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New variational principles are given for the two-dimensional interactions between
gravity-driven water waves and a rotating and translating rectangular vessel dynamica-
lly coupled to its interior potential flow with uniform vorticity. The complete set of
equations of motion for the exterior water waves, the exact nonlinear hydrodynamic
equations of motion for the vessel in the roll/pitch, sway/surge and heave directions,
and also the full set of equations of motion for the interior fluid of the vessel, relative
to the body coordinate system attached to the rotating–translating vessel, are derived
from two Lagrangian functionals.
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1. Introduction

Luke (1967) presented a variational principle for the classical water-wave problem
described by the equations

1Φ :=ΦXX +ΦYY = 0 for −H(X) < Y <Γ (X, t),
Φt +

1
2∇Φ · ∇Φ + gY = 0 on Y = Γ (X, t),
ΦY = Γt +ΦXΓX on Y = Γ (X, t),
ΦY +ΦXHX = 0 on Y =−H(X),

 (1.1)

where (X, Y) is the spatial coordinate system and Φ(X, Y, t) is the velocity potential
of an irrotational fluid lying between Y = −H(X) and Y = Γ (X, t), with the gravity
acceleration g acting in the negative Y direction. In the horizontal direction X, the fluid
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domain is cut off by a vertical surface Σ which extends from the bottom to the free
surface. Then Luke’s variational principle reads

δL(Φ, Γ )= δ
∫ t2

t1

∫ X2

X1

∫ Γ (X,t)

−H(X)
−ρ
(
Φt +

1
2∇Φ · ∇Φ + gY

)
dY dX dt= 0, (1.2)

with variations in Φ(X, Y, t) and Γ (X, t) subject to the restrictions δΦ = 0 at the end
points of the time interval, t1 and t2. In (1.2), the gradient vector field is denoted by
∇, and ρ is the water density.

Miloh (1984) presented an extension of Luke’s variational principle for water
waves interacting with several bodies on or below a free surface which oscillate at a
common frequency. van Daalen (1993) and van Daalen, van Groesen & Zandbergen
(1993), hereafter DGZ, extended the Hamiltonian formulation of surface waves due
to Zakharov (1968), Broer (1974) and Miles (1977) to water waves in hydrodynamic
interaction with freely floating bodies, starting from a variational principle of the
form

δL= δ
∫ t2

t1

∫
Ω(t)
−ρ
(
Φt +

1
2∇Φ · ∇Φ + gY

)
dΩ dt+ δ

∫ t2

t1

(KEvessel
− PEvessel) dt= 0,

(1.3)
where KEvessel is the kinetic energy of the vessel and PEvessel is the potential energy
of the vessel. In this action integral, the system under consideration, Ω(t), consists of
a fluid bounded by the impermeable bottom Y =−H(X), the free surface Y =Γ (X, t)
and the wetted surface S of a rigid body. In the horizontal direction X, the fluid
domain is cut off by a vertical surface Σ at X=X1,X2 which extends from the bottom
to the free surface. DGZ used this Lagrangian action to derive the complete set of
equations of motion, i.e. equations (1.1) and the hydrodynamic equations of motion
for the rigid body. However, they did not present the exact nonlinear equations for the
rigid-body motion, due to the approximation in their definition for the body angular
velocity in KEvessel. This can be seen by comparing the second term in equation (3)
of DGZ with the third term in the last line of (1.4). Moreover, the second term in the
last line of (1.4) is absent in equation (3) of DGZ. van Groesen & Andonowati (2017)
presented a Boussinesq-type Hamiltonian formulation for wave–ship interactions.

