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We present an experimental study of the large-scale vortex (or large-scale circulation,
LSC) in turbulent Rayleigh–Bénard convection in a Γ = diameter/height = 2 cylindrical
cell. The working fluid is deionized water with Prandtl number (Pr) around 5.7, and
the Rayleigh number (Ra) ranges from 7.64 × 107 to 6.06 × 108. We measured the
velocity field in various vertical cross-sectional planes by using the planar particle image
velocimetry technique. The velocity measurement in the LSC central plane shows that the
flow is in the single-roll form, and the centre of the single-roll (vortex) does not always
stay at the centre of the cell; instead, it orbits periodically in the direction opposite to
the flow direction of the LSC, with its trajectory in the shape of an ellipse. The velocity
measurements in the three vertical planes in parallel to the LSC central plane indicate that
the flow is in the vortex tube form horizontally filling almost the whole cell, and the centre
line of the vortex tube is consistent with the so-called ‘jump rope’ form proposed by a
previous study that combined numerical simulation and local velocity measurements in the
low Pr case (Vogt et al., Proc. Natl Acad. Sci. USA, vol. 115, 2018, pp. 12674–12679). In
addition, we found that the oscillation of the local velocity in Γ = 2 cells originates from
the periodical orbiting of the vortex centre. Our velocity measurements further indicate
that the vortex centre orbiting is absent in Γ = 1 cells, at least in the Ra range of our
experiments.

Key words: Bénard convection, plumes/thermals, turbulent convection

1. Introduction

Due to its important role in the study of buoyancy-driven turbulence, as well as the
relevance to free convection occurring in geophysical and astrophysical systems, the
simple yet paradigmatic Rayleigh–Bénard convection (RBC) attracts a large number of
interests (Siggia 1994; Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chilla &
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Schumacher 2012; Xia 2013). In RBC, heat is supplied at the bottom and taken away at
the top of the fluid layer. The control parameters of the system are the Rayleigh number
Ra = αg �T H3/κν representing the magnitude of buoyancy-driven force, the Prandtl
number Pr = ν/κ describing the fluid properties, and the aspect ratio of the convection
cell Γ = D/H. Here, g is the gravitational acceleration, H and D are the height and
diameter of the upright cylindrical convection cell, �T is the temperature difference across
the fluid layer, and α, κ and ν are respectively the thermal expansion coefficient, thermal
diffusivity and kinematic viscosity of the working fluid.

A fascinating feature of RBC is the existence of the large-scale circulation (LSC) (or
vortex) that spans the size of the convection cell (Krishnamurti & Howard 1981; Castaing
et al. 1989; Xi, Lam & Xia 2004; Zhu et al. 2019). The LSC, which originates from the
self-organization of the thermal plumes that stem from both top and bottom boundary
layers, is of great importance because it controls the heat and momentum transfer of
the system. Most of the previous studies of the LSC focused on the Γ = 1 cylindrical
cell due to its simplicity in cell geometry. The LSC (the quasi-two-dimensional vertical
structure) has been investigated extensively for its copious flow dynamics, such as the
azimuthal motion (Brown, Nikolaenko & Ahlers 2005; Xi, Zhou & Xia 2006), cessation
(Brown et al. 2005; Xi & Xia 2008), reversal (Niemela et al. 2001; Xi & Xia 2007, 2008;
Sugiyama et al. 2010; Verma & Mahendra 2013; Ni, Huang & Xia 2015; Wang et al. 2018;
Castillo-Castellanos et al. 2019; Chen et al. 2019; Chen, Wang & Xi 2020; Xu, Chen
& Xi 2021), torsional (Funfschilling & Ahlers 2004; Funfschilling, Brown & Guenter
2008; Xi & Xia 2008; Zhou et al. 2009) and sloshing motions (Xi et al. 2009; Zhou
et al. 2009; Brown & Ahlers 2009; Zürner et al. 2019; Zwirner et al. 2019). However,
ubiquitous convections occurring in nature are of larger aspect ratio, such as convection in
the mantle and outer core of the Earth, in the atmosphere, in the ocean and in the Sun. And
it is still unclear whether the conclusions drawn from the small aspect ratio convection
can be extended directly to the more frequently occurring larger aspect ratio cases. In
addition, previous findings indicated that the large-scale flow structure would go through
a transition from the single-roll form to the multi-roll form around the aspect ratio Γ = 2,
which motivates us to explore this interesting coherent structure that is directly related to
the heat and momentum transfer in this special geometry regime (Naert, Segawa & Sano
1997; Qiu & Tong 2001a; Qiu et al. 2004; Funfschilling et al. 2005; Sun et al. 2005a;
Tsuji et al. 2005; du Puits, Resagk & Thess 2007; Xia, Sun & Cheung 2008; Bailon-Cuba,
Emran & Schumacher 2010; Vogt et al. 2018).

