.4) gives

(1 + χ0)r2Dφ̂ + r2χ ′
0φ̂

′ = −imχ̂ . (4.16)
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Equations (2.5), (2.6) and (3.18) give

φ̂′ = (Im)
′φ̂

(1 + χ0)Im
(4.17)

at r = a, and φ̂, φ̂′ → 0 as r → ∞.

4.1. Axisymmetric disturbances
For axisymmetric disturbances, (4.11) becomes

(s Re − L0)ω̂r = 0, (4.18a)

(s Re − L0)ω̂θ = − ikBχ̂
r3 , (4.18b)

(s Re − D0)ω̂z = 0, (4.18c)

where

L0 = d2

dr2 + 1
r

d
dr

− k2 − 1
r2 , (4.19)

D0 = d2

dr2 + 1
r

d
dr

− k2. (4.20)

Define a stream functionΨ such that û = ∇ × (0, Ψ/r, 0), and use the change of variables
Ψ = rψ to give

ω̂ = −θ̂L0ψ̂, ∇2ω̂ = −θ̂L2
0ψ̂, (4.21)

where ψ = ψ̂(r) eikz+st. It follows from the boundary conditions for u that ψ̂, ψ̂ ′ = 0 at
r = a and as r → ∞. Equations (4.15) and (4.18) give the eigenvalue equation

(s2 ReL0 − sL2
0)ψ̂ = −k2Bχ ′

0ψ̂

r3 . (4.22)

Rather than find the eigenvalues of (4.22) numerically, we prove a stability condition.
Multiply (4.22) by rψ̂∗, where ψ̂∗ is the complex conjugate of ψ̂ . Integrate over the
domain, use integration by parts, and invoke the boundary conditions, to obtain

s2 Re
∫ ∞

a

(
|ψ̂ ′|2 +

(
1
r2 + k2

)
|ψ̂ |2

)
r dr + s

∫ ∞

a
|L0ψ̂ |2r dr − k2B

∫ ∞

a

χ ′
0|ψ̂ |2
r2 dr = 0,

(4.23)

an equation for s of the form as2 + bs + c = 0, where a, b, c all depend on ψ̂ and therefore
s too, but a, b, c are real, as well as a, b > 0, bounded away from zero. Thus if χ ′

0 > 0,
then c < 0 and there exists a root with s > 0. Note that in this case, s and ψ̂ are real,
whereas when χ ′

0 < 0, c > 0, Re(s) < 0 and s, ψ̂ could be complex. We conclude that if
χ ′

0 > 0 everywhere, then there exists an unstable mode, while if χ ′
0 ≤ 0 everywhere, then

the axisymmetric modes are stable.
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We prove a stronger stability condition using variational methods. Crucially, we have
shown that if the flow is unstable, then s must be real and therefore ψ̂ is real, thus it
suffices to consider only y real in the following argument. Consider the functional

I(y) =
− ∫∞

a (L0y)2r dr +
√(∫∞

a (L0y)2r dr
)2 + W0

2 Re
∫∞

a

(
( y′)2 +

(
1
r2 + k2

)
y2
)

r dr
, (4.24)

where

W0 = 4k2 Re B
∫ ∞

a

(
( y′)2 +

(
1
r2 + k2

)
y2
)

r dr
∫ ∞

a

χ ′
0y2

r2 dr, (4.25)

for all real functions y(r) satisfying y, y′ = 0 at r = a, r → ∞, and proceed in a manner
similar to the Rayleigh–Ritz argument. It can be shown that I( y) is bounded above and
has a maximum. Suppose that y = y0 is a stationary point of I, and I(y0) = I0. Consider
y = y0 + εy1, where ε � 1, and y1 satisfies the boundary conditions for y. Since y = y0
is a stationary point of I( y), the first variation is zero, and thus after Taylor expanding
I( y0 + εy1), it follows that

−Re I2
0

∫ ∞

a

(
y′

0y′
1 +

(
1
r2 + k2

)
y0y1

)
r dr − I0

∫ ∞

a
L0y0L0y1r dr = k2B

∫ ∞

a

χ ′
0y0y1

r2 dr.

(4.26)

Invoking the self-adjoint property of L0, using integration by parts, and the boundary
conditions for y0, y1, we can write (4.26) as

Re I2
0

∫ ∞

a
y1rL0y0 dr − I0

∫ ∞

a
ry1L2

0y0 dr = k2B
∫ ∞

a

χ ′
0y0y1

r2 dr. (4.27)

Equation (4.27) is valid for any y1, and therefore

Re I2
0L0y0 − I0L2

0y0 = k2Bχ ′
0y0

r3 . (4.28)

It follows that the stationary points of I( y) satisfy (4.22) with real eigenvalues s = I0, and
therefore the stationary points of I( y) correspond to the real eigenvalues of (4.22).

Suppose that

χ ′
0 > 0, for r1 ≤ r ≤ r2, (4.29)

and pick an arbitrary real function ŷ(r) that satisfies the boundary conditions of y such that

ŷ(r) /= 0, for r1 ≤ r ≤ r2,

ŷ(r) = 0, for r /∈ [r1, r2].

