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GENETIC ALGORITHM LEARNING
TO CHOOSE AND USE
INFORMATION

BRYAN R. ROUTLEDGE
Carnegie Mellon University

A genetic algorithm (GA) is used to model learning in a financial model similar to the
Grossman–Stiglitz model. Individuals need to learn how to use a signal, how to make an
inference about a signal from a market-clearing price, and whether or not a signal is worth
acquiring. We provide examples in which the GA does and does not converge to the
rational expectations equilibrium. Similar to earlier results, the behavior depends heavily
on the rate of experimentation or mutation in the GA and the size of the risky-asset supply
noise in the economy.
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1. INTRODUCTION

Beginning, perhaps, with Keynes (1936) and “animal spirits,” the effect of irra-
tional behavior on stock prices has been a frequently debated subject. Irrationality
or, more precisely, violations of expected-utility decision theory, has been docu-
mented recently in individual investor portfolio decisions.1 Some research links
these individual behavioral irregularities to stock-market return anomalies.2 Others
argue that noise caused by irrationality has important first-order consequences.3

However, modeling markets and irrationality requires an understanding of how
individual behavior manifests itself in equilibrium prices. More practically, it is
necessary in order to address questions of security market design and regulation.4

The difficulty, however, of modeling irrationality is that it is not static. For ex-
ample, do financial markets act to drive out suboptimal behavior or reinforce it?
It is important, therefore, to develop tools for tractable models that can incorpo-
rate less than fully rational but adaptive individuals. We attack these issues in two
ways. First, we investigate genetic-algorithm (GA) learning in a specific asymmet-
ric information asset-pricing context. Second, more generally, we demonstrate the
extent and limit that a GA can be used to represent suboptimal, adapting individuals
in a complex market.
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We build on Routledge (1999), which uses the stationary one-period risky asset
model of Grossman and Stiglitz (1980) (GS model) and considers adaptive learn-
ing. Here, we model the imitation and random experimentation of adaptive learning
specifically as a GA. In the classic GS model, traders in a one-period economy
choose to acquire a costly signal of the risky asset’s terminal dividend (informed
traders). Those traders choosing not to acquire the signal (uninformed traders)
make an inference about the signal from the market-clearing asset price. The GS
model is a canonical model of the informational efficiency of financial markets.
It addresses the important issue of how financial markets aggregate and convey
information. In the economy that we consider, traders must learn the relevant ex-
ogenous relationship between the model’s parameters as well as the parameters
of the endogenous equation that determines equilibrium price. This setting high-
lights the difference between learning an exogenous parametric relationship and
learning an endogenous equilibrium relationship. In the model, traders need to
learn the physical connection between a signal and a dividend [described formally
in equation (1)]. Learning about this connection is straightforward because it is
independent of the trading decisions of other individuals. Since the signal affects
informed-trader demands, the equilibrium price will be influenced by the signal.
Uninformed traders trying to infer the signal from the price must learn the equi-
librium connection between signal and price. This learning task is complicated
because the equilibrium relationship depends on the behavior of other individuals,
and therefore depends on the learning of the others.

Routledge (1999) considers the general properties of adaptive learning in a GS-
based model. In this paper, we focus more specifically on a GA as an example
of a stochastic adaptive learning process. A GA, developed primarily by Holland
(1975), is a stochastic optimization technique. Here, we use a GA to simulate the
adaptive learning process where successful strategies proliferate and unsuccessful
strategies die out. The GA also generates novel strategies by combining and mu-
tating existing strategies in an efficient search of the strategy space. GA’s have
intuitive appeal as a learning process because they employ both success-based
imitation and random experimentation.

We report four representative simulations that demonstrate the stability and
convergence properties of GA learning in the GS model. The main result is an
illustration that the convergence of adaptive GA learning to the rational expec-
tations equilibrium depends on the level of noise in the GA relative to the noise
in the economy. When the GA is quite noisy (a high mutation rate, for example)
relative to the economy (high variance in the asset supply), the learning task of the
uninformed trader is too difficult and the GA converges to a population consisting
only of informed traders and not to the GS equilibrium.

There are several papers that have used GA’s to model learning. Axelrod (1987),
for example, used GA’s to choose an optimal strategy for the repeated prisoner’s
dilemma game in a fixed population of strategies. Arifovic and Eaton (1998) use
a GA in a complex coordination problem; Marimon et al. (1990) consider adap-
tive agents in a monetary economy; Arifovic (1994) looks at GA’s and cobweb
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cycles; and Arifovic (1996) and Bullard and Duffy (1997) implement GA’s in over-
lapping generations models. Most closely related to the model we present here,
Arifovic’s (1989) work simulates learning in a rational expectations asset-pricing
model [based on Bray (1982)] using a GA to perform least-squares learning.5

The model is presented in Section 2, which describes the economy, individuals,
and the GA adaptive learning concept. Section 3 describes the results by focusing
on four representative simulations. Section 4 concludes.