Previous experiments with local velocity measurements through laser Doppler
velocimetry (LDV) (Qiu & Tong 2001a) reveal that the flow in the Γ = 2 cylindrical
cell is in the single-roll form. And this result is confirmed by later experiments and
numerical simulations (Sun et al. 2005a; Bailon-Cuba et al. 2010), while a later study
with LDV local velocity measurements shows that the single-roll structure breaks down
into two side-by-side rolls when Γ is increased to 1.68 (du Puits et al. 2007). Recently,
a study combining the numerical simulation and local velocity measurements (through
an ultrasonic Doppler technique) in low-Pr fluid (liquid gallium) proposes that the flow
takes a very different form, called the ‘jump rope’ mode (Vogt et al. 2018). Their
simulation results further suggested that the newly observed ‘jump rope’ motion also
exists at moderate Pr such as in water, but with a much weaker signal. To make a decisive
conclusion on whether the LSC in Γ = 2 cells takes the form of a quasi-two-dimensional
single-roll form or the so-called ‘jump rope’, or already breaks down, a direct measurement
of the three-dimensional flow structure in the Γ = 2 cylindrical cell is crucial.
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In this work, we systematically investigate the dynamics of the three-dimensional
structure of the large-scale flow in a Γ = 2 cylindrical cell by measuring the velocity
field in different vertical cross-sectional planes using the particle image velocimetry
(PIV) technique. The rest of this paper is organized as follows. In § 2, we describe the
experimental conditions. In § 3, we present the flow structures measured in different
vertical planes, and analyse the orbiting of the vortex centre, followed by a discussion on
the velocity oscillations at the centre of the cell. In § 4, we summarize the main findings
of this work.

2. Experimental set-up

The convection cell is similar to those used in previous experiments (Xi et al. 2016). It is
an upright cylindrical cell with inner diameter D = 190 mm and height H = 95 mm, so
the aspect ratio is Γ = D/H � 2. Both the top and bottom plates are made of copper
of thickness 3.5 cm, and the side wall is a Plexiglas cylinder of thickness 0.5 cm. A
refrigerated circulator (PolyScience, PP15R-40-A12Y) is used to adjust the temperature
at the top plate. The resistive film heaters heat the bottom plate with constant power input.
The temperatures of the top and bottom plates are measured by nine thermistors (Omega
44031) of diameter 2.5 mm embedded in the plates, and they are nearly 2 mm away from
the fluid–solid interface. Four of them are evenly distributed azimuthally in 90◦ intervals
and embedded in the half-radius from the centre of the plate in the top/bottom plate. In the
bottom plate, there is an extra thermistor that is embedded at the centre of the plate.

To reduce the distortion effect on the PIV images caused by the curvature of the side wall
of the cylindrical cell, a rectangular-shaped jacket made of 3 mm thick Plexiglas plates is
glued to the outside of the cylindrical cell and is filled with deionized water. Because of
the presence of the jacket, the measured area is slightly smaller than the cell in the vertical
direction (80 mm, versus the actual height of the cell, 95 mm), thus the region near the
boundary layer cannot be detected in the PIV measurement.

Deionized water is used as the working fluid, and during the whole experiment
we keep the mean bulk temperature at T̄ = 28◦C. The corresponding thermal
expansion coefficient α, kinematic viscosity ν, and thermal diffusivity κ of water
are, respectively, 2.85 × 10−4 K−1, 8.36 × 10−7 m2s−1 and 1.47 × 10−7 m2s−1. Here,
T̄ = (Ttop + Tbottom)/2 and Ttop (Tbottom) is the temperature of the top (bottom) plate,
with corresponding Prandtl number Pr ≈ 5.7. The Rayleigh number varies in the range
7.64 × 107 ≤ Ra ≤ 6.06 × 108, hence covering almost an order of magnitude. During the
experiments, the cell is tilted by 2◦ (as shown in figure 1), thus the central LSC plane
(d‖ = 0 plane) is locked in the vertical axial plane containing the position where the cell is
tilted. The velocity fields in the five vertical cross-sections of the cell are measured by the
planar PIV system (Dantec Dynamics); three of them are in or parallel to the LSC central
plane (i.e. d‖ = 0, d‖ = 0.5r and d‖ = 0.95r), and the other two are perpendicular to the
LSC central plane (i.e. d⊥ = 0 and d⊥ = 2r/3), as shown in figure 1. Here, d‖ and d⊥ are
the distances to the vertical axis of the cylindrical cell. The PIV velocity measurements
in the LSC central plane (d‖ = 0) were performed at six Ra (7.64 × 107, 1.55 × 108,
3.17 × 108, 4.45 × 108, 4.97 × 108 and 6.06 × 108), while in the other planes the velocity
measurements were performed at three Ra (7.64 × 107, 3.17 × 108 and 6.06 × 108). The
obtained results are qualitatively the same for different Ra, thus, unless stated otherwise,
only those for Ra = 6.06 × 108 are presented below.
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d|| = 0.5r

d|| = 0.95r
d|| = 0

d⊥ = 0

d⊥ = 2r/3
Tilt 2°

Figure 1. Sketch of the convection cell and the five planes where the planar PIV velocity measurements
are conducted. The cell is tilted by 2◦, and d‖ = 0 is the central plane of the LSC. The planar PIV velocity
measurements were conducted in the d‖ = 0 plane and two planes (d‖ = 0.5r and d‖ = 0.95r) in parallel to
the d‖ = 0 plane, and two planes (d⊥ = 0 and d⊥ = 2r/3) perpendicular to the d‖ = 0 plane.