}
(4.30)

Substitute y = ŷ(r) into (4.24) to give I(ŷ) = ηM . It follows that ηM > 0, and either ηM is
a stationary point of I( y), and therefore a positive, real eigenvalue of (4.22), or there exists
a positive stationary point of I( y) greater than ηM , since I is bounded above. Thus there
exists a positive eigenvalue of (4.22), resulting in an unstable mode. We conclude that if
and only if χ ′

0 > 0 anywhere in the domain, every axisymmetric mode is unstable.
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4.2. Two-dimensional modes
By considering two-dimensional modes k = 0 in (3.10), and (4.11)–(4.16), we obtain an
eigenvalue equation,

(s2 ReLm − sL2
m)Mmφ̂ = −m2B

(
χ ′

0Mmφ̂

r5 + m2χ ′
0φ̂

r3

)
, (4.31)

where

Lm = 1
r

d
dr

(
r

d
dr

)
− m2

r2 , Mm = r3

χ ′
0

[
(1 + χ0)Lm + χ ′

0
d
dr

]
, (4.32)

and φ, φ′ → 0 as r → ∞. Taking the limit k → 0 in (4.17) gives

φ̂′ = m
r(1 + χ0)

φ̂(r) (4.33)

at r = a.
We multiply (4.31) by rMmφ̂

∗, where φ̂∗ is the complex conjugate of φ̂, and integrate
over the domain to obtain∫ ∞

a
(Mmφ̂

∗(s2 ReLm − sL2
m)Mmφ̂)r dr = −Bm2

∫ ∞

a

(
χ ′

0 |Mmφ̂|2
r4

+ m2χ ′
0

r2
φ̂Mmφ̂

∗
)

dr.

(4.34)

Now,∫ ∞

a

1
r2 χ

′
0φ̂Mmφ̂

∗ dr =
∫ ∞

a

(
(1 + χ0)φ̂(r(φ̂∗)′)′ + rχ ′

0φ̂(φ̂
∗)′ − m2(1 + χ0)|φ̂|2

r

)
dr,

(4.35)

and integration by parts gives∫ ∞

a

1
r2 χ

′
0φ̂Mm φ̂

∗ dr = −m|φ̂(a)|2 −
∫ ∞

a
r(1 + χ0)

(
|φ̂′|2 + m2|φ̂|2

r2

)
dr. (4.36)

Equation (4.36) and the self-adjoint property of Lm allow (4.34) to be written as

s2 Re
∫ ∞

a

(
|(Mmφ̂)

′|2 + m2|Mmφ̂|2
r2

)
r dr + s

∫ ∞

a

∣∣∣Lm(Mmφ̂)

∣∣∣2 r dr

+ Bm2

(
m3|φ̂(a)|2 +

∫ ∞

a

[
−χ ′

0 |Mmφ̂|2
r4 + m2r(1 + χ0)

(
|φ̂′|2 + m2|φ̂|2

r2

)]
dr

)
= 0.

(4.37)

It follows that if χ ′
0 < 0 everywhere, then two-dimensional modes are stable. Yet if

∫ ∞

a

χ ′
0 |Mmφ̂|2

r4 r dr > m3|φ̂(a)|2 + m2
∫ ∞

a
r(1 + χ0)

(
|φ̂′|2 + m2|φ̂|2

r2

)
dr (4.38)

holds for an eigenfunction φ̂, then two-dimensional modes are unstable.
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Linear stability of a ferrofluid centred around a wire

Furthermore, by considering the functional

I( y) =
− ∫∞

a (Lm(Mmy))2 r dr +
√
(
∫∞

a (Lm(Mmy))2 r dr)2 − W1

2 Re
∫∞

a

(
(Mmy′)2 + m2

r2 (Mmy)2
)

r dr
, (4.39)

where

W1 = 4m2B Re
(∫ ∞

a

(
(Mmy′)2 + m2

r2 (Mmy)2
)

r dr
)(

m3|φ̂(a)|2

+
∫ ∞

a

[
−χ ′

0 |Mmφ̂|2
r4 + m2r(1 + χ0)

(
|φ̂′|2 + m2|φ̂|2

r2

)]
dr

)
, (4.40)

for all real functions y satisfying the boundary conditions of φ̂, we prove that the stationary
points of I( y) correspond to the real eigenvalues of (4.31) by an argument analogous to
that in § 4.1. Again, if (4.29) is true, then by picking a y = ŷ(r), where ŷ satisfies (4.30),
with oscillatory behaviour for r in the interval [r1, r2], then I(ŷ) > 0 and (4.38) holds as
(Mmŷ)2 
 ŷ′ 
 ŷ. Consequently, if and only if χ ′

0 > 0 anywhere in the fluid, every mode
where k = 0 is unstable.

4.3. Highly viscous and inviscid limits
Although we have proven that if χ ′

0 > 0 anywhere, all axisymmetric or two-dimensional
disturbances are unstable, we are unable to prove, for arbitrary Reynolds number, that if
χ ′

0 < 0 everywhere, then all modes are stable; we have proved only that axisymmetric
or two-dimensional disturbances are stable. A global energy argument could be applied
here by posing an argument analogous to the Rayleigh’s stability argument for centrifugal
instability. One considers the change in energy when two parcels of ferrofluid at different
radii are interchanged while conserving χ(r), where the resulting condition for stability
is that ∇χ must decrease continuously radially. Yet this argument would not account for
viscous forces or three-dimensional disturbances.

By considering the inviscid limit of (4.11)–(4.17) and following an argument analogous
to that in § 4.1, we prove that for all m, k, if and only if χ ′

0 > 0 anywhere in the fluid, the
system is unstable, and it can be proved that s2 and φ̂ are real. In the highly viscous limit of
(4.11)–(4.17), the eigenvalues are also proven to be real for axisymmetric disturbances and
modes k = 0, and these modes are shown to be unstable if and only if χ ′

0 > 0 anywhere in
the fluid.