The variational principle presented by DGZ was for an empty rigid body in
hydrodynamic interaction with exterior water waves. However, in the present article,
in order to take into account the coupled dynamics between fluid sloshing in a vessel
while in an ambient wave field, with coupling to the vessel motion, the second
part of the variational principle (1.3) should be modified to include the kinetic and
potential energies of the interior fluid. To do this, we first present the general form
of a three-dimensional Lagrangian action for a rigid body with interior fluid motion,
and then, in § 3, we show how a reduced two-dimensional version of this functional
can be derived for the purposes of this paper. Alemi Ardakani (2010) derived the
exact form of a three-dimensional Lagrangian action for a rigid body containing fluid
that undergoes 3D rotational and translational motions. The action integral takes the
form

L(ω, q) =
∫ t2

t1

∫
Ω ′
(KEfluid

− PEfluid) dΩ ′ dt+
∫ t2

t1

(KEvessel
− PEvessel) dt

=

∫ t2

t1

∫
Ω ′

(
1
2‖ẋ‖

2
+ ẋ · (ω× (x+ d)+QTq̇)+QTq̇ · (ω× (x+ d))+ 1

2‖q̇‖
2
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Variational principles for wave–vessel–slosh interactions

+
1
2ω ·

(
‖x+ d‖2 I − (x+ d)⊗ (x+ d)

)
ω− g(Q(x+ d)+ q) ·E2

)
ρ dΩ ′ dt

+

∫ t2

t1

(
1
2 mv ‖q̇‖2

+ (ω×mvxv) ·QTq̇+ 1
2ω · Ivω−mvg(Qxv + q) ·E2

)
dt,

(1.4)
where the body frame, which is attached to the moving rigid body, has coordinates x=
(x, y, z), the distance between the centre of rotation and the origin of the body frame
is d = (d1, d2, d3), the fluid-tank system has a uniform translation q(t) = (q1, q2, q3)

relative to the spatial frame X= (X, Y, Z), the integral is over the volume Ω ′ of the
interior fluid, ⊗ denotes the tensor product, I is the 3 × 3 identity matrix, Iv is the
dry-vessel mass moment of inertia relative to the point of rotation, mv is the mass of
the dry vessel, xv = (xv, yv, zv) is the centre of mass of the dry vessel relative to the
body frame, E2 is the unit vector in the Y direction and ω(t) = (ω1(t), ω2(t), ω3(t))
is the body angular velocity vector with entries determined from the rotation tensor
Q(t) by

QTQ̇=

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 := ω̂. (1.5)

The convention for the entries of the skew-symmetric matrix ω̂ is such that ω̂r =
ω × r for any r ∈ R3. The relation between the spatial displacement and the body
displacement, and the relation between the body velocity and the space velocity are
respectively

X=Q(x+ d)+ q and Ẋ=Q(ẋ+ω× (x+ d)+QTq̇). (1.6a,b)

This formulation is consistent with the theory of rigid-body motion, where an arbitrary
motion can be described by the pair (Q(t), q(t)). The exact equations of motion for
the rigid body can be derived from the Lagrangian action (1.4).

The interest in this paper is to derive a coupled variational principle for two-
dimensional interactions between water waves and a floating rectangular vessel with
interior fluid motion which gives the exact nonlinear Euler–Lagrange equations for
the coupled dynamics. The vessel is free to undergo roll/pitch motion (θ ), sway/surge
motion (q1) and heave motion (q2), which are rotation about the centre of rotation in
the Z-direction relative to the rest keel, horizontal displacement along the X-axis and
vertical displacement along the Y-axis respectively. It is shown in § 3 that the addition
of Luke’s Lagrangian action (1.2) to a two-dimensional variant of the Lagrangian
action (1.4) gives

δL(Φ, Γ , θ, q1, q2)= δ

∫ t2

t1

∫
Ω(t)
−ρ
(
Φt +

1
2∇Φ · ∇Φ + gY

)
dΩ dt

+ δ

∫ t2

t1

(∫ L

0

∫ η(x,t)

0

[
1
2(φ

2
x + φ

2
y )+ φx(q̇1 cos θ + q̇2 sin θ)+ 1

2(q̇
2
1 + q̇2

2)