2. MODEL

To address learning, it is necessary to consider trading behavior through time.
However, to maintain a comparison with the original static GS model, we restrict
ourselves to the one-period repeated economy in which each realization of the
exogenous variables in the economy is independently and identically distributed.6

The model consists of three parts: the financial market, static individual behav-
ior, and GA adaptive learning. The financial market is a repeated version of the
Grossman and Stiglitz (1980) one-period (two-date) endowment economy in which
traders can choose whether or not to purchase a costly signal of the terminal div-
idend (risky-asset payoff). Individual behavior in a given period is characterized
by their information choice and the input parameters that determine their asset
demand. Finally, the GA is used to simulate adaptive learning, which determines
how behavior changes from one period to the next.

2.1. Financial Market

At the beginning of each date,t , a generation ofN individuals trades a risk-free
and a risky security in a frictionless, competitive market.7 At the end of datet ,
the payoffs are realized and end-of-period wealth is fully consumed. The fact that
wealth is not transferred between generations preserves the one-period nature of
the GS model. Successive dates of the economy are linked by the GA learning
and not by wealth accumulation. Because there is no intertemporal consumption
decision, the payoff and the price of the risk-free asset are normalized to one. At
the beginning of the period, the risky asset has pricePt . At the end of the period,
the asset pays a dividend ofdt characterized by

dt = B0+ B1yt + zt . (1)

B0 andB1 are constant parameters of the economy. Unlike in the classic GS model,
we assume that individuals do not know the values ofB0 andB1. Theyt andzt are
independent and identically distributed random variables. The per-capita supply
of the risky asset is̄e+ et . As in the original GS model, it is stochastic withet

distributed independently and identically. Jointly,yt , zt , andet are mean-zero,
uncorrelated, and normally distributed, with respective variances ofσ 2

y , σ 2
z , and

σ 2
e . The zt and et are not observed until the end of periodt . However, agents
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may choose to pay costc to observe the signalyt before trading. This choice
endogenously separates the individuals into two groups: informed and uninformed.
The proportion of informed traders plays an important role and is denotedλt .

2.2. Individual Behavior

At the beginning of each period, all traders are identically endowed withW0 (recall
wealth is not accumulated across periods). Individualn chooses to be informed
or uninformed,ι∈ {i, u}, and the demand for the risky asset,xn

t . End-of-period
wealth,Wn

t1, is determined by these choices, the realized asset payoffs, and the
budget constraint as

Wn
t1 = W0+ xn

t (dt − Pt )− c1{ι=i }. (2)

The cost of information,c, is paid only if the individual is informed (1{·} is an indi-
cator function). Finally, individuals have identical constant absolute risk aversion
(CARA) preferences for end-of-period consumption,U (Wn

t1)=−exp(−aWn
t1),

wherea is the risk aversion coefficient. This utility provides the fitness for the GA
adaptive learning that follows.

If the trader chooses to be informed, risky-asset demands may depend on the
signalyt as well as the asset pricePt . If the trader chooses to remain uninformed,
asset demands may depend only on the price. For reasons that are discussed later,
we consider linear demands. For individualn,

xn
t =

{
γ I
(
β in

0t + β in
1t yt − Pt

)
if ιn = i (n is informed)

γU
(
βun

0t + βun
1t Pt − Pt

)
if ιn = u (n is uninformed),

(3)

whereγ I and γU are specified constants (across traders and time). Given the
linearity, we can choose these constants without loss of generality, and so, we
choose them to facilitate comparison with the original GS model.

An individual’s behavior at datet is completely characterized by the vector
`n

t ={ιnt , β in
0t , β

in
1t , β

un
0t , β

un
1t }, whereι captures the agent’s choice to be informed or

not and theβιnjt determine the portfolio. The behavior of the economy is determined
by populationLt ={`n

t }Nn=1. In particular,Lt determines the market-clearing price
(as a function of the realizations ofyt andet ) for the risky asset. Not surprisingly,
the linearity of the asset demands implies a market-clearing price that is linear in
the signalyt and the noisy asset supply as

Pt = α0(Lt )+ α1(Lt )yt + α2(Lt )et , (4)

where the parametersα j depend on the behavior in the populationLt [see Routledge
(1999) for the explicit algebra].Lt is also sufficient to calculate the expected util-
ity of individual n, given that she is using̀n

t to choose information and form her
portfolio. Define f (`n

t , Lt )= E[U (Wn
t1)|`n

t , Lt ]. The GA in Section 2.3 uses this
measure of fitness of the behavior`n

t .
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The rational expectations equilibrium can be described in terms of a popula-
tion. This allows us to compare a GA-evolved population to the traditional GS
equilibrium one. The equilibrium is characterized by two conditions: First, the GS
assumption of individuals’ rational expectations implies that their asset demands
are optimal. For informed traders, this means that the informed traders know the
values ofB0 andB1 in equation (1). Uninformed traders not only know the exoge-
nous parameters in equation (1), they also know the endogenousα j in equation (4),
allowing them to make a rational inference about the signal. Second, individuals
are indifferent about becoming informed. Informed traders have a more precise
estimate of the terminal dividend and uninformed traders do not pay the cost of the
information. In the GS equilibrium, all agents are identical except for their informa-
tion choice. Formally, the GS equilibrium, denotedL∗, is defined for all individuals
n, `n= `i ∗ = {i, β i ∗

0 , β
i ∗
1 , β

u∗
0 , β

u∗
1 } or `n= `u∗ = {u, β i ∗

0 , β
i ∗
1 , β

u∗
0 , β

u∗
1 }, whereβ i ∗

j
andβu∗

j maximize expected utility. In addition,f (`i ∗ , L∗)= f (`u∗ , L∗). The pro-
portion of informed traders in the GS equilibrium is denotedλ∗. In the simulations
that follow, we choose parameters of the economy so thatλ∗ = 1/2.