3. Results and discussion

3.1. Mean velocity field
We first show the flow fields measured by the planar PIV in the planes parallel to the LSC
central plane. In each plane, the measurement lasts for at least two hours (corresponding
to 42–110 orbiting periods of the vortex centre for different Ra – see § 3.2 for details) such
that at least 7200 velocity maps were acquired with the sampling rate of 1 Hz. Figure 2
shows the long-time-averaged velocity map measured in the three vertical planes that are
in or parallel to the LSC central plane at Ra = 6.06 × 108. From figure 2(a), we can see
that the flow in the LSC central plane (d‖ = 0) is in the single-roll form with its horizontal
size being two times its vertical size, and no prominent corner rolls are observed. From the
magnitude of the velocity in figure 2(a), we can see that the maximum velocity appears
near the top and bottom plates, which is consistent with previous measurements by LDV
(Qiu & Tong 2001a). And this is different from the case in the Γ = 1 cells where the
largest velocity appears near the mid-height of the vertical side wall (Sun, Xia & Tong
2005b). The reason is that in the Γ = 2 cells, the horizontal flow near the conducting
surfaces takes up less space than the vertical flow near the side wall; according to mass
conservation, the horizontal and vertical flows must carry the same amount of fluid, as the
horizontal flow near the conducting surfaces takes up less space, the flow velocity must be
larger.
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Figure 2. Long-time-averaged PIV velocity map in the three parallel vertical planes: (a) d‖ = 0, (b) d‖ = 0.5r,
and (c) d‖ = 0.95r, at Ra = 6.06 × 108. The magnitude of the velocity

√
U2 + W2 is coded in both the colour

of the map and the lengths of the arrows, in units of cm s−1. The time average is performed over a period of
two hours, corresponding to 110 times the period of the orbiting of the vortex centre.

Figures 2(b) and 2(c) present the averaged velocity field in the d‖ = 0.5r plane and the
d‖ = 0.95r plane, respectively. It is found that in those two planes that are far away from
the cell centre, the flow is still in the form of a single roll, which implies that the width
of the LSC band is at least 0.95D. This is very different from the case in the Γ = 1 cells
where the width of the LSC is about half of the diameter of the convection cell (Lui & Xia
1998; Sun et al. 2005b; Xi & Xia 2008). Although the flow patterns in the three planes
are very similar to each other, the magnitude of the velocity gradually decreases when it
is farther away from the cell vertical axis. Another feature that we observed is that the
long axis of the ellipse-shaped large-scale structure is along the horizontal direction in
the d‖ = 0 and d‖ = 0.5r planes (figures 2a and 2b), while in the d‖ = 0.95r plane the
ellipse-shaped single-roll structure is slightly tilted, which may be due to the confinement
of the side wall in this plane.

We noticed that there is a slight up–down asymmetry of the flow strength in the
long-time-averaged flow field as shown in figures 2(a) and 2(b). We would attribute this
asymmetry to the imperfections in experiments. Two possible factors account for the
imperfections. First, as we mentioned in § 2, in order to reduce the distortion caused by
the curvature of the side wall, we have to use a rectangular-shaped jacket whose height
is smaller than the height of the cell (80 mm versus 95 mm). Due to the existence of the
jacket, there are small regions near the end plates that cannot be measured by the PIV.
Besides, the possible slight misalignment of the camera to the region of measurement
could also introduce the asymmetry shown in the velocity field. Despite the slight
asymmetry, we believe that it does not affect the conclusions of this paper.

3.2. Orbiting of the vortex centre
Although the long-time-averaged velocity fields in the planes parallel to the LSC central
plane are in the single-roll form with the vortex centre at the centre of the plane, the
instantaneous velocity fields show that the centre of the LSC actually undergoes periodical
orbiting around the centre of the plane, and the direction of the orbiting is opposite to the
flow direction of the LSC. The periodical orbiting can be seen clearly from the time trace
of the position (X0, Z0) of the vortex centre shown in figure 3(a), where both the x and
z coordinates of the vortex centre exhibit very clear periodicity. Here the position of the
vortex centre is identified manually from the instantaneous PIV velocity map. While in
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Figure 3. Time trace of the position of the vortex centre measured in the three parallel vertical planes:
(a) d‖ = 0, (b) d‖ = 0.5r, and (c) d‖ = 0.95r, at Ra = 6.06 × 108 in the Γ = 2 cell. For comparison, (d) shows
the time trace of the position of the vortex centre in the d‖ = 0 plane in the Γ = 1 cell at Ra = 5.25 × 109.

the d‖ = 0.5r plane, the periodicity of the position of the vortex centre is not visible and
in this plane the motion of the vortex centre is confined in a smaller range, as shown in
figure 3(b). And when we examine the time trace of the vortex centre in the d‖ = 0.95r
plane, the periodicity appears again as shown in figure 3(c). To compare the current results
in Γ = 2 cells with those in Γ = 1 cells, we also performed PIV measurements in the
d|| = 0 plane in a Γ = 1 cell and find that the time trace of the position of the vortex
centre does not show appreciable periodicity; in addition, the motion of the vortex centre
is confined in a very small area as shown in figure 3(d) (the r.m.s. values of the position
of the vortex centre are 1.49 cm in the x direction and 1.66 cm in z direction, compared to
the values 3.92 cm, 2.17 cm in the d|| = 0 plane in Γ = 2 cells).