+φy(−q̇1 sin θ + q̇2 cos θ)− g(sin θ(x+ d1)+ cos θ(y+ d2)+ q2)
]
ρ dy dx

+
1
2 mv(q̇2

1 + q̇2
2)−mvyv θ̇ (q̇1 cos θ + q̇2 sin θ)+mvxv θ̇ (−q̇1 sin θ + q̇2 cos θ)

+
1
2 mv(x2

v + y2
v)θ̇

2
−mvg(xv sin θ + yv cos θ + q2)

)
dt= 0, (1.7)
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x
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Y

X

FIGURE 1. Diagram showing the coordinate systems for a rotating–translating vessel. The
coordinate system (X′, Y ′) is the translation by q= (q1, q2) of the fixed coordinate system
(X, Y). The distance from the centre of rotation to the origin of the body coordinate
system (x, y) is d= (d1, d2).

where Ω(t) is defined as in (1.3), L is the length of the vessel, η(x, t) is the fluid
height relative to the body coordinate system (x, y), which is attached to the moving
vessel, (xv, yv) is the centre of mass of the dry vessel relative to the body frame,
mv is the mass of the dry vessel, (d1, d2) is the distance between the centre of
rotation and the origin of the body frame and φ(x, y, t) is the velocity potential
for the interior fluid motion, yet to be determined. See figure 1 for a sketch of the
coordinate systems. The second part of (1.7) is the kinetic and potential energy of
the whole domain, for the fluid in the vessel in moving coordinates such that the
extra fictitious forces emerge. The Lagrangian action (1.7) can be used for derivation
of the set of equations of motion for the classical water-wave problem (1.1) and also
the hydrodynamic equations of motion for the rigid body in the roll/pitch, sway/surge
and heave directions.

The second variational principle is a variant of Luke’s variational principle (1.2) for
the interior rotating–translating fluid motion of the vessel. It is shown in § 2 that the
complete set of equations for the interior fluid motion relative to the body coordinate
system can be obtained from the Lagrangian action

δL(φ, η) = δ

∫ t2

t1

∫ L

0

∫ η(x,t)

0

[
−
(
φt +

1
2∇φ · ∇φ + θ̇ (y+ d2)φx − θ̇ (x+ d1)φy

)
+

1
2(x+ d1)(−g sin θ − q̈1 cos θ − q̈2 sin θ)

+
1
2(y+ d2)(−g cos θ + q̈1 sin θ − q̈2 cos θ)

]
ρ dy dx dt= 0. (1.8)

This paper starts with the derivation of a variational principle for the fluid motion
in a rotating–translating rectangular vessel in § 2. In § 3, a variational principle
is presented for interactions between the exterior water waves and the rigid body
containing fluid. The exact nonlinear hydrodynamic equations for the rigid-body
motion are derived. The paper ends with concluding remarks in § 4.

2. A variational principle for the interior fluid motion

The configuration of the fluid in a rotating–translating vessel is shown in figure 1.
The fluid occupies the region 06 y6η(x, t), with 06 x6L. The two-dimensional Euler

827 R2-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

51
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.517


Variational principles for wave–vessel–slosh interactions

equations relative to a rotating–translating coordinate system (x, y) given by Alemi
Ardakani & Bridges (2012) are

Du
Dt
+

1
ρ

∂p
∂x
=−g sin θ + 2θ̇v + θ̈ (y+ d2)+ θ̇

2(x+ d1)− q̈1 cos θ − q̈2 sin θ,

Dv
Dt
+

1
ρ

∂p
∂y
=−g cos θ − 2θ̇u− θ̈ (x+ d1)+ θ̇

2(y+ d2)+ q̈1 sin θ − q̈2 cos θ,

∂u
∂x
+
∂v

∂y
= 0,


(2.1)

where Du/Dt= ut + uux + vuy. The velocity field (u, v) is relative to the body frame
and p is the pressure field. Relative to the body frame, the boundary conditions are

u= 0 at x= 0 and x= L, v = 0 at y= 0 (2.2a−c)

and
p= 0 and ηt + uηx = v at y= η(x, t), (2.3a,b)

where the surface tension is neglected in the boundary condition for the pressure. The
vorticity, V = vx − uy, satisfies the equation DV/Dt=−2θ̈ .