In the classic GS model with maximizing individuals and rational expectations,
it is not necessary to specify the functional form for the asset demands because
rationality implies that they follow from maximization.8 In contrast, since indi-
viduals are not fully rational, we specify traders as adaptive learners (captured
below with the GA). Since this form of learning is non-Bayesian, we need to spec-
ify a form for the “rules-of-thumb” that the individuals will use and that the GA
will evolve. Practically, this means specifying the functional form for the asset
demands. In this paper, we have chosen this class to be linear as in equation (3).
Focusing on linear demands is a binding restriction because, in a model in which
B0 and B1 in equation (1) are not common knowledge, demands of a rational
Bayesian would not be linear. It is feasible in the GA simulations to abandon the
linearity assumption in equation (3) and use some other ad-hoc specification. For
example, we could use a polynomial representation or an artificial neural network.
However, it is not clear that the extra numerical complexity would yield additional
insight. Besides keeping the numerical calculations simple [the linearity of the
price in equation (4)], the specification is convenient for comparing the learning
results to the GS equilibrium. In addition, Routledge (1999) shows that fitness-
maximizing demands are linear, and so, equation (3) is nota priori inconsistent with
rationality.

In the GS model, the informed utility-maximizing agent will have asset de-
mands ofγ I (E[d|y]− P). By choosing the normalizing constantγ I = (aσ 2

z )
−1,

we can interpret the adaptive-learning individual as trying to setβ in
j t in equation (3)

equal to the correspondingBj from equation (1) (forj = 0, 1). Note the linearity
in the functional form of the asset demands makes the choice of a normalizing
constant,γ I , without loss of generality. Similarly, for the uninformed, the ratio-
nal expectations equilibrium demands areγU (E[d|P]− P). The linearity of (4)
and normality imply that in the GS rational expectations equilibrium,E[d|P] is
linear in the price. Again, by choosing theγU appropriately,9 we can interpret the
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individual behavior represented inβnu
t0 andβnu

t1 as the parameters used to extract
the relevant information about the expected dividend from the price.

2.3. Genetic Algorithm

So far, we have described one period of the economy, given a population of indi-
vidualsLt . A GA, representing adaptive learning, will determine how population
changes toLt+1. The GA is based on three operators: selection, crossover, and
mutation. The operators are applied to a binary string representation of`n

t (a
chromosome). One bit (gene) determines the agent’s information choice,ιnt . The
remaining bits are the binary representation of the real-valuedβιnjt parameters in
`n

t .10 From the point of view of individualn, the GA determines̀n
t+1 as follows:

First, with probability proportional to fitness, two strings fromLt are selected.
These strings are combined using crossover, which takes the first part of the first
string and the second part of the second string. Finally, mutation perturbs some
of the elements of the combined string state, yielding`n

t+1.11 The selection oper-
ator captures the imitation or adaptation component of a learning process while
the crossover and mutation operators drive the experimentation. The crossover
step helps to guide experimentation to the most promising strategies, and muta-
tion ensures that the learning process always has some degree of experimentation.
Note that, when the population consists of similar individuals, the selection and
crossover steps have little effect. It is the mutation rate that determines the limiting
size of experimentation.

For the GA to create successive populations based on the success of trad-
ing strategies, we need to determine how fitness is defined and calculated. We
define fitness of strategỳn

t in population Lt as the expected utility; that is,
f (`n

t , Lt )= E[U (Wn
t1)|`n

t , Lt ]. To calculate the expected utility fitness measure,
the model is repeated with a fixed population. For each generation, the one-period
model is simulatedR times, using the current population,Lt . The repetitions of
the economy are independent of one another and, fortr = t1, . . . , tR, consist of a
random draw of the economic variablesytr , ztr andetr , calculating asset demands
using the agents’ parameters`n

t according to (3), solving for the equilibrium price
and determining the individual’s terminal wealthWn

tr 1 using equation (2). By re-
peating the single-period economy many times, we can approximate the expected
utility of the behavior̀ n

t , given the populationLt . Given the normality and CARA
preferences, we can work with the mean-variance specification of

f̄ n
(
`n

t , Lt
) = m

(
Wn

tr 1

)− a

2
v
(
Wn

tr 1

)
. (5)

Them(·)andv(·)are the sample mean and variance operators over theRrepetitions.
The choice of a fitness definition is not innocuous. Alternative definitions of

fitness are available. For example, Blume and Easley (1992) assume fitness is
based on average return or wealth. By defining success purely on mean wealth,
the utility function is typically unimportant for the long-run behavior. In Blume
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and Easley (1992), only investors with log utility functions survive. Since we are
investigating the specific GS model, it is important that the adaptive algorithm
preserves the utility function.