The periodicity of the orbiting of the vortex centre in the d‖ = 0 and d‖ = 0.95r planes
is also evidenced statistically by the autocorrelation of the position of the vortex centre in
the x and z directions, as shown in figures 4(a) and 4(c). The autocorrelation of the position
of the vortex centre in the d‖ = 0.5r plane shows very weak periodicity (figure 4b), and
the autocorrelation of the position of the vortex centre in the d‖ = 0 plane in Γ = 1 cells
shows almost no periodicity (figure 4d), which are consistent with the time traces shown
in figure 3. In figure 4(e), we show the period of the vortex centre orbiting τ as a function
of Ra; with τ = 776247.12 Ra−0.46±0.01, the scaling exponent is in agreement with that
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Figure 4. Autocorrelation of the time trace of the position of the vortex centre measured in the three parallel
vertical planes: (a) d‖ = 0, (b) d‖ = 0.5r, and (c) d‖ = 0.95r, at Ra = 6.06 × 108 in the Γ = 2 cell. For
comparison, the autocorrelation of the time trace of the position of the vortex centre in the d‖ = 0 plane in
the Γ = 1 cell at Ra = 5.25 × 109 is also plotted in (d). Panels (e) and ( f ) show the period of the orbiting of
the vortex centre τ and the Reynolds number based on τ (Re = H2/(τκ)), as functions of Ra.

of the turnover time of the LSC obtained from the autocorrelation/cross-correlation of the
temperature signals in previous studies (Sun & Xia 2005). We also defined a Reynolds
number Re = H2/(τκ) (or Re = H2f0/κ , where f0 = 1/τ ) based on the period of the
vortex centre orbiting τ . It is found that Re increases with Ra as Re Pr = 0.08 Ra0.46, as
shown in figure 4( f ). The scaling exponent obtained in our experiments agrees well with
the previous results obtained also at moderate Pr (in water) where the Reynolds number
is based on the oscillation frequency of the local velocity (Qiu & Tong 2001b; Qiu et al.
2004), while compared to the results at smaller Pr (Pr ≈ 0.027 in liquid gallium, and the
Reynolds number is also obtained from the oscillation frequency of the local velocity),
Re Pr = 0.027 Ra0.419 (Vogt et al. 2018), our scaling exponent is slightly larger.

To better present the periodical orbiting of the vortex centre, we show in figure 5
the phase-averaged PIV velocity maps at phases t0, t0 + τ/6, t0 + τ/3, t0 + τ/2, t0 +
2τ/3 and t0 + 5τ/6, at Ra = 6.06 × 108. The corresponding movie can be viewed as
supplementary movie 1, available at https://doi.org/10.1017/jfm.2022.11. Here τ is the
period of the orbiting of the vortex centre as is indicated in figure 4. The phase
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Figure 5. Phase-averaged PIV velocity maps measured in the central vertical plane of the convection cell
(d‖ = 0) at phases t0, t0 + τ/6, t0 + τ/3, t0 + τ/2, t0 + 2τ/3, t0 + 5τ/6, respectively, for Ra = 6.06 × 108.
The magnitude of the velocity

√
U2 + W2 is coded in both colour and the lengths of the arrows (units of

cm s−1). The value t0 is the starting time of a new period, and τ is the period of the orbiting of the vortex
centre. The dashed lines denoted by ‘A’ and ‘B’ (in a and d) show the two planes perpendicular to d‖ = 0,
namely d⊥ = 0 and d⊥ = 2r/3, where the PIV measurements are also conducted. The cell is tilted by 2◦ at the
left, as shown in the figure.

average is calculated as follows. Suppose that in one period of the vortex centre orbiting
we have captured m velocity maps. We then take the average of the velocity maps
numbered 1, m + 1, 2m + 1, 3m + 1, . . . as the phase-averaged velocity map at t0, and
similarly, the average of the velocity maps numbered 2, m + 2, 2m + 2, 3m + 2, . . . as the
phase-averaged velocity map at t0 + τ/m; in this way, the phase-averaged velocity maps in
the whole period are obtained. It is seen from the figure that the centre of the big vortex is
located on the left of the plane at phase t = t0 (figure 5a); after approximately τ /6, it moves
to the lower left of the plane (figure 5b); it keeps going and arrives at the lower middle
of the plane at t0 + τ/3 (figure 5c); the vortex centre then goes to the middle right of the
plane (figure 5d), then the upper right of the plane (figure 5e), then the upper middle of
the plane (figure 5f ); and finally it goes back to the position where it was at t = t0. Clearly,
the centre of the vortex moves in the counter-clockwise direction, which is opposite to the
flow direction of the LSC.
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Figure 6. Trajectory of the vortex centre in the three parallel vertical planes: (a) d‖ = 0, (b) d‖ = 0.5r, and
(c) d‖ = 0.95r, at Ra = 6.06 × 108 in the Γ = 2 cell. And (d) shows the trajectory of the vortex centre in the
d‖ = 0 plane in the Γ = 1 cell at Ra = 5.25 × 109. The dashed lines in (b) and (c) show the side wall. The
arrows show the direction of the vortex centre motion, and the colour represents the phase of the trajectory.