Now, we introduce a velocity potential φ(x, y, t) such that

u(x, y, t)= φx + θ̇ (y+ d2) and v(x, y, t)= φy − θ̇ (x+ d1). (2.4a,b)

The velocity field in (2.4) satisfies the vorticity equation. The vorticity is constant in
space and satisfies V =−2θ̇ . Substitution of (2.4) into the continuity equation in (2.1)
leads to Laplace’s equation for φ(x, y, t),

φxx + φyy = 0 in 0 6 y 6 η(x, t), 0 6 x 6 L, (2.5)

and substitution of (2.4) into the momentum equations in (2.1) leads to Bernoulli’s
equation for the pressure field,

p
ρ
+ φt +

1
2
(φ2

x + φ
2
y )−

1
2
(x+ d1)(−g sin θ − q̈1 cos θ − q̈2 sin θ)

−
1
2
(y+ d2)(−g cos θ + q̈1 sin θ − q̈2 cos θ)

+ θ̇ (y+ d2)φx − θ̇ (x+ d1)φy = Be(t), (2.6)

where Be(t) is the Bernoulli function which can be absorbed into φ(x, y, t). Therefore,
the dynamic free-surface boundary condition in (2.3) at y= η(x, t) becomes

φt +
1
2(φ

2
x + φ

2
y )+ θ̇ (η+ d2)φx −

1
2(x+ d1)(−g sin θ − q̈1 cos θ − q̈2 sin θ)

−
1
2(η+ d2)(−g cos θ + q̈1 sin θ − q̈2 cos θ)− θ̇ (x+ d1)φy = 0. (2.7)

In terms of the velocity potential φ(x, y, t), the kinematic free-surface boundary
condition in (2.3) becomes

ηt + (φx + θ̇ (η+ d2))ηx = φy − θ̇ (x+ d1) at y= η(x, t) (2.8)

and the rigid-wall boundary conditions in (2.2) become

φx =−θ̇ (y+ d2) at x= 0, L, φy = θ̇ (x+ d1) at y= 0. (2.9a,b)
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Following Luke, the variational principle for the interior rotating–translating fluid is

δL(φ, η)= δ
∫ t2

t1

∫ L

0

∫ η(x,t)

0
p(x, y, t) dy dx dt= 0. (2.10)

Now, substituting for p(x, y, t) from (2.6) into (2.10), we obtain (1.8). Taking the
variations in (1.8), we obtain

δL(φ, η)=
∫ t2

t1

∫ L

0
(ηt + ηxφx − φy + ηxθ̇ (η+ d2)+ θ̇ (x+ d1))δφ

∣∣y=ηρ dx dt

+

∫ t2

t1

∫ L

0

∫ η(x,t)

0
(φxx + φyy)δφρ dy dx dt−

∫ t2

t1

∫ L

0
(∇φ · n+ θ̇ (x+ d1))δφ

∣∣
y=0ρ dx dt

+

∫ t2

t1

∫ η

0
(−∇φ · n+ θ̇ (y+ d2))δφ

∣∣
x=0ρ dy dt

+

∫ t2

t1

∫ η

0
(−∇φ · n− θ̇ (y+ d2))δφ

∣∣
x=Lρ dy dt+

∫ t2

t1

∫ L

0
p(x, η, t)δη dx dt= 0. (2.11)

A detailed derivation of (2.11) is given in appendix A. From (2.11), it is obvious
that invariance of L with respect to a variation in the free-surface elevation η yields
the dynamic free-surface boundary condition (2.7). Similarly, the invariance of L
with respect to a variation in the velocity potential φ yields the field equation (2.5).
Moreover, the invariance of L with respect to a variation in the velocity potential φ
at y = 0, x = 0 and x = L recovers the rigid-wall boundary conditions in (2.9), and
the invariance of L with respect to a variation in the velocity potential φ at y = η
recovers the kinematic free-surface boundary condition (2.8).