4.4. Stabilisation with an axial field
We now show that by adding an axial field

H0 =
(

0,
1
r
, Z
)
, (4.41)

we can suppress unstable disturbances. It follows that

H0 =
(

1
r2 + Z2

)1/2

, H1 = im + ikZr2

r2H0
φ̂(r) ζ, (4.42)
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and (4.7) in component form is

(s Re − L)ω̂r + 2im
r2 ω̂θ = 0, (4.43a)

(s Re − L)ω̂θ − 2im
r2 ω̂r = B

(
k(m + kZr2)χ ′

0φ̂

r2 + ikH0H′
0χ̂

)
, (4.43b)

(s Re − D)ω̂z = B

(
−m(m + kZr2)χ ′

0φ̂

r3 − imH0H′
0χ̂

r

)
. (4.43c)

4.4.1. Axisymmetric disturbances
For solely axisymmetric disturbances, we have

H1 = ikZ
H0

φ̂(r) exp(i(mθ + kz)+ st), (4.44)

and (4.43) becomes

(s Re − L0)ω̂r = 0, (4.45a)

(s Re − L0)ω̂θ = B(k2Zχ ′
0φ̂ + ikH0H′

0χ̂ ), (4.45b)

(s Re − D0)ω̂z = 0. (4.45c)

Equation (2.4) gives

χ̂ = i((1 + χ0)∇2φ̂ + χ ′
0φ̂

′)
kZ

, (4.46)

and it follows from (4.15), for axisymmetric disturbances, that

ψ̂ = −isχ̂
kχ ′

0
, (4.47)

where ψ̂ was defined in § 4.1.
Equations (4.45)–(4.47) give an eigenvalue equation for φ̂:

(s2 ReL0 − sL2
0)P0φ̂ = k2Bχ ′

0(H0H′
0P0φ̂ − k2Z2φ̂), (4.48)

where

P0φ̂ = (1 + χ0)

χ ′
0

(
1
r
(rφ̂′)′ − k2φ̂

)
+ φ̂′. (4.49)

When m = 0,

φ̂′ = kI1φ̂

(1 + χ0)I0
(4.50)

at r = a, and ∇φ̂ → 0 as r → ∞. Due to the boundary conditions for χ̂ , P0φ̂ = 0 at r = a
and as r → ∞.
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Linear stability of a ferrofluid centred around a wire

Multiply (4.48) by rP0φ̂
∗, and integrate over the domain to give∫ ∞

a
(s2 ReP0φ̂

∗L0P0φ̂ − sP0φ̂
∗L2

0P0φ̂)r dr = k2B
∫ ∞

a
rχ ′

0(H0H′
0|P0φ̂|2 − k2Z2φ̂P0φ̂

∗)dr.

(4.51)

Due to the self-adjoint property of L0 and the boundary conditions for φ̂, we can write
(4.51) as∫ ∞

a

(
s2 Re

(
|(P0φ̂)

′|2 +
(

k2 + 1
r2

)
|P0φ̂|2

)
+ s |L0P0φ̂|2

)
r dr

+ k2B
∫ ∞

a
(H0H′

0χ
′
0|P0φ̂|2 + k2Z2(1 + χ0)(|φ̂′|2 + k2|φ̂|2))r dr = 0. (4.52)

Thus for sufficiently large kZ, Re(s) < 0 provided that B /= 0, therefore axisymmetric
modes are stable. Moreover, in the inviscid regime, this result holds for all disturbances
m, k.

5. Concluding remarks

This paper first looks at a ferrofluid column surrounded by another ferrofluid of different
susceptibility centred on a current-carrying wire. The greatest growth rate is found
when the ratio between the radius of the wire and the radius of the inner fluid, a/R,
is at its smallest. When the inner fluid is more magnetic, only axisymmetric modes
with k < 1 and B(χ1 − χ2) < 1 are unstable. When the outer fluid is more magnetic,
both non-axisymmetric and axisymmetric modes can be unstable. Interestingly, for
sufficiently small Reynolds numbers, the non-axisymmetric mode m = 1 is the most
unstable; otherwise, m = 0 is the most unstable. Sufficient current in the wire suppresses
instabilities due to surface tension only if the inner fluid is more magnetic than the outer
fluid. When the outer fluid is more magnetic, instabilities are due to magnetic forcing at
the interface, produced from the current in the wire, as well as capillary forcing from
the surface tension. Thus when χ2 > χ1, increasing the current in the wire will only
increase the strength of the forcing at the interface, thereby increasing the growth rate of
the perturbation. However, adding a large enough axial field will suppress all disturbances,
irrespective of which fluid has a higher susceptibility, provided that there is some current
in the wire.

Considering a ferrofluid whose susceptibility varies radially, centred on a wire, we
proved if dχ0/dr > 0 anywhere in the fluid, then the system is unstable, but adding a large
enough axial field will suppress the unstable axisymmetric modes for arbitrary Reynolds
number, and all disturbances in the inviscid regime. When dχ0/dr < 0 everywhere,
axisymmetric disturbances and two-dimensional disturbances are proven to be stable
for arbitrary Reynolds number, and every three-dimensional disturbance is stable in the
inviscid regime. In the inviscid limit, we proved that if and only if dχ0/dr > 0 somewhere
in the fluid, the system is unstable, and we conjecture that this holds for arbitrary
Reynolds number. Moreover, these results hold for χ depending explicitly on H, so long
as Dχ/Dt = 0 holds, and thus can be applied to a ferrofluid with nonlinear magnetisation
characteristics. It should be noted that by assuming Dχ/Dt = 0, we are neglecting any
effects due to relative motion of the magnetic particles and the fluid.