In order to study quantitatively the orbiting of the vortex centre, we manually identified
the centre of the vortex from the phase-averaged PIV velocity maps, and obtained the
trajectories of the vortex centre in the d‖ = 0, d‖ = 0.5r and d‖ = 0.95r planes. Figure 6
shows the trajectory of the vortex centre measured in the three planes for Ra = 6.06 × 108.
In the figure, the arrows show the direction of the vortex centre motion, and the colour
represents the phase of the trajectory. In the d‖ = 0 plane, where the measured section is
the largest, the vortex centre orbits within a large ellipse loop, as shown by the coloured
elliptical trajectory. In the d‖ = 0.5r plane, the trajectory is confined in a much smaller
ellipse as shown in figure 6(b). In the d‖ = 0.95r plane, it is found that the vortex centre
orbits within an ellipse loop that is similar to the case in the d‖ = 0 plane, but the size of
the ellipse is smaller than that in the d‖ = 0 plane. We can also see from the figure that
the motion of the vortex centre is in the counter-clockwise direction, which is opposite to
the flow direction of the LSC. And the direction of the motion of the vortex centre is the
same in all the three planes that we have measured.

Taking all the measurements in the three planes, we come to the conclusion that the
centre of the large-scale circulation (or the big vortex) is not fixed at the plane centre;
rather, it orbits periodically around the plane centre. In the d‖ = 0 plane (the plane
containing the vertical axis of the cell), the radius of the orbit of the vortex centre is largest;
when it is away from the vertical axis of the cell, the radius of the orbit decreases, and
reaches a minimum around d‖ = 0.5r; then the radius of the orbit increases when it gets
further away from the vertical axis of the cell. The decrease and increase of the magnitude
of the orbiting of the vortex centre reveals that the LSC is not a two-dimensional narrow
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band, its thickness is as large as the size of the cell diameter. The central part of the LSC
forms a vortex tube, and the centre line of the vortex tube is curved rather than straight.
Previously, it was found that the large-scale circulation contains a ‘jump rope’ mode (Vogt
et al. 2018); now with the planar PIV measurements in the three parallel planes, it is
clear that the so-called ‘jump rope’ mode actually is the orbiting of the centre line of the
vortex tube, and the magnitude of the orbiting is largest near the centre of the convection
cell, decreases, and then increases along the radius. The minimum orbiting radius implies
that the axis of rotation of the ‘jump rope’ is roughly at the centre of the d‖ = 0.5r
plane. Previously, combining both the multi-point ultrasonic velocity measurements and
numerical simulation, Vogt et al. (2018) showed that the ‘jump rope’ exists in the low-Pr
convection in the cell with aspect ratio

√
2 < Γ < 2. Here in RBC at moderate Pr, the

two-dimensional velocity measurements in different planes enable us to reconstruct the
three-dimensional flow structure, and directly show that the essence of the ‘jump rope’
mode is the orbiting of the vortex centre.

To see whether this orbiting of the vortex centre also exists in the Γ = 1 cylindrical cell,
we also performed planar PIV velocity measurements in a Γ = 1 cell. It is found that for
the Γ = 1 cell in the d‖ = 0 plane, the position of the vortex centre is concentrated at the
centre of the plane, which implies that the vortex centre stays at the centre of the plane,
without any orbiting. This is confirmed by the random and low magnitude of the trajectory
of the vortex centre obtained by the phase-averaged velocity maps shown in figure 6(d).
The non-periodicity and very small amplitude of the motion of the vortex centre imply
that the periodical orbiting of the vortex centre does not exist in Γ = 1 cells, at least at
the Ra of our experiment (Ra = 5.25 × 109). It is very likely the case that the periodical
orbiting of the vortex centre does not exist in the Γ = 1 cell at other Ra, as it was not
reported in the vast amounts of literature about the LSC in the Γ = 1 cell. The reason
why the orbiting of vortex centre exists only in Γ = 2 cells but not in Γ = 1 cells is not
known to us. One speculation is that the interaction between the plumes erupting from the
top/bottom plate with this specific cell height (Γ ) meets the criteria for stable periodical
orbiting to occur.

3.3. Flow field in the planes perpendicular to the LSC
We then explore the flow field in the two planes perpendicular to the LSC central plane,
namely d⊥ = 0 and d⊥ = 2r/3, where 0 and 2r/3 are the distances to the vertical axis
of the cell. The two planes are also marked by ‘B’ and ‘A’ in figures 5(a) and 5(d).
Figures 7(a) and 7(b) show the phase-averaged PIV velocity maps measured in the d⊥ = 0
plane for Ra = 6.06 × 108 at t = t0 and t = t0 + τ/2. It is found that it contains a pair of
side-by-side vortices with opposite rotating directions. And these two vortices reverse their
rotating directions periodically with the period τ , which is the same as the period of the
orbiting of the centre of the LSC. At t = t0, the left vortex is rotating in the clockwise
direction and the right one is rotating in the counter clockwise direction, thus the fluid at
the middle descends and the fluid on both sides ascends (figure 7a); after τ/2, the rotating
directions of the two vortices reverse, and as a result the fluid at the middle ascends and
the fluid on both sides descends (figure 7b). This periodical reversal of the flow direction
of the two vortices is actually caused by the periodical orbiting of the centre of the LSC,
as evidenced in figures 5(a) and 5(d). One can see that: at t = t0 the centre of the vortex
moves to the left-hand side of the cell, at the centre of the cell along the vertical line
marked by ‘B‘ the flow is descending; and when it comes to t = t0 + τ/2, the centre of the
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Figure 7. Phase-averaged velocity field in the planes perpendicular to the LSC central plane at Ra=6.06×108:
(a,b) in the d⊥ = 0 plane at t = t0 and t = t0 + τ/2, respectively; (c,d) in the d⊥ = 2r/3 plane at t = t0 and
t = t0 + τ/2, respectively. The magnitude of the vertical component (W) or the horizontal component (V)
of the velocity in the plane is coded by colour, in units of cm s−1. The lengths of the arrows represent the
magnitudes of velocity

