
Probability in the Engineering and Informational Sciences, 36, 2022, 482–499.

doi:10.1017/S0269964820000522

A MEAN FIELD GAME ANALYSIS OF SIR DYNAMICS
WITH VACCINATION

JOSU DONCEL

University of the Basque Country, Leioa 48940, Spain

E-mail: josu.doncel@ehu.eus

NICOLAS GAST AND BRUNO GAUJAL
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We analyze a mean field game model of SIR dynamics (Susceptible, Infected, and Recov-
ered) where players choose when to vaccinate. We show that this game admits a unique
mean field equilibrium (MFE) that consists in vaccinating at a maximal rate until a given
time and then not vaccinating. The vaccination strategy that minimizes the total cost
has the same structure as the MFE. We prove that the vaccination period of the MFE
is always smaller than the one minimizing the total cost. This implies that, to encourage
optimal vaccination behavior, vaccination should always be subsidized. Finally, we pro-
vide numerical experiments to study the convergence of the equilibrium when the system
is composed by a finite number of agents (N) to the MFE. These experiments show that
the convergence rate of the cost is 1/N and the convergence of the switching curve is
monotone.
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1. INTRODUCTION

We consider a system in which the dynamics of the population is given by the classical
SIR (Susceptible–Infected–Recovered) model [19] to which we add a control action for each
player: each individual player can choose how and when she gets vaccinated. Each individual
player tries to minimize a cost composed of a vaccination cost plus a cost function of
the duration of infection. Potential applications include controlling disease spreading in
a large population, antivirus usage in computer systems or limiting the propagation of
advertisements.

In this paper, we model the problem of selfish vaccination in the SIR model as a finite
state mean field game in continuous time. Because all players have a finite state space, the
state evolution will become a Kolmogorov equation and the best-response strategy will be
given by a Bellman optimality equation. Here, the state space only has three states, and
the dynamics is simple enough so that one can show that this Bellman optimality equation
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has a unique solution. We show that the game admits a unique and pure equilibrium.
Furthermore, we show that this unique equilibrium consists in a bang–bang strategy: each
player chooses to vaccinate at a maximal rate until some critical time τ eq and then stops
vaccinating thereafter.

We also compare the global cost of the mean field equilibrium (MFE) to the cost
of a centralized optimal control. It is known that the solution of this problem is also a
bang–bang strategy [4]: it consists in vaccinating at a maximum rate until a given jump
time τ∗ is reached and to stop vaccinating after this. We show that the time at which the
global optimum stops vaccinating is always larger than that of the MFE: τ eq ≤ τ∗, with
equality only in degenerate cases. This shows that if the decision of whether to vaccinate or
not is left to individual, then vaccination should be subsidized in order to reduce the total
cost of the MFE down to the one of the socially optimal strategy. Similar results have been
obtained on SIR models with vaccination (see Section 2).

One of the main contribution of our paper is to recast the problem of selfish vaccination
as a finite state mean field game (FMFG). This allows to

• Use the general theory of FMFG to assert the existence of an equilibrium;
• Use a generic approach to solve the problem, that is, instantiate the coupled equa-

tions of an FMFG (Kolmogorov + Bellman) in the current case (this is done in
Section 4), and solve them symbolically or numerically in Sections 4 and 5);

We also assess the relations between the mean field case and the case with a finite
number of players. In Section 6, we present how the equilibrium strategy of the N -player
game, as well as the social optimum, can be computed using the Bellman equation. Moreover,
in Section 7, we study numerically the convergence of the case with N players to the mean
field case. Our numerical experiments show that, for the equilibrium and for the social
optimum, the convergence rate of the cost is 1/N and the convergence of the switching
curve is monotone. Finally, we study the efficiency of the Nash equilibrium with a small
number of players and of the MFE.

The rest of the paper is organized as follows. In Section 2, we introduce the FMFG
model of the problem. In Section 3, we describe the model and we define the notion of
MFE. We characterize the equilibrium of the mean field game in Section 4. We analyze
the centralized control problem in Section 5. We comment on the difference between the
MFE and the Nash equilibrium of a game with a finite number of players in Section 6. We
compare numerically the MFE and the global optimum in Section 7. Finally, we conclude
in Section 8.

2. RELATED WORK

The SIR dynamics is one of the simplest and one of the most studied model of virus propa-
gation in a moving population or information diffusion in social networks, since the work of
Kermack and McKendrick [19]. The problem of optimal vaccination that allows the popu-
lation to be immune to the infection has been analyzed in several papers, see, for example,
[1,9] for monographs in this topic. The authors in Ref. [22] show that the optimal social
cost is the unique viscosity solution of an Hamilton–Jacobi–Bellman equation. Using the
Pontryagin’s Maximum Principle, the authors in Ref. [4] characterize the vaccination strat-
egy that minimizes the total cost of a model that covers most of the literature regarding
deterministic control of SIR epidemics, see [23] for a particular case of the model of [4]
where f(x, y) = xy, g, c constant and T → ∞. As we will see below, the centralized control
problem we consider is also a particular case of the model of [4] and, therefore, we can
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use their result to study the optimal social cost and compare it with the cost of individual
vaccination. The authors in Refs. [14] and [2] also perform this comparison considering,
respectively, the disease eradication and the SIR dynamics in steady state.