Physically, for an instability to occur, a source of energy is needed, enabling a
perturbation to grow. Since H0 = 1/r, when dχ0/dr > 0, dχ0/ dH0 < 0, implying that
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when the regions of fluid with highest susceptibility do not coincide with the regions
of strongest field, an instability may occur to achieve a minimum energy configuration.
Although dχ0/dr > 0 is a local condition, a global instability occurs, suggesting that when
dχ0/ dH0 < 0 somewhere in the fluid, a release of energy locally suffices to drive a global
instability. We surmise that given a more general geometry where the equilibrium satisfies
χ0 = χ0(H0), if dχ0/ dH0 > 0 everywhere, then the system would be stable, whereas there
may be an instability if dχ0/dH0 < 0 somewhere, a result that could be used to determine
the stability of a stationary state in a more complicated geometry.
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Appendix A

q(2)2 = (imŜ(χ1 − χ2)(ak Im(k) Im(ka) (1 + χ1)Km+1(ka)+ ka(χ1 Km(k) Im(ka)

+ Km(ka) Im(k)) Im+1(ka)− mχ1 Im(ka) (Km(ka) Im(k)− Km(k) Im(ka))))

× (Im(ka) a(1 + χ1)k(k Im(k) (1 + χ2)Km+1(k)+ (k(1 + χ1) Im+1(k)

+ m Im(k) (χ1 − χ2))Km(k))Km+1(ka)+ a(−χ1 Km(k) (χ1 − χ2)

× (Km+1(k) k − m Km(k)) Im(ka)+ Km(ka) (k Im(k) (1 + χ2)Km+1(k)

+ (k(1 + χ1) Im+1(k)+ m Im(k) (χ1 − χ2))Km(k)))k Im+1(ka)

− Im(ka) (Km(k) (χ1 − χ2)(Km+1(k) k − m Km(k)) Im(ka)

+ Km(ka) (k Im(k) (1 + χ2)Km+1(k)

+ (k(1 + χ1) Im+1(k)+ m Im(k) (χ1 − χ2))Km(k)))mχ1)
−1, (A1)

q(0)1 =
(

i
a

Ŝ Km(k)(1 + χ1)ma(χ1 − χ2)

)
× (k(1 + χ1)a Im(ka) (k Im(k) (1 + χ2)Km+1(k)+ Km(k) (k(1 + χ1) Im+1(k)

+ m Im(k) (χ1 − χ2)))Km+1(ka)+ k(−χ1 Km(k) (χ1 − χ2)

× (Km+1(k) k − m Km(k)) Im(ka)+ Km(ka) (k Im(k)(1 + χ2)Km+1(k)+ Km(k)

× (k(1 + χ1) Im+1(k)+ m Im(k) (χ1 − χ2))))a Im+1(ka)− m(Km(k) (χ1 − χ2)

× (Km+1(k) k − m Km(k)) Im(ka)+ Km(ka) (k Im(k) (1 + χ2)Km+1(k)

+ Km(k) (k(1 + χ1) Im+1(k)+ m Im(k) (χ1 − χ2)))) Im(ka) χ1)
−1, (A2)

q(1)1 = (iŜ Km(k) (ak Im(ka) (1 + χ1)Km+1(ka)+ Km(ka) (ak Im+1(ka)

− mχ1 Im(ka)))m(χ1 − χ2))(k(1 + χ1)a Im(ka) (k Im(k) (1 + χ2)Km+1(k)

+ Km(k) (k(1 + χ1) Im+1(k)+ m Im(k) (χ1 − χ2)))Km+1(ka)

+ k(−χ1 Km(k) (χ1 − χ2)(Km+1(k) k − m Km(k)) Im(ka)

+ Km(ka) (k Im(k) (1 + χ2)Km+1(k)+ Km(k) (k(1 + χ1) Im+1(k)
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Linear stability of a ferrofluid centred around a wire

+ m Im(k) (χ1 − χ2))))a Im+1(ka)− m(Km(k) (χ1 − χ2)(Km+1(k) k

− m Km (k)) Im(ka)+ Km(ka) (k Im(k)(1 + χ2)Km+1(k)

+ Km(k) (k(1 + χ1) Im+1(k)+ m Im(k) (χ1 − χ2)))) Im(ka) χ1)
−1 (A3)

and

q(1)2 = (iŜ Im(ka) χ1 Km(k)m(χ1 − χ2)
(
ak Im+1(ka)+ m Im(ka)

)
)

× (k(1 + χ1)a Im(ka) (k Im(k) (1 + χ2)Km+1(k)+ Km(k) (k(1 + χ1) Im+1(k)

+ m Im(k) (χ1 − χ2)))Km+1(ka)+ k(−χ1 Km(k) (χ1 − χ2)(Km+1(k) k

− m Km(k)) Im(ka)+ Km(ka) (k Im(k)(1 + χ2)Km+1(k)

+ Km(k) (k(1 + χ1) Im+1(k)+ m Im(k) (χ1 − χ2))))a Im+1(ka)