√
V2 + W2.

vortex moves to the right-hand side of the cell, and the flow becomes ascending along the
line marked by ‘B’.

Previously in the convection of low-Pr fluid (liquid metal) in a Γ = 2 cell, Vogt et al.
(2018) made velocity measurements along a chord in the mid-height horizontal plane
and 2r/3 away from the vertical axis of the cell by using ultrasonic Doppler velocimetry
(UDV). It is found that along this line, the fluid is periodically changing from diverging
from the LSC central plane and then converging back towards it. To make a quantitative
comparison with these results, we made a PIV velocity measurement in our system in
the d⊥ = 2r/3 plane, denoted by ‘A’ in figures 5(a) and 5(d). It is seen that the flow
diverges to both sides from the middle of the plane at t = t0 (figure 7c); after τ/2, the
flow converges to the middle of the plane from both sides of the plane (figure 7d). Note
that the middle line of the d⊥ = 2r/3 plane is also in the LSC central plane (d‖ = 0
plane). Thus the divergence and then convergence of the flow are consistent with the
results in the low-Pr fluid (Vogt et al. 2018). The periodical diverging and converging
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flow measured here actually originates from the periodical orbiting of the vortex centre.
When the vortex centre moves from the top right corner to the bottom left corner, as shown
in figures 5(e), 5( f ) and 5(a), the ascending fluid on the left of the cell is pushed to the
left and spread, resulting in the diverging flow field observed from the PIV velocity map
shown in figure 7(c). On the other hand, when the vortex centre moves from the bottom
left corner to the top right corner as shown in figure 5(b–e), the ascending fluid on the left
of the cell is pulled to the right, resulting in the converging flow field observed from the
PIV velocity map shown in figure 7(d).

To compare the flow strength parallel and perpendicular to the LSC central plane, we
plotted in figure 8 the phase-averaged PIV velocity map in the three parallel vertical
planes where the magnitude of vertical component (W) of the velocity in the plane is
coded by colour. As shown in figure 8, in the d‖ = 0, d‖ = 0.5r and d‖ = 0.95r planes,
the maximum velocities (the W component) of the phase-averaged velocity fields are
approximately 0.8 cm s−1, 0.8 cm s−1 and 0.7 cm s−1, which are much larger than that
in the d⊥ = 0 plane, where the maximum velocity (the W component) is about 0.5 cm s−1

(as shown in figure 7). Our study shows clearly that the flow in the planes parallel to
the LSC central plane dominates over that in the planes perpendicular to the LSC central
plane.

3.4. The oscillation of the local velocity
The orbiting of the vortex centre is also evidenced by the variation of the local velocity at
the centre of the d‖ = 0 and d‖ = 0.95r planes. Figure 9 shows the probability density
functions (PDFs) of the normalized horizontal and vertical velocities at the centre of
the d‖ = 0, d‖ = 0.5r and d‖ = 0.95r planes. It is seen that the PDF of the horizontal
component of velocity u at the centre of the d‖ = 0 plane (figure 9a) shows two peaks;
one peak is positive and the other is negative, which means that there are two probable
flow direction at the plane centre, one is pointing to the left and the other is pointing to the
right. This double-peak distribution of u is due to the motion of the vortex centre: when
the vortex centre is above the mid-height plane of cell, the direction of horizontal velocity
at the plane centre is pointing to the left; when the vortex centre is below the mid-height
plane of cell, the direction of horizontal velocity at the plane centre is pointing to the right.
This left-pointing and right-pointing horizontal velocity at the centre appears periodically
and alternately due to the periodical orbiting of the centre of the vortex, thus u shows the
double-peak distribution. Similarly, when the vortex centre is at the left of cell centre, the
direction of vertical velocity at the plane centre is pointing up; when the vortex centre
is at the right of the cell centre, the direction of vertical velocity at the plane centre is
pointing down. This up-pointing and down-pointing vertical velocity at the centre appears
periodically and alternately due to the periodical orbiting of the centre of the vortex, thus
w shows the double-peak distribution, as shown in figure 9(b). Despite the similar form,
the double peak is clearer in the PDF of u, as in the Γ = 2 cell the horizontal velocity
dominates the vertical counterpart. The PDFs of u and w measured at the centre of the
d‖ = 0.95r plane (figures 9e and 9f ) are similar to those in the d‖ = 0 plane. On the other
hand, the PDFs of u and w measured at the centre of the d‖= 0.5r plane do not show
an appreciable double-peak feature (figure 9c), which is consistent with the fact that the
motion of the vortex centre in the d‖ = 0.5r plane is confined in a much smaller range,
and the ‘supporting point’ of the ‘jump rope’ motion is around the centre of the d‖ = 0.5r
plane.
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Figure 8. Phase-averaged velocity field in the planes parallel to the LSC central plane at Ra = 6.06 × 108:
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Figure 9. The probability density functions (PDFs) of velocity components u and w at the centre of (a,b) the
d‖ = 0 plane, (c,d) the d‖ = 0.5r plane, and (e,f ) the d‖ = 0.95r plane, for Γ = 2. Here, μi and σi (where i is
u or w) respectively denote the mean and standard deviation of the velocity component.