In this paper, we consider a game scenario in which each player chooses when and
how to vaccinate. On this topic, the paper closest to ours is Ref. [11] that studies a model
aiming to minimize the cost of infection and of vaccination in an SIR model within a
given population. Similarly to our case, the authors of [11] show that an equilibrium can
be characterized by a switching curve, which is the set of points such that individuals see
no difference between vaccinating and not doing when no one else vaccinates. They prove
the uniqueness of such a curve and conclude thus that individual vaccinations consists of
vaccinating with a maximum rate until the switching curve is reached and then not to
vaccinate again. One of the main contribution of our work is to recast the model of [11]
in the more precise context of mean field game and show that an equilibrium under their
definition corresponds to a fixed point of the best response correspondence for each player
(MFG were not yet defined when [11] was published).

Our model is very close to the one of [21] in which the authors consider a mean field
game model of vaccination, but with a few differences. First, the authors of [21] model
the problem following closely the notion of timing games, whereas we formulate our model
directly as a discrete-space mean field games. The authors in Ref. [18] extend the results
of [21] considering additional birth and death rates on the population. We believe that our
formulation is simple and serves as a good illustration of the expressive power and simplicity
of discrete-space mean field games, as our formulation is not specific to the vaccination
problem and could be easily generalized. Besides, as in Ref. [11], the vaccination policies
in Ref. [21] do not depend explicitly on the susceptible population whereas our rate does:
Essentially, the dynamics of our Eq. (1) includes a term π(t)ms(t) whereas the one of [21]
has only the term π(t). Using a term π(t)ms(t) makes our model fall in the category of
discrete-space mean field game of [10]. In terms of results, we see two main contributions
of our paper with respect to [21]. First, we provide alternative proofs to the results of [21]
that are based on structural properties of the discrete-space mean field game and that rely
less on the explicit form of the dynamics. Second, we provide a detailed comparison with
the finite player model.

Mean field games with discrete and finite state space have been explored in discrete
time [10,15] as well as in continuous time [16,17] . Our model is a particular case of a mean
field game with finite state space evolving in continuous time (see Ref. [10]). The existence
of an equilibrium in our mean field game follows directly from their result. Here, however,
we go beyond this existence result and we show that there is a unique MFE that happens
to be a deterministic strategy and we characterize it.

3. MODEL DESCRIPTION

3.1. System Dynamics

We consider a population of homogeneous players that evolve in continuous time from 0 to
a finite time horizon T . The players can be in one of the following states: susceptible (S),
infected (I), or recovered or vaccinated (R). We denote by mS(t), mI(t), and mR(t) the
proportion of the population, that is, respectively, in state S, in state I, or in state R at
time t.

The dynamics of one player is a Markov process in continuous time that can be described
as follows. A player encounters other players at rate γ. If a player is susceptible and encoun-
ters an infected player, then she becomes infected. An infected player recovers at rate ρ. We
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Figure 1. The dynamics of a player in the epidemic model. A player has three possible
states: S (susceptible), I (infected), and R (recovered or vaccinated).

also consider that a susceptible player can choose a vaccination strategy π. A strategy π is a
measurable function from [0, T ] to [0, θ], where θ < ∞ is the maximal vaccination rate and
π(t) is the rate at which the player becomes vaccinated. Once a player is vaccinated or has
recovered, her state does not change. The Markovian behavior of a player is represented in
Figure 1.

The cost incurred by one player is assumed to be of the sum of two costs:

• Vaccination cost: The vaccination cost of a susceptible player is a linear function of
her vaccination rate: cVπ(t), where cV > 0.

• Infection cost: Whenever a player is infected, it suffers a cost of cI (cI > 0) per time
unit.

We are interested in the analysis of this epidemic model with an infinite number of
players. In this case, the dynamics of the population is given by the Kolmogorov Equation
that takes the form of a system of ordinary differential equations, the state space is finite.

⎧⎪⎨
⎪⎩

ṁS(t) = −γmS(t)mI(t) − π(t)mS(t)
ṁI(t) = γmS(t)mI(t) − ρmI(t)
ṁR(t) = ρmI(t) + π(t)mS(t).