The calculation of fitness is also important. The GA used here selects strings
for imitation according to fitness. Specifically, the probability that strategy`n is
selected is proportional tōf n/(6m f̄ m). Thus, even though wealth does not affect
asset demands, the parameter for initial wealth,W0 [which appears in equation (2)],
is not innocuous. An increase in initial wealth, while not affecting any of the
equilibrium relationships, makes the probability of any one agent’s learning state
being selected (imitated) closer to uniform. This makes the learning algorithm
“noisier” by weakening the connection between success and representation in
subsequent generations. The choice of how many times the economy with a fixed
population is repeated (R) also influences the level of noise in the GA selection
operator. In the simulations presented here, we chooseR= 1,000 so thatf̄ n gives
a relatively precise measure off n. Alternatively, one could measure fitness with
fewer repetitions including using just one realization of the economy (R= 1). This
provides a noisier measure of fitness and adds more noise to the selection portion
of the GA.12 The specific results presented here are sensitive to these choices in
the measurement of fitness. However, the general conclusion of the simulations
presented below is robust. Convergence to the GS equilibrium depends on the level
of noise in the GA relative to that in the economy. The measurement of fitness is
one of the items that affects the level of GA noise.

Simulations begin with the creation of an initial string for each agent in the
population. Four representative simulations are presented. In Simulations 1 and
2, the initial population contains the GS rational expectations equilibrium values
(i.e., L0= L∗). In Simulations 3 and 4, initial learning states for each agent are
selected randomly. However, the same randomly selected population,L̃0, is used
in both Simulations 3 and 4. The simulation algorithm is summarized in Figure 1.
The parameters of the GA learning process are in Table 1. Table 2 contains the
parameters of the economy that are common to all the simulations. Table 3 presents
the parameters specific to each of the four simulations and summarizes the results.

3. RESULTS

Four simulations are presented in detail. They are representative of a large number
of such simulations that have been conducted.13 The characteristics that distin-
guish the simulations are the initial populations and whether or not they yield
the GS equilibrium (Lt→ L∗). The description of the simulations focuses on the
proportion of informed agents (λt ) and the average demand parameters. Define

β I
0t =

1

λt N

∑
ιn=i

β in
0t
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FIGURE 1. Schematic for GA simulation of GS.
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TABLE 1. Parameters of the Genetic Algorithma

Parameter Symbol Value

Population size N 1,000
Repetitions of the single period per generation R 1,000
Length of simulation 5,000
Length of string used to represent individual `n

t 81
Crossover probability (if crossover does not occur one 0.7

of the strings is selected)
Mutation probability (probability that a “0” in 0.0001

the string is changed to a “1” or vice versa.)
Expected number of mutations per generation 8.3
Range length for asset demand parametersb 0.2

aParameters are common to all simulations. They define the behavior of the GA adaptive learning.
bThe minimum and maximum values forβ in

j t are chosen so that the GS rational expectations parameter
values lie in the middle of the range.

TABLE 2. Parameters of the economya

Parameter Symbol Value

Coefficient of absolute risk aversion a 2.0
Initial wealth per repetition of economy Wn

0 0.1
Average number of shares in economy ē 1,000
Average dividend [see equation (1)] B0 0.1
Sensitivity of dividend to signal B1 1.0
Standard deviation of signal σ 2

y 0.0004
Standard deviation of dividend σ 2

y + σ 2
z 0.0008

Informed-trader asset demand constant [equation (3)]γ I = (aσ 2
z )
−1 1,250

GS rational expectations equilibrium proportion λ∗ 0.5
of informed traders

GS rational expectations equilibrium demand Bi ∗
0 0.1

parameters of informed traders Bi ∗
1 1.0

aParameters for the financial market that are common to all simulations.

and

βU
0t =

1

(1− λt )N

∑
ιn=u

βun
0t .

Note thatβ I
0t is an average across only those traders who are informed and, sim-

ilarly, for those who are uninformed. To reduce the number of figures presented,
we focus discussion on the average intercept terms. Figures for similarly defined
β I

1t andβU
1t are qualitatively similar, and so, they are not presented. Finally, the op-

timal asset demand parameters given the current population (utility-maximizing,
given knowledge ofLt ) and the rational expectations parameters are shown for
comparison.
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TABLE 3. Simulation-specific parametersa and results

Simulation number

Parameter 1 2 3 4

Initial population GS REE GS REE Random Random
(L∗) (L∗) (L̃0) (L̃0)

Number of generations that population 1 1 100 50
is constrained toλt = λ∗

Asset supply noise (σ 2
e ) 10.0 1.0 10.0 10.0

Cost of information (forλ∗ = 0.5) 0.01460270.001585 0.0146027 0.0146027
Uninformed-trader asset demand 1,179.1 1,242.1 1,179.1 1,179.1

constant
GS rational expectations demand

parameters for uninformed traders
βu∗

0 0.000986 0.001119 0.000986 0.000986
βu∗

1 0.968116 0.996800 0.968116 0.968116
Informativeness of price at GS 6.015 0.636 6.015 6.015

equilibriumV [y|P, L∗]/σ 2
y (%)

Result of simulation presented L∗ stable L∗ not Converge Converge
stable toL∗ λ= 1.0

(not L∗)
(Figure 2) (Figure 3) (Figure 4) (Figure 5)

Frequency (%) of convergence of GS 100 0 94 0
equilibrium (based on repeating each
simulation 100 times with a different
random seed and, in Simulations 3 and
4, a different randomly selected initial
population. Convergence to the GS
equilibrium is defined at the terminal
generationt = 5,000 asλ∗ −0.05≤ λt

≤ λ∗ + 0.05)

aImportant parameters are shown in bold.