The periodicity of the orbiting of the vortex centre is also evidenced by the prominent
peaks in the power spectra of the local velocity components u and w measured at the
centre of the d‖ = 0 plane (figures 10a and 10b). As the vortex centre orbits periodically,
the centre of the d‖ = 0 plane experiences periodical change of flow direction from up to
down and from pointing to the left to pointing to the right, and the oscillating (periodically
changing of direction of) velocity is reflected by the prominent peaks in the power spectra.
And this strong oscillation is found for all the Ra that we have explored. We found
that at each Ra, the period of the oscillation of the local velocity is identical to the
period of the vortex centre orbiting, as the local velocity oscillation originates from the
periodical orbiting of the vortex centre. Another interesting fact is that at each Ra, the
oscillation period of the local velocity is also identical to the oscillation period of the local
temperature (also known as the turnover time of the LSC) acquired in either the top/bottom
plates or in fluid, as these two are also of the same origin. To better present the results, in
figure 10 we normalized the frequency f by the oscillation frequency f0 of their own for
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Figure 10. The power spectra of velocity components u and w at the centre of (a,b) the d‖ = 0 plane, (c,d) the
d‖ = 0.5r plane, and (e,f ) the d‖ = 0.95r plane, for Γ = 2 and different Ra. Here, fu and fw are normalized by
the oscillation frequency of velocity f0 for each Ra. For clarity, each data set is shifted up from its neighbour
by a factor of 10.

each Ra; the power spectra data for different Ra are aligned together vertically. The strong
oscillation also happens to the velocity measured at the centre of the d‖ = 0.95r plane
as we expected, as shown by the prominent peaks in figures 10(e) and 10( f ). Our result
is consistent with those presented in Vogt et al. (2018), where the horizontal component
of velocity (u) near the centre of the LSC central plane shows stronger oscillation. And
since the vortex centre in the d‖ = 0.5r plane is confined in a much smaller range and the
‘supporting point’ of the ‘jump rope’ motion is around the centre of the d‖ = 0.5r plane,
the velocity measured at the centre of the d‖ = 0.5r plane should not exhibit oscillations,
this is indeed the case, the power spectra do not exhibit appreciable peaks, as shown in
figures 10(c) and 10(d).

In figure 11 we plot the PDF and power spectra of the velocity component v at the centre
of the d⊥ = 0 plane for three different Ra; as can be seen from the figure, the PDF of v

does not show an appreciable double-peak feature. The power spectra of v show barely
visible peaks at f /f0 = 1, but the amplitude is very small compared to those for u and w,
which implies that there is almost no oscillation in the direction perpendicular to the LSC
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Figure 11. (a) PDF of vertical velocity v at the centre of the d⊥ = 0 plane for different Ra; μv and σv denote
the mean and standard deviation of v. (b) The power spectra of v. Here, fv is normalized by the oscillation
frequency of velocity f0 for each Ra.

central plane. This finding reveals that the sloshing motion that was observed previously
in the Γ = 1 cell (Xi et al. 2009; Zhou et al. 2009; Brown & Ahlers 2009) is absent in the
Γ = 2 cell. The oscillation of the three velocity components measured at the cell centre in
the current study is consistent with previous local velocity measurements by LDV in the
Γ = 2 cell (Qiu et al. 2004), where it is found that the oscillation of u is the strongest, and
that of v is the weakest.

3.5. The three-dimensional flow structure
Combining the velocity fields measured in the five vertical planes, in figure 12 we show
a schematic diagram that illustrates the three-dimensional flow structure at times t0 and
t0 + τ/2. With those measurements we come to a conclusion that the main flow is in a
single-roll form with its horizontal size filling almost the whole cell, and the central part
of the single roll is a vortex tube in the so-called ‘jump rope’ form.

At time t = t0, as shown in figure 12(a): in the d‖ = 0 plane, the centre of the off-centred
elliptical vortex is at the left-hand side of the plane; in the d‖ = 0.5r plane, the centre of
the elliptical vortex is at around the centre of the plane; and in the d‖ = 0.95r plane, the
centre of the off-centred elliptical vortex is at the right-hand side of the plane. Based on the
flow in the above-mentioned three planes, the flow in the other half of the cell should be
the mirror image of the flow in the half containing the d‖ = 0.5r and d‖ = 0.95r planes. At
the same time, in the d⊥ = 0 plane the flow consists of two counter-rotating side-by-side
rolls, and the flow in the d⊥ = 2r/3 plane is diverging ascending as the centre of the
vortex in the d‖ = 0 plane is pushing the fluid to the left. In the mirror image plane of the
d⊥ = 2r/3 plane, the flow should be converging descending as the centre of the vortex in
the d‖ = 0 plane is moving away from that side. At this moment, the centre of the vortex
tube is in the form of a ‘jump rope’, and the ‘jump rope’ is in the mid-height horizontal
plane of the cell with its handles pointing to the side opposite to the tilted side.