(1)

If the strategy π(t) is not continuous in time, the differential equation (1) may not be
well-defined at time points where π is not continuous. The existence of a continuous solution
for (1) is guaranteed by the Carathéodory’s Existence Theorem. This solution is essentially
unique (i.e., unique up to a set of measure zero). It is the essentially unique fixed point of
the following integral equation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mS(t) = mS(0) +
∫ t

0

(−γmS(u)mI(u) − π(u)mS(u)) du

mI(t) = mI(0) +
∫ t

0

(γmS(u)mI(u) − ρmI(u)) du

mR(t) = mR(0) +
∫ t

0

(ρmI(u) + π(u)mS(u)) du.

The same is true for all differential equations used in the paper, without further mention
to this point: all solutions can be considered continuous everywhere and differentiable at all
points except over a set of measure 0.

From this equation, we note that the vaccination strategy we consider can be interpreted
as a time-varying parameter, whereas the authors in Ref. [21] consider a general function
that do not depend explicitly on the susceptible population. Indeed the dynamics of the
system of the mean field game analyzed in Ref. [21] coincide with (1) if we replace π(t)mS(t)
by dU(t).
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3.2. Best Response

We focus on a particular player, that we call Player 0. As we consider a mean field game
model, the dynamics of the global population is not affected by Player 0 alone and is
driven by Eq. (1). Player 0 chooses her vaccination strategy π0, where π0(t) ∈ [0, θ] for all
t. The probability that Player 0 is in a given state depends not only on π0 but also on the
population distribution, which is the vector m(t) = (mS(t),mI(t),mR(t)).

Let xπ0,π
i (t) be the probability that Player 0 is in state i at time t, where i ∈ {S, I,R}.

The quantities xπ0,π
i (t) satisfy the following system of differential equations:

⎧⎪⎨
⎪⎩

ẋπ0,π
S (t) = −γxπ0,π

S (t)mI(t) − π0(t)xπ0,π
S (t)

ẋπ0,π
I (t) = γxπ0,π

S (t)mI(t) − ρxπ0,π
I (t)

ẋπ0,π
R (t) = ρxπ0,π

I (t) + π0(t)xπ0,π
S (t).

Note that the above equation is similar to Eq. (1) except that it is linear in x, whereas
Eq. (1) is not linear in m. We will exploit this linearity in Section 4 to show that the optimal
strategy can be computed easily by solving the Bellman’s equation.

The expected individual cost of Player 0 over interval [t, T ] is:

V π0,π(t) =
∫ T

t

[cVπ0(u)xπ0,π
S (u) + cIx

π0,π
I (u)] du.

We call the best response to π and denote by BR(π) the set of vaccination strategies
that minimize the expected cost of Player 0 for a given population strategy π, that is,

BR(π) ∈ arg minπ0V π0,π, (2)

which is a non-empty set by compactness of the strategy space.1

As in Refs. [10,15] we define an MFE as a fixed point of the best-response function:

Definition 3. 1 (Symmetric Mean Field Equilibrium): The vaccination strategy πMFE is
a symmetric MFE if and only if

πMFE ∈ BR(πMFE).

This is the classical definition of an equilibrium in a mean field game. The rationale
behind this definition is that in a homogeneous population, each player’s best response is
the same as for Player 0. For a given vaccination strategy of the population π, any player of
the population choose the vaccination strategy BR(π). As in classical games, an MFE is a
situation where no player has incentive to deviate unilaterally from the selected vaccination
strategy.

4. MFE CHARACTERIZATION

In this section, we analyze the MFE described in Section 3.2. Before going further, we
observe that the rate at which susceptible population becomes infected is linear in the
proportion of infected population and the rest of the rates and costs do not depend on the

1 The set of strategies is the set of bounded measurable functions on [0, T ] endowed with the weak
topology. It is a compact set.
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population distribution. Thus, our model is a particular case of the finite mean field games
whose equilibrium existence is proven in Ref. [10]. In this section, we use a direct method
to further characterize an equilibrium.

We define a bang–bang policy with at most one jump the policy that vaccinates at a
maximum rate until a given jump time τ and does not vaccinate after time τ . We denote
this policy by πτ . More precisely,

πτ (t) =
{

θ if t < τ,
0 if t ≥ τ.

In this section, we show that the mean field equilibrium is unique, deterministic (or
pure), in the sense that players do not randomize when the equilibrium is reached and is a
bang–bang strategy that jumps at a time that we denote by τ eq.

The first step in our proof is to show that, for any strategy π (not necessarily bang–bang)
there exists a unique best response to π that is bang–bang strategy with at most one jump.

Proposition 1: For any population strategy π, the best response to π is unique, up to a set
of measure 0. It is a bang–bang strategy with at most one jump. The jump time is denoted
by τBR(π).