3.1. Stability Examples

Simulations 1 and 2 both begin from the GS rational expectations equilibrium,
L0= L∗. They differ only in the noisiness of the risky-asset supply,σ 2

e , and cor-
responding cost of information,c. The cost of information is chosen so that, at
the GS equilibrium, half the population is informed (λ∗ = 1/2). The reason that
σ 2

e plays such an important role is discussed later. In Simulation 1, where supply
noise is higher, the proportion of informed agents remains close to its GS equi-
librium level of 0.5 (see Figure 2A) and the GS equilibrium is stable. In contrast,
in Simulation 2, where the supply noise is smaller,λt drifts steadily toward 1
(see Figure 3A). In this simulation, by generation 2,000, with the exception of
random-agent experimentation, all agents are informed.
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FIGURE 2A. Stable GA simulation—proportion of informed traders. This simulation starts
from the GS rational expectations equilibrium (L∗) and remains in a close neighborhood.
Parameters are listed in Tables 1–3.

The average demand parameters of the informed agents,β I
0t , differ only slightly

in the two simulations (compare Figures 2B and 3B). This reflects the fact that the
learning about the exogenous signal–dividend relation is relatively unaffected by
behavior of other traders or the noise in the risky-asset supply. The small variations
from the optimal demand parameters [which are theBj from (1)] are similar to
an estimation error that reflects that the parameters are chosen on the basis of a
sample path of dividend–signal pairs.

The behavior of the uninformed agents’ asset demand parameters is quite dif-
ferent in the two simulations. In Simulation 1, whereλt remains close to its GS
equilibrium level (see Figure 2A), the averageβU

0t also remains close to its rational
expectations level (see Figure 2C).14 The distance between the evolving parame-
ters and optimal ones is small in terms of fitness (or utility). In Simulation 2, most
agents eventually become informed (see Figure 3A). The evolving average param-
eter of the uninformed,βU

0t , diverges from its optimal level (see Figure 3C). After
the first 250 generations,Lt differs substantially from the initial state (L0= L∗).
The difference is large enough that asset demands are sufficiently far from optimal,
the fitness of the uninformed is below that of the informed, and adaptation leads
to more informed agents. The fitness difference persists even asλt approaches 1.
By generation 1,600, almost all agents are informed. Figure 3C shows the average
demand parameter, which is an average across only the uninformed traders. With
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FIGURE 2B. Stable GA simulation—informed average demand parameter.β I
0t =

1/(λt N)6ιn=iβ
in
0t , whereβ in

0t is described in equation (3).

FIGURE 2C. Stable GA simulation—uninformed average demand parameter, where
βU

0t = 1/[(1− λt )N]6ιn=uβ
un
0t , whereβun

0t is described in equation (3).
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FIGURE 3A.Unstable GA simulation—proportion of informed traders. This simulation starts
from the GS rational expectations equilibrium (L∗) and diverges towardλ = 1. Parameters
are listed in Tables 1–3.

fewer uninformed, the average is more volatile. More importantly, with so few
uninformed agents, uninformed agents’ learning by imitation does not work. As a
potential uninformed trader, there is no one to copy. For most traders (sinceλt ≈ 1),
the part of the genetic string that maps into the parameterβun

0t has no bearing on
their fitness. It is recessive. Therefore, the only learning about how to be an un-
informed trader can come from experimentation (driven by mutation in the GA).
Since this learning is not that efficient, the utility of the uninformed traders always
lies below that of the informed. The result is that all traders become informed.

The economies represented in Simulations 1 and 2 are very similar. However,
they lead to different behavior. To understand the reason for the differences it is
helpful to look at the components of fitness. The proportion of informed traders,
λt , tends to increase when the informed traders have higher fitness. So, consider
the fitness ratiof i / f u for an informed trader,i , and uninformed traders,u, in the
population,Lt .15

f
(
`i

t , Lt
)

f
(
`u

t , Lt
) = E

[
U
(
Wi

t1

)∣∣`i
t , Lt

]
E
[
U
(
Wu

t1

)∣∣`i
t , Lt

]
=
[

f i ∗

f u∗

][
ξ i

ξu(Lt )

]

=
{

exp(−ac)[
σ 2

z

/(
σ 2

z + V [y|P, Lt ]
)]0.5

}[
ξ i

ξu(Lt )

]
(6)
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FIGURE 3B. Unstable GA simulation—informed average demand parameter, where
β I

0t = 1/(λt N)6ιn=iβ
in
0t whereβ in

0t is described in equation (3).

FIGURE 3C.Unstable GA simulation—uninformed average demand parameter, whereβU
0t =

1/[(1− λt )N]6ιn=uβ
un
0t , whereβun

0t is described in equation (3).
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The explicit derivation is omitted since it parallels a similar one in Routledge
(1999). The result is intuitive. The first line in equation (6) is the definition of
fitness. The second line states the fitness ratio in terms of maximal fitness (i.e.,
expected utility at the GS rational expectations parameters) and error termsξ i

andξu. These error terms have the property thatξ i , ξu ∈ (0, 1] and reach 1 only
when the traders have maximal fitness.16 The final line highlights the two key
elements that contribute to the relative success of the informed and uninformed. In
the first square bracket is the cost of information borne only by the informed and
the additional variance faced by the uninformed from inferring the signal from the
equilibrium price. This trade-off between information cost and informativeness of
the asset price is present in the rational expectations GS model. The second set of
square brackets contains the relative errors in the adaptive strategies of the traders.