At time t = t0 + τ/2: in the d‖ = 0 plane, the centre of the off-centred elliptical vortex
moves to the right-hand side of the plane; in the d‖ = 0.5r plane, the centre of the elliptical
vortex is still at around the centre of the plane; and in the d‖ = 0.95r plane, the centre of
the off-centred elliptical vortex has moved to the left-hand side of the plane. The flow in
the other half of the cell should be the mirror image of the flow in the half containing the
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d‖ = 0d‖ = 0
(b)(a)

Figure 12. Sketch of the spatial structure of the flow at times (a) t = t0, and (b) t = t0 + τ/2.

d‖ = 0.5r and d‖ = 0.95r planes. At the same time, in the d⊥ = 0 plane the flow consists
of two counter-rotating side-by-side rolls, as shown in figure 12(b), and in the d⊥ = 2r/3
plane the flow is converging ascending as the centre of the vortex is moving away from
the left-hand side. In the other half of the cell, in the mirror image plane of the d⊥ = 2r/3
plane, the flow should be diverging descending as the centre of the vortex is approaching
that side. At this moment, the centre of the vortex tube is in the form of a ‘jump rope’, and
the ‘jump rope’ is in the horizontal mid-height plane of the cell with its handles pointing
to the tilted side.

4. Conclusions

In this work, we experimentally studied the three-dimensional spatial structure of the
large-scale flow in a Γ = 2 upright cylindrical Rayleigh–Bénard cell. The Rayleigh
number varies in the range 7.64 × 107 ≤ Ra ≤ 6.06 × 108, consequently covering almost
an order of magnitude. And the Prandtl number is Pr ≈ 5.7. The velocity fields were
measured in five vertical cross-sectional planes of the convection cell; three of them are
in or parallel to the LSC central plane (i.e. d‖ = 0, d‖ = 0.5r and d‖ = 0.95r), while
the other two are perpendicular to the LSC central plane (i.e. d⊥ = 0 and d⊥ = 2r/3).
From the two-hours-averaged velocity fields in d‖ = 0, d‖ = 0.5r and d‖ = 0.95r, we
found that in each plane the flow can be described by an elliptical single-roll structure
with the centre of the roll at the centre of the plane. The long-time-averaged flow field
that we obtained in the current study is consistent with the previous findings from the
long-time-average of local velocity measurements by LDV, where it is concluded that
the flow in the Γ = 2 cell is in the form of a two-dimensional elliptical single roll
with its centre at the centre of the convection cell (Qiu et al. 2004). Now with the new
instantaneous two-dimensional whole plane velocity measurement in different planes,
we found that the flow is not quasi-two-dimensional; instead, it extends in the direction
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perpendicular to the LSC central plane to fill almost the whole cell in the form of a vortex
tube.

In addition, with the new instantaneous two-dimensional whole plane velocity
measurement, we found that the centre of the vortex in the d‖ = 0 plane does not always
stay at the centre of the cell; instead, the centre of the large-scale vortex orbits periodically
around the cell, and its direction of motion is opposite to the flow direction of the LSC.
The periodicity of the orbiting permits us to calculate the phase-averaged flow field, and
obtain the trajectory of the orbiting of the centres in the d‖ = 0, d‖ = 0.5r and d‖ = 0.95r
planes. Combining the measured trajectory of the vortex centre motion, we conclude that
the centre of the vortex tube is consistent with the so-called ‘jump rope’ form proposed
by a previous study combined with numerical simulation and local velocity measurements
in the low-Pr case (Vogt et al. 2018). The handles of the ‘jump rope’ are at the centre of
the d‖ = 0.5r planes, and the rope does not end at the handles but both ends extend to at
least the two d‖ = 0.95r planes. The current study provides the first direct experimental
evidence that the ‘jump rope’ flow mode is essentially the orbiting of the vortex centre.
Despite the complex three-dimensional structure, the majority of the energy is contained
in the LSC flow rather than in the flow in the d⊥ planes or horizontal planes of the cell, as
implied by the ratio between the maximum velocity in the d‖ and d⊥ planes.

To check the universality of this periodical vortex centre orbiting, we also conducted
planar PIV velocity measurements in the axial vertical plane in the cylindrical Γ = 1 cell,
and vertical planes in quasi-two-dimensional rectangular cells of Γ = 2 and Γ = 1; in
none of these geometries is the orbiting of the vortex centre observed. In addition, the
experiments show that the oscillation of the velocity and temperature in Γ = 2 cylindrical
cell is due to the periodical orbiting of the centre of the LSC, while the oscillation of the
velocity and temperature oscillation in Γ = 1 cylindrical cell is due to the combination
of the torsional and sloshing motion of the LSC. From this point of view, it seems that
the oscillations in these two geometries are of different origins, while we believe that
they should be governed by the same mechanism in which the interaction between the
plumes erupting from the top/bottom boundary layers and the different cell height allowing
different concerted ways of interactions should play important roles. And this mechanism
is waiting to be uncovered in the future.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.11.
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