Proof: From the discussion in Section 3.2, the minimization problem that consists in
computing the best response of Player 0 to the population can be seen as a continuous
time Markov decision process with finite horizon T . Let us denote by JS(t) (resp. JI(t)) the
optimal cost to go, starting in state S (resp. I), from time t. The optimal costs and the best
response to π, satisfy the Hamilton–Jacobi–Bellman equations [5]:

JS(T ) = JI(T ) = 0, (3)

−J̇S(t) = inf
π0

[π0(t)(cV − JS(t)) + γmI(t)(JI(t) − JS(t))], (4)

−J̇I(t) = cI − ρJI(t), (5)

BR(π) = arg minπ0 [π0(t)(cV − JS(t)) + γmI(t)(JI(t) − JS(t))]

= arg minπ0 [π0(t)(cV − JS(t))]. (6)

First, let us remark that if the strategy of Player 0, π0(t), is modified over a set of
Lebesgue measure 0, then the costs and the states are not modified. This means that
strategies are only defined up to a set of measure 0.

The solution of Equations (3)–(5) is JI(t) = (cI/ρ)(1 − eρ(t−T )). Therefore, the cost JI(t)
is decreasing from (cI/ρ)(1 − e−ρT ) to 0. At time T , JS(T ) = 0 = JI(T ) so that J̇S(T ) = 0.
Also, by (4), −J̇S(t) ≤ γmI(t)(JI(t) − JS(t)). By continuity of the functions JS and JI, this
implies that JS(t) < JI(t) for all t ∈ [0, T ).

By (6), the best-response strategy to π is 0 if JS(t) < cV and θ if JS(t) > cV. Therefore,
to show the result, it suffices to show that JS(t) crosses cV at most once. Let t1 be the
first time when JS(t) = cV (otherwise, we set t1 = 0). Eq. (4), together with the fact that
JS(t) < JI(t), implies that −J̇S(t1) > 0. By continuity, for all t > t1, once has −J̇S(t) > 0.
This implies that JS is decreasing from t1 to T . Hence, JS(t) crosses level cV at most once
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(at a time t1). This implies that the best response to π is a bang–bang strategy with at
most one jump:

BR(π) =
{

θ if t < t1
0 if t ≥ t1.

(7)

�

Notice that the best response is not necessarily well-defined at the jump time. This is
in accordance with the fact that two strategies that differ up to a set of measure 0 will lead
to the same costs. Another consequence of the previous proof is that the jump time BR(π)
is “monotonous” in π in a sense precised in the following result.

Lemma 1: Let πτ be a bang–bang strategy that jumps at τ . Then, the jump time τBR(πτ ) of
the response to πτ decreases when the original jump time τ increases.

Proof: We first observe that if τ increases, then the number of vaccinated population
increases, which implies that the number of infected population mI(t) decreases. From
the proof of Proposition 1, we know that JI(t) ≥ JS(t) for all t ≥ τBR(πτ ). Thus, in (4),
mI(t) is multiplied by JI(t) − JS(t), which is positive. Therefore, if the number of infected
population mI(t) decreases then JS(t) also decreases for all t ≥ τBR(πτ ). This implies that
τBR(πτ ) decreases. � �

The population distribution is a continuous function of the threshold τ and, as a con-
sequence, so are JS(t) and JI(t). This implies that the mapping (τ0, τ) �→ V πτ0

,πτ

is also

continuous. By Proposition 1, the best response τBR(πτ ) = arg minτ0V πτ0
,πτ

is unique. This
implies that the mapping τ → τBR(πτ ) is continuous. From Lemma 1, and by letting τ
increase from 0 to T , the jump time τBR(πτ ) is equal to τ exactly once. This proves the
following proposition.

Proposition 2: There exists a unique pure MFE and it is a bang–bang strategy with at
most one jump.

An important consequence of this result is that it provides a simple way of computing
numerically the MFE as it can be done by solving a fixed point problem over a scalar value.
Notice also that it is in accordance with the results obtained in Refs. [21] and [11]: the
vaccination of individuals have the same structure as the MFE we have presented.

In the following section, we present that the global optimum of the problem is also
a bang–bang strategy with at most one jump and we compare the jump times of both
strategies.

5. SOCIAL OPTIMUM CHARACTERIZATION

In this section, we consider the social optimum strategy that minimizes the total cost of the
whole population (also called the social cost).

5.1. Centralized Control Problem

Let us focus on a centralized control problem for this epidemic model. Here, we seek to
find the vaccination strategy of the population π such that the total cost of the system is
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minimized. We denote by C(π) the social cost incurred under the population vaccination
strategy π, that is,

C(π) =
∫ T

0

(cImI(t) + cVπ(t)mS(t)) dt.

The control strategy that minimizes C(π) among all the measurable functions from
[0, T ] to [0, θ] is denoted by πopt and satisfies

πopt ∈ arg minπC(π).

As for the case of the MFE, a strategy is essentially defined up to a set of measure 0 in
the following sense: If two strategies differ on a null set (i.e., of measure 0), then the cost
and the state remain identical.