− m(Km(k) (χ1 − χ2)(Km+1(k) k − m Km(k)) Im(ka)

+ Km(ka) (k Im(k) (1 + χ2)Km+1(k)+ Km(k) (k(1 + χ1) Im+1(k)+ m Im(k)

× (χ1 − χ2)))) Im(ka) χ1)
−1. (A4)

Now, f in (3.31) is given by

f = F1

F2
, (A5)

where

F1 = k2a2k̄((−k̄2k(Im(k)m + Im+1(k) k)Km+1(k)+ k̄k2(k̄ Im+1(k̄)+ m Im(k̄))Km+1(k̄)

+ m(k̄2 Im+1(k) k Km(k)− k̄k2 Km(k̄) Im+1(k̄)+ m(Im(k̄) (k̄
2 − 2k2)Km(k̄)

+ k̄2 Im(k)Km(k))))Km(ka)+ k̄2
(−Im(ka) (Km+1(k))2k2 + k(k̄ Km+1(k̄) Im(k̄a)

+ 2(1
2 Km(k̄) (Im(k)m Km(k)− 1) Im(k̄a)+ Im(ka)Km(k))m)Km+1(k)

− (k̄ Km+1(k̄) Im(k̄a)+ m Km(k)(−Im+1(k) k Km(k̄) Im(k̄a)+ Im(ka)))m Km(k)))

× (Km+1(k̄a))2 − a(k((−k̄2k(Im(k)m + Im+1(k)k)Km+1(k)

+ k̄k2(k̄ Im+1(k̄)+ m Im(k̄))Km+1(k̄)+ m(k̄2 Im+1(k) k Km(k)− k̄k2 Km(k̄) Im+1(k̄)

+ m(Im(k̄) (k̄
2 − 2k2)Km(k̄)+ k̄2 Im(k)Km(k))))Km(k̄a)+ k2 Im(k̄a) (k̄ Km+1(k̄)

− Km(k̄)m)2)ak̄2 Km+1(ka)− k̄k2a(k̄2
(k Km+1(k)− m Km(k))(k̄ Km+1(k̄)

− Km(k̄)m)Km(k̄a)− (k̄2
(Km+1(k̄))2k2 − 2k̄ Km(k̄)Km+1(k̄) k2m

− m2(Km(k̄))2(k̄
2 − 2k2))Km(ka))Im+1(k̄a)+ k̄4 Km(k̄a) ak(k Km+1(k)

− m Km(k))2 Im+1(ka)+ ((k(−2k̄k2m Im(k̄) Im(k)Km+1(k̄)+ (k̄2k − 2k3) Im+1(k)

+ Im(k)m(k̄ − k)(k̄ + k))k̄2 Km+1(k)+ ((−k̄4k2 + 2k̄2k4) Im+1(k̄)

+ 2k̄k4m Im(k̄))Km+1(k̄)− (k̄2k Km(k) (−2k̄k2 Km(k̄) Im+1(k̄)+ k̄2 − k2) Im+1(k)
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+ 2k̄k4 Km(k̄) Im+1(k̄)+ m(Im(k̄)(k̄
2 − 2k2)Km(k̄)+ k̄2 Im(k)Km(k))

× (k̄2 − 2k2))m)Km(ka)+ (Im(ka) k2(k̄2 − 2k2)(Km+1(k))2

− 2k(−1
2 k̄ Km+1(k̄) k2 Im(k̄a)+ m(−1

2 k̄2 Km(k̄) (m Im(k)Km(k)

− 1) Im(k̄a)+ Im(ka)Km(k) (k̄
2 − 2k2)))Km+1(k)+ (−k̄ Km+1(k̄) k2 Im(k̄a)

+ (k̄2 Im+1(k) k Km(k̄) Im(k̄a)+ Im(ka) (k̄2 − 2k2))m Km(k))m Km(k)) k̄2
)m Km(k̄a)

− k2(m Im(k̄a) (k̄ − k)(k̄ + k)(k̄ Km+1(k̄)− 2 Km(k̄)m)2Km(ka)+ k̄2
(k Km+1(k)

− m Km(k)) (k̄ Km+1(k̄)− Km(k̄)m)))Km+1(k̄a)

+ Km(k̄a)m(−k(k̄(Km(k̄))2am(k̄ − k)(k̄ + k) Im+1(k̄a)

+ (k̄2k(Im(k)m + Im+1(k)k)Km+1(k)− k̄k2(k̄ Im+1(k̄)+ m Im(k̄))Km+1(k̄)

− m(k̄2 Im+1(k) k Km(k)− k̄k2 Km(k̄) Im+1(k̄)+ m(Im(k̄) (k̄
2 − 2k2)Km(k̄)

+ k̄2 Im(k)Km(k))))Km(k̄a)− k̄2 Im(ka)Km+1(k) km Km(k̄)− Im(k̄a)

× (k̄2
(Km+1(k̄))2k2 − 2k̄ Km(k̄)Km+1(k̄) k2m − m2(Km(k̄))2(k̄

2 − 2k2)))a Km+1(ka)

+ k̄((Km(k̄)mk̄ − Km+1(k̄) k2)(k̄(k Km+1(k)− m Km(k))Km(k̄a)

+ (Km(k̄)mk̄ − Km+1(k̄) k2)Km(ka))a Im+1(k̄a)

+ k((k Km+1(k)− m Km(k))2 Km(k̄a)+ Km(ka)Km+1(k) kmKm(k̄))ak̄ Im+1(ka)