3. A variational principle for the exterior water waves and the motion of the
rigid body containing fluid

The complete set of differential equations for the exterior water waves interacting
with the rigid body in the plane can be obtained from a variant of the Lagrangian
action (1.3) which takes the form

δL = δ

∫ t2

t1

∫
Ω(t)
−ρ
(
Φt +

1
2∇Φ · ∇Φ + gY

)
dΩ dt

+ δ

∫ t2

t1

∫
Ω ′
(KEfluid

− PEfluid) dΩ ′ dt+ δ
∫ t2

t1

(KEvessel
− PEvessel) dt= 0, (3.1)

where the second line in (3.1) is a 2D variant of the Lagrangian action (1.4), which
can be obtained by substituting ẋ = (u, v, 0) = (φx + θ̇ (y + d2), φy − θ̇ (x + d1), 0),
q= (q1, q2, 0), ω= (0, 0, θ̇ ), d= (d1, d2, 0), xv = (xv, yv, 0) and

Q=

cos θ −sinθ 0
sin θ cos θ 0

0 0 1

 (3.2)

into (1.4). Then, the variational principle (3.1) reduces to (1.7).
In order to take the variations in (1.7), the variational Reynold’s transport theorem

should be used, since the domain of integration Ω is time-dependent. See Flanders
(1973), Daniliuk (1976) and Gagarina, van der Vegt & Bokhove (2013) for the
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Variational principles for wave–vessel–slosh interactions

background mathematics on the variational analogue of Reynold’s transport theorem.
Then, according to the usual procedure in the calculus of variations, equation (1.7)
for all variations in the free-surface elevation Γ , the velocity potential Φ, the vessel
position q= (q1, q2) and the vessel orientation θ becomes

δL(Φ, Γ , θ, q1, q2)=

∫ t2

t1

∫ X2

X1

−
(
Φt +

1
2∇Φ · ∇Φ + gY

)∣∣Y=Γ ρδΓ dX dt

+

∫ t2

t1

∫
S

P(X, Y, t)(δXs · n) ds dt−
∫ t2

t1

∫
Ω(t)
(δΦt +∇Φ · ∇δΦ)ρ dΩ dt

+

∫ t2

t1

∫ L

0

∫ η(x,t)

0

[
φx(δq̇1 cos θ − q̇1 sin θδθ + δq̇2 sin θ + q̇2 cos θδθ)

+φy(−δq̇1 sin θ − q̇1 cos θδθ + δq̇2 cos θ − q̇2 sin θδθ)
+ (q̇1δq̇1 + q̇2δq̇2)− g(cos θ(x+ d1)δθ − sin θ(y+ d2)δθ + δq2)

]
ρ dy dx dt

+

∫ t2

t1

(
mv(q̇1δq̇1 + q̇2δq̇2)−mvyvδθ̇(q̇1 cos θ + q̇2 sin θ)

−mvyv θ̇ (δq̇1 cos θ − q̇1 sin θδθ + δq̇2 sin θ + q̇2 cos θδθ)
+mvxvδθ̇(−q̇1 sin θ + q̇2 cos θ)+mvxv θ̇
× (−δq̇1 sin θ − q̇1 cos θδθ + δq̇2 cos θ − q̇2 sin θδθ)
+mv(x2

v + y2
v)θ̇δθ̇ −mvg(xv cos θδθ − yv sin θδθ + δq2)