Change in the population has a different effect on informed and uninformed
traders. Informed-trader fitness is unaffected by the behavior of the rest of the pop-
ulation since an informed trader is learning about the exogenous dividend–signal
relation in equation (1). This is whyξ i in equation (6) does not depend onLt .
In contrast, uninformed fitness is affected by the population in two ways. First,
the quality of the inference from the equilibrium price about the signal increases
when there are more informed traders (V [y|P, Lt ] is decreasing inλt ). Second,
since an uninformed trader is trying to make an inference based on the equilibrium
condition in (4), the error that an uninformed trader makes,ξu(Lt ), depends on the
behavior of all other traders. For example, consider an uninformed trader,u, who
currently has demand parameters (in`u

t ) that are appropriate given the current
populationLt and so has high fitness [ξu(Lt )≈ 1]. Informally, the uninformed
trader “knows” the endogenous price–signal relation in equation (4) and correctly
forms asset demands. If there is a change in the population (through adaptation or
experimentation by another individual), there are two effects on individualu’s fit-
ness. First, since the endogenous market-clearing price relationship in equation (4)
has changed, the asset demand parameters in`u

t are less well adapted to the new
populationLt+1. This reducesu’s fitness [ξu(Lt+1)< ξ

u(Lt )]. Second, if the new
population has a higher proportion of informed traders (λt+1>λt ), then the price is
more informative about the signal (V [y|P, Lt+1]<V [y|P, Lt ]), which increases
u’s fitness. The magnitude of this latter effect is determined by the economy pa-
rameterσ 2

e . When there is a large variance in the risky-asset supply, the informed
traders’ demands are hard to infer from the market-clearing price. An increase
in the number of informed traders substantially increases the aggregate informed
trade relative to the asset supply noise. In contrast, whenσ 2

e is low, an extra in-
formed trader makes little difference to the informativeness of the price since the
price is already very informative.

Returning to Simulations 1 and 2, note that they differ only in the value of
the risky-asset supply variance,σ 2

e , and associated cost of buying information,c
(see Table 3). Simulation 2 begins at the GS equilibrium populationL0= L∗. At
this point, all traders have maximum fitness [ξ i = ξu(L∗)= 1]. As the GA pro-
gresses, random experimentation (mutation) moves the population away from the
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GS equilibrium. Informed fitness falls slightly because of individual experimen-
tation, and uninformed fitness falls dramatically because of the experimentation
by all of the other traders. Uninformed fitness is sensitive to the whole popula-
tion [ξu(Lt ) depends onLt ]. The degree to which the fitness falls depends on the
magnitude of the random experimentation in the population.17 The low relative fit-
ness of the uninformed leads the selection operator of the GA to choose relatively
more informed traders andλt increases. Since, in Simulation 2,σ 2

e is small, the
increase in the proportion of informed traders has a small effect on uninformed fit-
ness. The loss in fitness due to the changing population swamps the small benefit of
more informed traders [the change inξu(Lt )has a greater impact than the change in
V [y|P, Lt ]]. The net result is that all traders eventually become informed. In Sim-
ulation 1, random experimentation (mutation) moves the population away fromL∗,
reducing the fitness of the uninformed. This leads to an increase in the proportion
of informed traders. In this simulation with a larger degree of asset supply noise,
σ 2

e , the higher proportion of informed traders increases the fitness of the unin-
formed enough to overcome the loss due to the changing population [the change in
V [y|P, Lt ] is larger]. As a result, imitation–selection in the GA drives the fraction
of informed traders down andλt remains near the GS equilibrium value of 1/2 (see
Figure 2A). This stability in the fraction of informed traders lets the uninformed
traders “re-learn” the optimal demand parameters, and the population as a whole
remains close to the GS equilibrium. Hence, the stability of the GS equilibrium in
this GA learning setting is determined by the size of the variance in the asset supply,
σ 2

e , relative to the level of experimentation (mutation and other noise) in the GA.

3.2. Convergence Examples

The preceding two simulations began at the GS rational expectations equilibrium.
Simulations 3 and 4 begin from (the same) randomly selected population learning
state (̃L0 6= L∗). In these simulations, significant learning is required because agents
are not endowed with optimal initial conditions [ξ i andξu(L0)are significantly less
than 1]. The parameters for this simulation are identical to those for Simulation 1.
Under these parameters, the GS equilibrium is stable. Simulation 3 is an example
of a simulation that converges to the GS equilibrium (Lt→ L∗). Simulation 4 does
not. The difference in the two simulations is a constraint on the movement ofλt

in the initial generations of the simulations. In Simulation 3, the proportion of
informed agents is constrained to the rational expectations equilibrium level for
the first 100 generations: that is,λt = 1/2 for t ≤ 100. In Simulation 4,λt = 1/2 for
t ≤ 50. This constraint is implemented by simply forcing the first bit in the genetic
string representing̀n

t during the initial generations. The constraint is seemingly
rather minor (the simulations last 5,000 generations) yet influences the long-run
properties of the simulations.