5.2. Social Optimum Characterization

In this section, we study the vaccination strategy that minimizes the total cost of the SIR
model. The authors in Ref. [4] consider a model that covers most of the literature regarding
deterministic vaccination strategies of SIR dynamics and show the vaccination strategy that
minimizes the cost of the system a bang–bang strategy with at most one jump. We note
that the centralized control problem we present in Section 5.1 is a particular case of their
result, where f(S(t), I(t)) = βS(t)I(t), a = d = 0 and c(S(t)) = S(t)cV/cI. Therefore, their
result can be used to conclude that the social optimum of the SIR model is reached by a
bang–bang strategy with at most one jump. In the rest of the section, the jump time of the
social optimum will be denoted by τ∗.

Proposition 3 [4: Thm. 2.1] There is a unique strategy that minimizes the total cost of
the population and it is a bang–bang strategy, that is, πopt = πτ∗

.

In the following result, we show that, unless for trivial cases, the MFE and the social
optimum never coincide. More interestingly, we also prove that the jump time of the MFE
τ eq is always smaller than the optimal jump time τ∗. This implies that rational individuals
who try to minimize their own cost would tend to be less vaccinated than what a centralized
controller would do, essentially because they benefit from the vaccination of the others.
Hence, in order to encourage individuals to vaccinate optimally, a central planner should
subsidize vaccination.

Proposition 4: The jump time τ∗ of the socially optimal strategy is always equal or larger
than the jump time of the MFE τ eq, with equality only if τ∗ = 0.

Proof: The proof is based on the Pontryagin’s maximum principle applied to our opti-
mization problem. The Pontryagin’s maximum principle gives a necessary condition for
optimality [25]. In our case, it translates into the following: If π∗ is an optimal strategy,
then there exist two Lagrange multipliers λS(t) and λI(t) such that λS(T ) = 0, λI(T ) = 0
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and for any t < T ,

−λ̇S = cVπ∗(t) + (−γm∗
I (t) − π∗(t))λS + γm∗

I (t)λI,

−λ̇I = cI − γm∗
S(t)λS + (γm∗

S(t) − ρ)λI,

π∗(t) = arg min[cVπ(t)m∗
S(t) + cIm

∗
I (t)

+ (γm∗
S(t)m∗

I (t) − π(t)m∗
S(t))λS

+ (γm∗
S(t)m∗

I (t) − ρm∗
I (t))λI],

where m∗
I (t) and m∗

S(t) are the proportions of the population in states I and S, respectively,
at time t, under the optimal strategy. By straightforward simplifications, one gets

−λ̇S = inf
π

(π(t)(cV − λS) + γm∗
I (t)(λI − λS)), (8)

−λ̇I = cI − ρλI + γm∗
S(t)(λI − λS), (9)

π∗(t) = arg min(π(t)m∗
S(t)(cV − λS)). (10)

Equations (8) and (9) are similar to the equation for the costs of the best-response
strategy (4) and (5) up to the additional term γm∗

S(t)(λI − λS) for λI. Using this, the
comparison between the optimal strategy and the MFE bowls down to the comparisons of
the Lagrange Multipliers λS, λI and the costs JS, JI.

One easy case is where cV is larger than cI/ρ. In this case, for all t, λS ≤ λI ≤ cI/ρ ≤ cV

so that the jump time of the MFE is τ eq = 0. Therefore, the socially optimal jump time τ∗

can only be larger than τ eq.
Let us now consider the case where cV < cI/ρ. In this case, τ∗ is the time when λS gets

below cV. By examining the Lagrange multipliers λS and λI between τ∗ and T , one can
show that they must satisfy the following properties:

• λS(T ) = 0, λI(T ) = 0,
• ∀t ∈ [τ∗, T ], λS(t) ≤ λI(t).

Indeed, if there is a time t such that λS(t) = λI(t), then their derivatives become compa-
rable (λ̇S(t) ≤ λ̇I(t)). Therefore, the additional term γm∗

S(t)(λI − λS) in (8) remains positive
so that λI(t) ≤ JI(t), ∀τ∗ ≤ t ≤ T . In turn, this implies that λS(t) ≥ JS(t), ∀τ∗ ≤ t ≤ T .

This implies that JS(τ∗) ≤ λS(τ∗) = cV. Finally, this implies that τ eq (the time when
JS crosses level cV) is smaller that τ∗ (with equality only when τ∗ = 0). � �

This result shows the difference between the vaccination of the individuals when they
behave in a selfish manner and the vaccination that minimizes the cost of the SIR model.
Indeed, we have proven that the jump time of the social optimum is always larger that the
jump time of the MFE. In Section 7, we compare both vaccination policies numerically (see
[6] for a related comparison between the forward–backward stochastic differential equations
of a mean field game and the centralized control problem over controlled dynamics of McK-
ean–Vlasov type). Prior to that, we study this SIR model with finite number of players in
the following section.
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6. ANALYSIS WITH N < ∞ PLAYERS

An alternative model would have been to consider a population made of a finite number of
players (N). In this section, we present vaccination models with N < ∞ players. We give
the Bellman equation for this model and we discuss how it can be used to compute the
Nash equilibrium and the social optimum. We first consider the Nash equilibrium and then
we focus on the social optimum.