− Km+1(k̄)Km+1(k) k3 − m Km(k)(Km(k̄)mk̄ − Km+1(k̄) k2)))k̄ (A6)

and

F2 = −k̄2
((Km+1(k̄a))2 Km(ka) k̄ak2 + Km(k̄a) (−ak̄2k Km+1(ka)+ Km(ka)m(k̄2

− 2k2))Km+1(k̄a)+ (Km(k̄a))2 Km+1(ka) k̄km)(k̄ + k)(k̄ − k)a. (A7)

Let

F = f1(k2 + m2 − 1 + B(χ1 − χ2))+ f2B(χ1 − χ2)
2m2, (A8)

such that (3.31) is

s = −gfF, (A9)

where

f1 = (aIm(ka)χ1k(Im(k)χ2Km+1(k)k + χ1Km(k)Im+1(k)k + 1

+ mKm(k)Im(k)(χ1 − χ2))Km+1(ka)− akχ1Km(k)Im(ka)(χ1 − χ2)

× (kKm+1(k)− mKm(k))Im+1(ka)− χ1Km(k)m(χ1 − χ2)(kKm+1(k)− mKm(k))

× (Im(ka))2 − Km(ka)χ1m(Im(k)χ2Km+1(k)k

+ χ1Km(k)Im+1(k)k + 1 + mKm(k)Im(k)(χ1 − χ2))Im(ka)+ Im(k)χ2Km+1(k)k

+ χ1Km(k)Im+1(k)k + 1 + mKm(k)Im(k)(χ1 − χ2)), (A10)
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f2 = Km(k)(Im(ka)Km(k)Im+1(ka)aχ1k + Im(ka)Im(k)Km+1(ka)aχ1k

+ (Im(ka))2Km(k)χ1m − Im(ka)Im(k)Km(ka)χ1m + Im(k)), (A11)

g = −(k(−aIm(ka)(Im(k)χ2Km+1(k)k + kKm(k)(1 + χ1)Im+1(k)+ 1 + Im(k)m(χ1

− χ2 + 1)Km(k))χ1kKm+1(ka)− a(−(χ1 − χ2)(kKm+1(k)− mKm(k))Im(ka)

+ Km(ka)(Im(k)m + Im+1(k)k))χ1kKm(k)Im+1(ka)+ χ1Km(k)m(χ1 − χ2)(kKm+1(k)

− mKm(k))(Im(ka))2 + Km(ka)χ1m(Im(k)χ2Km+1(k)k + χ1Km(k)Im+1(k)k + 1

+ mKm(k)Im(k)(χ1 − χ2))Im(ka)− Im(k)χ2Km+1(k)k + mKm(k)Im(k)χ2 − 1))−1.
(A12)

The constants c(i)1 , . . . , c(i)6 in (3.14) are as follows: c(2)1,3,5 = 0, and

c(1)1 = gFŜ(kK(m+1)(k)− mKm(k)), (A13)

c(1)2 = −gFŜ(−ak̄k2((−Km+1(k)k + mKm(k))Im(ka)+ Im(k̄a)(k̄Km+1(k̄)− mKm(k̄)))

× (Km+1(k̄a))2 + (−k̄ak2(k̄Km+1(k̄)− mKm(k̄))Im+1(k̄a)+ k̄2ak(Km+1(k)k

− mKm(k))Im+1(ka)+ m((k̄2 − 2k2)(Km+1(k)k − mKm(k))Im(ka)

− k̄Im(k̄a)(k̄Km(k̄)m − k2Km+1(k̄))))Km(k̄a)Km+1(k̄a)

− m(Km(k̄a))2k̄((k̄Km(k̄)m − k2Km+1(k̄))Im+1(k̄a)

+ Im+1(ka)k(Km+1(k)k − mKm(k))))× ((Km+1(k̄a))2Km(ka)k̄ak2

+ (−k̄2akKm+1(ka)+ Km(ka)m(k̄2 − 2k2))Km(k̄a)Km+1(k̄a)

+ (Km(k̄a))2Km+1(ka)k̄km)−1, (A14)

c(2)2 = −gFŜ(−ak̄((−Km+1(k)k + mKm(k))Im(ka)+ (−kIm+1(k)− mIm(k))Km(ka)

+ Im(k̄a)(k̄Km+1(k̄)− mKm(k̄)))k2(Km+1(k̄a))2 + Km(k̄a)(−k̄2ak(kIm+1(k)

+ mIm(k))Km+1(ka)− k̄ak2(k̄Km+1(k̄)− mKm(k̄))Im+1(k̄a)+ k̄2ak(Km+1(k)k

− mKm(k))Im+1(ka)+ m((k̄2 − 2k2)(kIm+1(k)+ mIm(k))Km(ka)+ (k̄2 − 2k2)

× (Km+1(k)k − mKm(k))Im(ka)− k̄Im(k̄a)(k̄Km(k̄)m − k2Km+1(k̄))))Km+1(k̄a)

− m(Km(k̄a))2k̄((−Im+1(k)k2 − kmIm(k))Km+1(ka)

+ (k̄Km(k̄)m − k2Km+1(k̄))Im+1(k̄a)+ Im+1(ka)k(Km+1(k)k − mKm(k))))

× ((Km+1(k̄a))2Km(ka)k̄ak2 + (−k̄2akKm+1(ka)