Simulation 3 converges to the GS equilibrium. The proportion of informed
agents initially increases toλt = 0.7 by generation 500 (see Figure 4A). After this
point,λt slowly declines back toward the GS equilibrium level and finally reaches
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FIGURE 4A. GA simulation converges to rational expectations equilibrium—proportion of
informed traders. This simulation starts from a randomly selected population (L̃0) and
converges (close) to the GS equilibrium (L∗). Parameters are listed in Tables 1–3.

FIGURE 4B. GA simulation converges to rational expectations equilibrium—informed av-
erage demand parameter.β I

0t = 1/(λt N)6ιn=iβ
in
0t , whereβ in

0t is described in equation (3).
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FIGURE 4C. GA simulation converges to rational expectations equilibrium—uninformed
average demand parameter.βU

0t = 1/[(1 − λt )N]6ιn=uβ
un
0t , whereβun

0t is described in
equation (3).

λt = 0.5 around generation 2,500 and remains in that vicinity for the remainder of
the simulation. In contrast, Simulation 4 does not converge to the GS equilibrium
(see Figure 4A). After generation 50,λt increases quickly toλt = 0.8 by generation
200, and then continues to drift toward 1, reachingλt = 1.0 by generation 1,000,
and remains near there for the duration (see Figure 5A).

As with the previous two simulations, the behavior of the informed demand
parameters in Simulations 3 and 4 is similar. Note that, in both Figures 4B and 5B,
there is a great deal of variation inβ I

0t in the initial few generations, reflecting the
rapid initial learning. However, in both simulations the informed traders quickly
hone in on the rational expectations (optimal) parameters. As an aside, the slightly
higher variation apparent in Figure 4B relative to Figure 5B reflects that theβ I

0t is
an average over more traders in Simulation 4 sinceλt is close to 1.

Figures 4C and 5C show the average demand parameters for the uninformed
traders. As with the informed, there is a great deal of variation in the initial genera-
tions as the agents struggle to improve from the randomly assigned initial demand
parameters. The large degree of variation in the initial populations,Lt , means that
the uninformed traders have lower fitness than the informed. Since they are learn-
ing an endogenous relation, they are chasing a moving target and their learning is
slower [ξ i goes to 1 faster thanξu(Lt )]. For this reason, imitation–selection leads to
more informed traders in both simulations (see Figures 4A and 5A). Similar to the
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FIGURE 5A. GA simulation does not converge to rational expectations equilibrium—
proportion of informed traders. This simulation starts from a randomly selected population
(sameL̃0 as in Simulation 3) and does not converge to a neighborhood close to the GS
equilibrium (L∗). Parameters are listed in Tables 1–3.

FIGURE 5B. GA simulation does not converge to rational expectations equilibrium—
informed average demand parameter.β I

0t = 1/(λt N)6ιn=iβ
in
0t , whereβ in

0t is described in
equation (3).
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FIGURE 5C. GA simulation does not converge to rational expectations equilibrium—
uninformed average demand parameter.βU

0t = 1/[(1 − λt )N]6ιn=uβ
un
0t , whereβun

0t is de-
scribed in equation (3).

situation in Simulations 1 and 2, this improves the informativeness of the price and
improves the fitness of the uninformed traders [V [y|P, Lt ] decreases]. However,
the benefit of the larger number of informed traders does not immediately offset
the fitness disadvantage due to slower learning. This is whyλt continues to rise. In
Simulation 3, the uninformed traders eventually learn enough about the endoge-
nous relationship to benefit from the increased informativeness of the price. Their
fitness increases above that of the informed traders andλt declines back to the GS-
equilibrium value of 0.5. In contrast, in Simulation 4, where the uninformed traders
have less time to learn before the constraint forcing them to remain uninformed
is removed (recallλt = 1/2 for t ≤ 50 in Simulation 4), uninformed traders strug-
gle. They are never able to take advantage of the more informative price because
they never learn the price–signal relation [ξu(Lt ) never gets close to 1]. As with
Simulation 2, the learning ability of the uninformed decreases rapidly as traders
become informed. Asλt moves to 1, an uninformed trader has fewer people to
imitate and uninformed learning is driven only by random experimentation.

4. CONCLUSION

There are many possible extensions to the GA model presented. For example, one
could look to improve the learning rate of the uninformed by incorporating a more
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sophisticated GA learning algorithm like “election” as used by Arifovic (1994).
The election operator is designed to make the population more stable by testing a
strategy (created by selection, crossover, and mutation) against recent experience
and adding it to the population only if it would have done well. Such a modifi-
cation would slow the rate of change in the population because many strategies
would not be altered. This increases the ability of the uninformed traders to learn
the endogenous price–signal relationship. The less volatile “target” for learning
is easier to learn. However, it turns out that incorporating election makes little
difference to the qualitative results. First, one can always find mutation and asset
supply noise combinations such that the GS equilibrium is stable or unstable.18

In addition, it turns out that the election operator does not make the population
more stable. Since the fitness of traders is highly correlated within the informed
and uninformed groups, election affects one group of agents disproportionately,
leading to greater variability in the population.