6.1. Nash Equilibrium

We consider a population formed by a finite number of players, that interact through a
stochastic game. The existence of Nash equilibria for such a model follows from classical
results on stochastic games [24].

The state of the N + 1 players (N players plus Player 0) can be seen as a triplet
(X,MS,MI) where X is the state of Player 0: X ∈ {S, I,R}, Ms (resp. MI) is the number
of the other players in state S (resp. I).

When all the other players use strategy π, the best response of Player 0 is given by the
following Bellman equation (after uniformization of the rates) over T (N + 1) time steps:

Ct(S,MS,MI) = min
π0

t (MS,MI)∈[0,θ]
pVcV + pICt+1(I,MS,MI) + qVCt+1(S,MS − 1,MI)

+ qRCt+1(S,MS,MI − 1) + qICt+1(S,MS − 1,MI + 1)

+ pSCt+1(S,MS,MI),

Ct(I,MS,MI) = cI + qVCt+1(I,MS − 1,MI) + qRCt+1(I,MS,MI − 1)

+ q′ICt+1(I,MS − 1,MI + 1) + pICt+1(I,MS,MI),

where the probabilities are

pV = Ωπ0
t (MS,MI),

pI = ΩγMI/N,

pR = Ωρ,

qV = Ωπt(Ms,MI)MS,

qR = ΩρMI,

qI = ΩγMSMI/N,

q′I = ΩγMS(MI + 1)/N,

pS = 1 − pV − pI − qV − qR − qI,

pI = 1 − pR − qV − qR − q′I,

with a normalization Ω = ((N + 1)(θ + ρ + γ))−1.
Using [10] Thm. 3, we can claim that the MFE computed in Section 4 is an ε-Nash

Equilibrium of the N player game for any N , and ε goes to 0 when N goes to infinity.
We observe that the Bellman equations above can be used to compute the best response
of Player 0 to the population strategy if we replace min by arg min in the first equation.
This process can be carried out iteratively to compute its fixed point (i.e., π0 is the best
response to itself), that is, the Nash equilibrium policy. We have not been able to prove
convergence of this best-response dynamics nor to prove the uniqueness of its fixed point.
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However, in Section 7.2, we study the Nash equilibrium for a finite number of players with
the parameters of [21] and in all the experiments, we have performed, the iteration always
converged to a unique point. Besides, when N = 5, the number of iterations required to
converge is two, but for larger values of N , the number of iterations increases substantially.
For instance, when N = 20, the convergence is given after more than 800 iterations and
when N = 30 after more than 2200 iterations.

6.2. Social Optimum

We now analyze the social optimum with N players. The state of the system can be seen as
a couple (MS,MI) where Ms (resp. MI) is the number of the other players in state S (resp.
I). We aim to find the strategy that minimizes the expected cost of the system. This can
be done by solving the following Bellman equation (after uniformization of the rates) over
T (N) time step:

Jt(MS,MI) = cIMI + min
πt∈[0,θ]

(cVqVMS + qVJt+1(MS − 1,MI)

+ qRJt+1(MS,MI − 1) + qIJt+1(MS − 1,MI + 1))

+ qJt+1(MS,MI),

where the probabilities are

qV = ΩπtMS,

qR = ΩρMI,

qI = ΩγMSMI/N,

q = 1 − qV − qR − qI,

with a normalization Ω = (N(θ + ρ + γ))−1.
We observe that the computation of the strategy requires a single backward computation

of the Bellman equation. Note that while the socially optimal strategy is not necessarily
unique, its cost Jt(MS,MI) is uniquely defined. Moreover, its computation by the above
backward recursion is much faster than the computation of the Nash equilibrium we pre-
sented in Section 6.1 because one needs only one pass of the backward recursion to obtain
J0(MS,MI). In Section 7.2, we present numerical experiments that study the speed of con-
vergence o the global optimum strategy with N players to the mean field optimum strategy
for the parameters of [21].

7. NUMERICAL COMPARISONS

7.1. Comparison of MFE and Social Optimum

Propositions 2 and 3 show that the MFE and the social optimum are characterized by their
jump time τ . In this section, we report a numerical evaluation of the jump time of these
strategies.2 We consider the same system parameters as in Ref. [21], which is based on
the epidemiological study of the H1N1 epidemic of 2009–2010 in France : ρ = 36.5, γ = 73,
θ = 10, cI = 36.5, and cV = 0.5. Besides, we consider that the proportion of susceptible and
infected population at time 0 are both equal to 0.4.