+ Km(ka)m(k̄2 − 2k2))Km(k̄a)Km+1(k̄a)+ (Km(k̄a))2Km+1(ka)k̄km), (A15)

c(1)3 = k̄gFŜ(ik̄Km+1(k̄)+ mKm)

(k̄2 − k2)
, (A16)
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c(1)5 = gFŜ
Km+1(k̄)k̄k2 + Km(k̄)m(k̄

2 − 2k2)

2k̄3 − 2k̄k2
, (A17)

c(1)4 = gFŜ(i((−a(Im(k̄a)(k̄Km+1(k̄)− mKm(k̄))

− Im(ka)(Km+1(k)k − mKm(k)))k̄
2kKm+1(ka)

+ (−k̄ak2(k̄Km+1(k̄)− mKm(k̄))Im+1(k̄a)+ k̄2ak(Km+1(k)k − mKm(k))Im+1(ka)

+ Im(k̄a)m(k̄ − k)(k̄ + k)(k̄Km+1(k̄)− 2mKm(k̄)))Km(ka))Km+1(k̄a)

− mKm(k̄a)k̄(−(Im(k̄a)(k̄Km+1(k̄)− mKm(k̄))

− Im(ka)(Km+1(k)k − mKm(k)))kKm+1(ka)

+ Km(ka)((k̄Km(k̄)m − k2Km+1(k̄))Im+1(k̄a)

+ Im+1(ka)k(Km+1(k)k − mKm(k)))))k)

× ((k̄ + k)((Km+1(k̄a))2Km(ka)k̄ak2 + (−k̄2akKm+1(ka)

+ Km(ka)m(k̄2 − 2k2))Km(k̄a)Km+1(k̄a)+ (Km(k̄a))2Km+1(ka)k̄km)(k̄ − k))−1,
(A18)

c(2)4 = gFŜ(ik(k̄Km(ka)ak2(k̄Im+1(k̄)+ mIm(k̄))(Km+1(k̄a))2 + (−ak̄2
((k̄Im+1(k̄)

+ mIm(k̄))Km(k̄a)+ Im(k̄a)(k̄Km+1(k̄)− mKm(k̄))− Im(ka)(Km+1(k)k

− mKm(k)))kKm+1(ka)+ Km(ka)(−k̄ak2(k̄Km+1(k̄)− mKm(k̄))Im+1(k̄a)

+ k̄2ak(Km+1(k)k − mKm(k))Im+1(ka)+ ((k̄2 − 2k2)(k̄Im+1(k̄)+ mIm(k̄))Km(k̄a)

+ Im(k̄a)(k̄ − k)(k̄ + k)(k̄Km+1(k̄)− 2mKm(k̄)))m))Km+1(k̄a)

+ mKm(k̄a)k̄(((k̄Im+1(k̄)

+ mIm(k̄))Km(k̄a)+ Im(k̄a)(k̄Km+1(k̄)− mKm(k̄))− Im(ka)(Km+1(k)k

− mKm(k)))kKm+1(ka)− Km(ka)((k̄Km(k̄)m − k2Km+1(k̄))Im+1(k̄a)

+ Im+1(ka)k(Km+1(k)k − mKm(k))))))× ((k̄ + k)((Km+1(k̄a))2Km(ka)k̄ak2

+ (−k̄2akKm+1(ka)+ Km(ka)m(k̄2 − 2k2))Km(k̄a)Km+1(k̄a)

+ (Km(k̄a))2Km+1(ka)k̄km)(k̄ − k))−1, (A19)

c(1)6 = gFŜ
(

−2
(

− a
2
(Im(k̄a)(k̄Km+1(k̄)− mKm(k̄))− Im(ka)(Km+1(k)k − mKm(k)))

× k̄2kKm+1(ka)+
(

− ak̄
2
(Km+1(k̄)k̄k2 + Km(k̄)m(k̄

2 − 2k2))Im+1(k̄a)

+ k̄2ak
2
(Km+1(k)k − mKm(k))Im+1(ka)

942 A20-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

32
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.324


Linear stability of a ferrofluid centred around a wire

+ Im(k̄a)m(k̄ − k)(k̄ + k)(k̄Km+1(k̄)− 2mKm(k̄))
)

Km(ka)
)

k2Km+1(k̄a)

+ mKm(k̄a)(−(k̄Km(k̄)a(k̄ − k)(k̄ + k)Im+1(k̄a)+ (Km+1(k̄)k̄k2

+ Km(k̄)m(k̄
2 − 2k2))Im(k̄a)− k̄2

(Km+1(k)k − mKm(k))Im(ka))kKm+1(ka)

+ k̄2Km(ka)((k̄Km(k̄)m − k2Km+1(k̄))Im+1(k̄a)

+ Im+1(ka)k(Km+1(k)k − mKm(k))))k̄
)

× ((2k̄ + 2k)k̄((Km+1(k̄a))2Km(ka)k̄ak2 + (−k̄2akKm+1(ka)+ Km(ka)m(k̄2

− 2k2))Km(k̄a)Km+1(k̄a)+ (Km(k̄a))2Km+1(ka)k̄km)(k̄ − k))−1, (A20)

c(2)6 = gFŜ(ak̄(−k̄Im+1(k̄)k2 + mIm(k̄)(k̄
2 − 2k2))Km(ka)k2(Km+1(k̄a))2

+ (−ak̄2k((−k̄Im+1(k̄)k2 + mIm(k̄)(k̄
2 − 2k2))Km(k̄a)

− (Im(k̄a)(k̄Km+1(k̄)− mKm(k̄))