A GA is a simple tool that captures the spirit of learning through imitation and
experimentation. It is encouraging to note that the GA is able to replicate a complex
rational expectations equilibrium. It also illustrates the reasons and conditions for
why learning can fail to produce the standard equilibrium. In the simulations pre-
sented here, convergence depends on the level of the asset supply noise relative to
the level of experimentation or noise in the GA. Unfortunately, the convergence of
the simulations hinges on a relatively deep parameter of the GA. Whereas calibrat-
ing the selection or imitation component of the GA to experimental data seems
feasible, the crucial mutation parameter that controls experimentation is much
harder to observe. The importance of the hard-to-calibrate mutation parameter is
a limitation of the GA tool.

NOTES

1. For a survey of empirical decision theory, see Schoemaker (1982). For the link to portfolio
decisions, see, for example, Odean (1998) or Barber and Odean (2000).

2. Shiller (1999) surveys this large area of research. Examples of using individual behavior to
explain market phenomena include using prospect theory to understand the equity premium puzzle
[Benartzi and Thaler (1995)] and overweighting recent evidence to explain the apparent success of
contrarian investment strategies [Lakonishok et al. (1994)]. Daniel et al. (1998) take a slightly different
approach and construct an equilibrium model from the premise that traders are overconfident and suffer
from biased self-attribution of success.

3. Examples include Black (1986) and De Long et al. (1990).
4. For example, the SEC is considering its regulatory response to the Internet and the increase in

“inexperienced” trade and recommendations from on-line chat [Unger (1999)].
5. The GA adaptive learning that we consider is a non-Bayesian approach to learning. In contrast,

Bayesian models of learning do not relax the unbounded rationality assumption and model learning
through beliefs that are updated with Bayes’ rule. In a GS-type model, Bray (1982) studies non-Bayesian
least-squares or econometric learning and Bray and Kreps (1987) consider Bayesian learning.

6. This differs from the approach taken by LeBaron et al. (1999). Restricting to a single period also
avoids the complex issue of implementing an adaptive learning algorithm in a dynamic setting [see
Uhlig and Lettau (1999)].

7. In the simulation, the competitiveness is approximated by choosing a large population size,N.
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8. The linearity of the informed traders’ demands follows direcly from CARA utility and normality
[assuming that they knowB0 and B1 in equation (1)]. For the uninformed, the linearity requires a
conjecture that the market-clearing price function [equation (4)] is linear. In the rational expectations
equilibrium, the conjecture is true.

9. We setγU ={a[σ 2
z +V(y|P, L∗)]}−1, whereV [y|P, L∗] is calculated at the GS rational ex-

pectations equilibrium,L∗. Again, this is simply a normalizing constant and is chosen only to facilitate
interpretation.

10. To convert the finite binary string to a real number, the minimum and maximum values of the
parameterβιnjt need to be specified. These minimum and maximum values are chosen so that the GS
rational expectations parameter values lie in the middle of the range. See Table 1 for the parameters
used.

11. For crossover, the breakpoint in the string is determined randomly. As is standard in the GA, with
some probability, crossover does not occur and the first string is passed unchanged to`n

t+1. Mutation
involves randomly swapping a “0” for “1” or vice versa. The probability that any one bit is mutated is
reported in Table 1 along with the crossover parameter and other GA parameters. The GA code used
here is based on that of Goldberg (1989).

12. If f n is the expected utility and̄f n is the realized average utility overR independent repetitions
of the economy (with a fixed population), then we can writef n= f̄ n+ ε̃n(R). The variance of ˜εn(R)
is decreasing inR. Practically, for smaller choices ofR, one needs to work with the CARA utility
function,−exp(−aWn

t1), directly rather than the mean variance form in equation (5) [note thatR= 1
implies v(Wn

tr 1)= 0]. To use the CARA utility directly, we need to add a constant to fitness since
fitness-proportional selection requires a positive fitness number. The alternative in this case is to use a
rank-based selection mechanism.

13. Table 3 summarizes the results of repeating each simulation 100 times. The table reports the
frequency that the simulation converges to the GS rational expectations value for the proportion of
informed traders. There is little qualitative difference in the behavior of the other parameters across
simulations that converge or across simulations that do not.

14. Along with the GS equilibrium parameters, the “rational” parameters are shown. These are the
parameters an individual would use if she knew the details of the population inLt . This is both more
information and more rationality than the adaptively learning traders possess in our model.

15. The ratio is normalized so that we can interpretf i / f u>1 as implying a likely increase in the
proportion of informed traders.

16. For traderi, ξ i = 1 if and only ifβ i i
0t =β i ∗

0 andβ i i
1t =β i ∗

1 . For traderu, ξu(Lt )= 1 if and only
if βuu

0t =βu∗
0 andβuu

1t =βu∗
1 . Recall from equation (3) that the fitness of a given strategy`n will not

depend on all the elements in the vector sinceιn determines which asset-demand parameters are used.
17. The degree of experimentation and randomness in the GA is controlled primarily by the mutation

probability. However, other sources of randomness, such as that from the selection step, also contribute
to the magnitude of experimentation. This is why the measurement of fitness in equation (5) will affect
the specific results (see note 12).

18. This is consistent with the analysis of deterministic learning studied by Routledge (1999).
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