2 The codes to reproduce these experiments are available at https://github.com/josudoncel/
MeanFieldGameAnalysisSIRModelVaccinations.
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Figure 2. Population dynamics under the equilibrium strategy (dashed line) and the
socially optimal strategy (solid line). Three zones are displayed: (i) in the white region,
the social optimum and the equilibrium vaccinate with a maximum rate; (ii) in the dark
gray region, the social optimum vaccinates with a maximum rate, while the equilibrium
does not vaccinate; and (iii) in the light gray region, neither the social optimum nor the
equilibrium vaccinates. mI(0) = mS(0) = 0.4.

Remark 1: The value of cI in Ref. [21] corresponds to our value of cI/ρ. Hence, in Ref.
[21], they use cI = 1 which corresponds to cI = ρ = 36.5. It is easy to see that if the cost of
infection is cI times ρ, the Bellman equations of both models coincide. The authors provide
simulations where the proportion of susceptible and infected population at time 0 is, respec-
tively, 0.75 and 0.1 and, using their approach, they obtain that the cost for the MFE and in
the social optimum are, respectively, 0.55 and 0.53. Using our approach, the costs are 0.542
for the MFE and 0.524 for the social optimum.

For these parameters, we compute the optimal strategy and the MFE over a time
horizon of a year, that is, T = 1. The results are reported in Figure 2 where the population
state space is divided into three regions that represent the decisions taken by both strategies
at time 0, as a function of the initial state. In the white region, both strategies vaccinate at
a maximum rate. In the dark gray region, the strategy of the social optimum is to vaccinate
at a maximum rate and the strategy of the equilibrium is to not vaccinate. In the light gray
region, both strategies are to not vaccinate.

We also plot the trajectories corresponding to both strategies when the proportion of
infected population and of susceptible population at time 0 are both equal to 0.4. In the left
plot of Figure 2 (see the right plot for a zoomed figure), we plot with a solid line the behavior
of the equilibrium vaccination strategy, and with a dashed line, the behavior of the social
optimum. The obtained cost for the equilibrium vaccination strategy for the parameters
under consideration is 0.6824, whereas for the social optimum vaccination strategy is 0.6818.

For any vaccination cost cV, while the other parameters remain fixed, we denote by
τ∗(cV) (resp. τ eq(cV)) the jump time of the socially optimal strategy (resp. equilibrium
strategy). It can be shown that in both cases, the jump times are decreasing in cV: the
more costly is the vaccination, the less people vaccinate (for the socially optimal situation
as well as for the MFE). Figure 3 confirms that the jump times decrease with cV and also
shows that the jump times are never equal for this range of parameters. This suggests that,
if the vaccination decisions are let to individuals, then vaccination should be subsidized, by
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Figure 3. Jump times comparison when cV varies from 0.01 to 1. The jump time of the
MFE is represented with a dotted line and the jump time of the social optimum (OPT)
with a solid line. The horizontal distance is the subsidy to be granted to incentive players
to use the optimal vaccination strategy.

offering a grant g off the vaccination cost so that both jump times coincide, that is,

τ eq(cV − g) = τ∗(cV).

For example, with the same parameters as in the simulation of Figure 2, and for cV =
0.8, the jump time of the social optimum is 0.0106, while the jump time of the equilibrium
is 0. The jump time of the equilibrium is 0.034 when cV = 0.65. This simulation shows that
the subsidy required to encourage selfish individuals to vaccinate optimally consists of a
reduction of the vaccination cost of g = 0.15.

7.2. Convergence of the N -Player Nash Equilibrium to MFE

Using the same parameters as in the previous subsection, we compute the cost of the Nash
equilibrium with N players and compare with the cost of the MFE, and let N grow to assess
the convergence of the cost as N goes to infinity.

We first focus on the cost of the equilibria. As it can be observed in Figure 4, the
cost of the equilibrium of the N - player game converges to the cost of the MFE when N
is large. This illustration suggests that convergence rate of the cost is in 1/N . This rate
of convergence is in accordance with the recent results of [3,8] that show that for some
specific games, the sequence of equilibria of the N -player games converges at rate 1/N to
the MFE.3 This convergence rate is faster than the classical convergence rate in 1/

√
N

that holds for general mean field games (see, for example, [7] that show that an MFE is
an 1/

√
N -Nash equilibrium). We believe that there are two reasons for that. First, the

dynamics at equilibrium is piecewise smooth, which means that techniques similar to the
ones of [12,13,20] could most certainly be used to prove the 1/N rate of convergence. Second,
we focus here on the convergence of the cost of the equilibrium which tends to converge
faster than the policy.