− Im(ka)(Km+1(k)k − mKm(k)))k2)Km+1(ka)+ Km(ka)(ak̄(Km+1(k̄)k̄k2

+ Km(k̄)m(k̄
2 − 2k2))k2Im+1(k̄a)− k̄2ak3(Km+1(k)k − mKm(k))Im+1(ka)

+ m((k̄2 − 2k2)(−k̄Im+1(k̄)k2 + mIm(k̄)(k̄
2 − 2k2))Km(k̄a)

− 2Im(k̄a)k2(k̄ − k)(k̄ + k)(k̄Km+1(k̄)− 2mKm(k̄)))))Km+1(k̄a)

+ mKm(k̄a)k̄(−(k̄Km(k̄)a(k̄ − k)(k̄ + k)Im+1(k̄a)

+ (k̄Im+1(k̄)k2 − mIm(k̄)(k̄
2 − 2k2))Km(k̄a)

+ (Km+1(k̄)k̄k2 + Km(k̄)m(k̄
2 − 2k2))Im(k̄a)

− k̄2
(Km+1(k)k − mKm(k))Im(ka))kKm+1(ka)

+ k̄2Km(ka)((k̄Km(k̄)m − k2Km+1(k̄))Im+1(k̄a)

+ Im+1(ka)k(Km+1(k)k − mKm(k)))))

× ((2k̄ + 2k)k̄((Km+1(k̄a))2Km(ka)k̄ak2 + (−k̄2akKm+1(ka)

+ Km(ka)m(k̄2 − 2k2))Km(k̄a)Km+1(k̄a)+ (Km(k̄a))2Km+1(ka)k̄km)(k̄ − k))−1.
(A21)

In the highly viscous limit, sv is given by (3.32), where

fv = − 1
2k2

(
2
((

kIm+1(k)− 1
2
(k2 + m2 − 2 m)Im(k)

)
kKm+1(k)

+ 1
2

Km(k)(k2 + m2 − 2 m)(kIm+1(k)+ 2Im(k)m)
)

a2k2(Km+1(ka))3

+ a(−2ka((Km+1(k))2k2 + kKm(k)(k2 + m2 − 2 m)Km+1(k)− m(Km(k))2
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× (k2 + m2 − 2 m))Im+1(ka)+ (k2(a2k2 + m2 − 2 m)(Km+1(k))2 − 2mKm(k)

× ((a2 + 1)k2 + 2m2 − 4 m)kKm+1(k)+ (Km(k))2(k4 + m2(a2 + 4)k2 + 4m4

− 8m3))Im(ka)− 6
(
(kIm+1(k)− 1

2
Im(k)(k2 + m2 − 2 m))kKm+1(k)

+ 1
2

Km(k)(k2 + m2 − 2 m)(kIm+1(k)+ 2Im(k)m)
)
(m + 2/3)Km(ka))k(Km+1(ka))2

+ Km(ka)(((a2k2 + (m + 2)2)k2(Km+1(k))2 − 2Km(k)((a2m − 2m − 2)k2 − m3

+ 4 m)kKm+1(k)+ (Km(k))2(k4 + ((a2 − 2)m2 − 4 m)k2 − 2m4 + 8m2))akIm+1(ka)

+ (−k2(m + 2)(a2k2 + m2 − 2 m)(Km+1(k))2 − 2Km(k)(a2k4

+ (−2a2m − m2 − 2 m)k2 − 2m4 + 8m2)kKm+1(k)+ 2 m
((

a2 − 1
2

)
k4

+
(

1
2

a2m2 − a2m − 2m2 − 4 m
)

k2 − 2m4 + 8m2
)
(Km(k))2)Im(ka)

− 2
((

kIm+1(k)− 1
2

Im(k)(k2 + m2 − 2 m)
)

kKm+1(k)

+ 1
2

Km(k)(k2 + m2 − 2 m)(kIm+1(k)+ 2Im(k)m)
)

× (a2k2 − 2m2 − 4 m)Km(ka))Km+1(ka)− m(((a2k2 + (m + 2)2)(Km+1(k))2

− 2kKm(k)(a2m − m − 2)Km+1(k)

+ (k2 + a2m(m − 2))(Km(k))2)kIm+1(ka)− 2a(((Km+1(k))2k2 + kKm(k)(k2 + m2

− 2 m)Km+1(k)− m(Km(k))2(k2 + m2 − 2 m))Im(ka)

+
((

kIm+1(k)− 1
2

Im(k)(k2 + m2 − 2 m)
)

kKm+1(k)

+ 1
2

Km(k)(k2 + m2 − 2 m)(kIm+1(k)+ 2Im(k)m)
)

Km(ka)))(Km(ka))2k
)

× (−k2a2(Km+1(ka))3 + 3(m + 2/3)Km(ka)ak(Km+1(ka))2

+ (Km(ka))2(a2k2 − 2m2 − 4 m)Km+1(ka)− ka(Km(ka))3m)−1. (A22)

In this inviscid limit, sI is given by (3.33), where

fI = ((ka(kIm+1(k)

+ Im(k)m)Km+1(ka)− ka(kKm+1(k)− mKm(k))Im+1(ka)− m((kKm+1(k)

− mKm(k))Im(ka)+ Km(ka)(kIm+1(k)+ Im(k)m)))(kKm+1(k)− mKm(k)))

× 1
(Km+1(ka)ak − Km(ka)m)

. (A23)
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