3 Note that their results do not apply as is to our model because our model does not satisfy all the
assumptions of either [3] or [8]: in those papers, the player controls directly the jump rates. Moreover, those
papers assume a strict convexity of costs whereas our cost is linear.
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Figure 4. Cost of the Nash equilibrium with N players as N grows, and best fit of the
form a + b/N .

Figure 5. Convergence of the Nash switching curve to the MFE switching curve.

Figure 5 shows how the Nash policy (a switch curve for any N) converges to the MFE
policy. Notice that the convergence is monotone (switching curve decreases to the limit
curve). Note that the computation of the MFE is much faster than the N-player equilibrium.
In fact, we have performed these experiments in a machine equipped with a 2.7 GHz CPU
core and 8 GB RAM and the computation time of the N -player equilibrium was more than
2 h for N = 20 and more than 100 h for N = 50, whereas the MFE has been computed in
less than 3 min.

In the next set of experiments, we consider the social optimum policy. We first show in
Figure 6 that the cost of the social optimum policy with a finite number of agents converges

https://doi.org/10.1017/S0269964820000522 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000522


496 J. Doncel et al.

Figure 6. Cost of the social optimum with N players as N grows, and best fit of the form
a + b/N .

Figure 7. Convergence of the social optimum switching curve for N players to the mean
field social optimum switching curve.

to the cost of the mean field optimum. We also remark that the convergence rate of the cost
is again in 1/N .

We compare the switching curve of the social optimum policy with N players with that
of the mean field optimum policy in Figure 7. We observe from this plot that the convergence
is also monotone in this case.

Note that here numerical experiments can be carried for larger values of N because the
computation of the social optimal is much faster (a single backward computation of the Bell-
man equation) while computing the Nash equilibria requires many backward computations
to reach a fixed point.
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Figure 8. Ratio between the cost of the N -player equilibrium and the optimum social
cost for the models with N players. We plot the ratio as a function of the initial state
(mS(0),mI(0)) and compare N = 10 (left) and N = 20 (right).

7.3. Efficiency of the N -Player Equilibrium

For a given value of the parameters of the model, the efficiency ratio of an equilibrium
is defined as the ratio of its cost and the cost of the global optimum strategy. When the
efficiency ratio is close to one, we say that the N -players equilibrium is efficient. Using this
definition, the Price of Anarchy is defined as the maximum over all the parameters of the
system of the efficiency ratio. From the arguments of the previous section, we know that,
when the number of players is large, the efficiency ratio of an Nash equilibrium is well
approximated by the mean field efficiency ratio, that is, the ratio of the cost of the MFE
over the cost of the mean field optimum.

According to the results of Figures 4 and 6, one can conclude that for the parameters
of [21] when the initial proportion of susceptible and infected is mS(0) = mI(0) = 0.4, the
equilibrium is efficient for all N . In fact, when N = 10 and N = 20, the ratio of the cost at the
equilibrium over the cost of the global optimum strategy is 1.0188 and 1.0105, respectively.
Besides, for this instance, the mean field efficiency ratio, whose value is 1.0015, approximates
not that well the efficiency ratio of the N -players equilibria. In this section, we aim to study
the efficiency of the equilibrium with a small number of players.

We first study the efficiency of the equilibrium with a finite number of players N = 10
or N = 20. In Figure 8, we represent the efficiency ratio for all the possible initial conditions
of the proportion of susceptible and infected players. As it can be observed, the efficiency
ratio is close to one in most cases. In fact, for N = 10, the maximum of the efficiency ratio
is 1.072 and it is achieved when mS(0) = 0.6 and mI(0) = 0.1. For N = 20, the cost of the
equilibrium is at most 1.102 times the cost of the global optimum. Note that when mI(0) = 0
or mS(0) = 0, the ratio is one because both the equilibrium and the socially optimal strategy
consist in non-vaccinating.

We report the efficiency of the equilibrium for the mean field model in Figure 9. To
obtain this figure, we consider all initial conditions mI(0),mS(0) ∈ {0, 1/100, . . . , 1} and
report the ratio between the cost of the MFE and the cost of the socially optimal strategy.
We observe that, as for the finite player model, the ratio is often close to 1. It is maximal
when mS(0) ≈ 0.67 and mI(0) = 1/100 (i.e., close to 0 but not equal to 0).
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Figure 9. Ratio between the cost of the MFE and the optimum mean field social cost.
We plot the ratio as a function of the initial state (mS(0),mI(0)).

8. CONCLUSION

In this paper, we studied a mean field game model of an SIR dynamics where players
can vaccinate. We showed that this game has a unique equilibrium that is of bang–bang
type. We compared this equilibrium with the socially optimal strategy. We conclude that,
if people decide by themselves when to vaccinate, then, in order to encourage a socially
optimal behavior, vaccination should be subsidized.

In addition of its per se interest, we think that this problem is a good example where
an MFE can be computed under almost closed form, while an analysis of the N -player Nash
equilibrium seems impossible.
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