)
dt= 0, (3.3)

where
P(X, Y, t)=−ρ(Φt +

1
2∇Φ · ∇Φ + gY) on S (3.4)

and it should be noted that these variations are subject to the restrictions that they
vanish at the end points of the time interval and on the vertical boundary at infinity
Σ . In (3.3), Xs denotes the position of a point on the wetted vessel surface S relative
to the spatial frame (X, Y) and n is the unit normal vector along ∂Ω ⊃ S. The change
in Xs due to variations in q and θ is given by

δXs =Q′xsδθ + δq with Q′ =

−sinθ −cosθ 0
cos θ −sinθ 0

0 0 0

 , (3.5)

where xs is the position of a point on the wetted vessel surface relative to the body
frame (x, y). Taking into account the motion of Ω(t), we may write

−
d
dt

∫ t2

t1

∫
Ω

δΦρdΩ dt = −
∫ t2

t1

∫ X2

X1

ΓtδΦ
∣∣Y=Γ ρ dX dt−

∫ t2

t1

∫
S
(Ẋs · n)δΦρ ds dt

−

∫ t2

t1

∫
Ω

δΦtρ dΩ dt. (3.6)

This is the same as the variational Reynold’s transport theorem but with variational
derivatives replaced by time derivatives. Noting that the left-hand side vanishes due
to the restriction δΦ = 0 at times t= t1 and t= t2, this expression simplifies to

−

∫ t2

t1

∫
Ω

δΦtρ dΩ dt=
∫ t2

t1

∫ X2

X1

ΓtδΦ
∣∣Y=Γ ρ dX dt+

∫ t2

t1

∫
S
(Ẋs · n)δΦρ ds dt. (3.7)
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With Green’s first identity, we may write∫ t2

t1

∫
Ω

∇Φ · ∇δΦρ dΩ dt=−
∫ t2

t1

∫
Ω

1ΦδΦρ dΩ dt+
∫ t2

t1

∫
∂Ω

(∇Φ · n)δΦρ ds dt

=−

∫ t2

t1

∫
Ω

1ΦδΦρ dΩ dt+
∫ t2

t1

∫ X2

X1

(−ΓXΦX +ΦY)δΦ
∣∣Y=Γ ρ dX dt

+

∫ t2

t1

∫ X2

X1

(ΦXHX +ΦY)δΦ
∣∣

Y=−Hρ dX dt+
∫ t2

t1

∫
S

∂Φ

∂n
δΦρ ds dt. (3.8)

Now, using the expressions (3.5), (3.7) and (3.8), integrating by parts and noting that
δq and δθ vanish at the end points of the time interval, the variational principle (3.3)
simplifies to

δL(Φ, Γ , θ, q1, q2)=

∫ t2

t1

∫ X2

X1

−

(
Φt +

1
2
∇Φ · ∇Φ + gY

)∣∣∣∣Y=Γ ρδΓ dX dt

+

∫ t2

t1

∫ X2

X1

(Γt + ΓXΦX −ΦY)δΦ
∣∣Y=Γ ρ dX dt+

∫ t2

t1

∫
S

(
Ẋs · n−

∂Φ

∂n

)
δΦρ ds dt

−

∫ t2

t1

∫ X2

X1

(ΦXHX +ΦY)δΦ
∣∣

Y=−Hρ dX dt+
∫ t2

t1

∫
Ω

1ΦδΦρ dΩ dt

+

∫ t2

t1

∫
S

P(X, Y, t)(Q′xs · n)δθρ ds dt+
∫ t2

t1

∫
S

P(X, Y, t)n · δqρ ds dt

+

∫ t2

t1

( ∫ L

0

∫ η

0
(−φxt cos θ + φxθ̇ sin θ + φyt sin θ + φyθ̇ cos θ − q̈1

+ (φx + θ̇ (y+ d2))(φyx sin θ − φxx cos θ)
+ (φy − θ̇ (x+ d1))(φyy sin θ − φxy cos θ)) ρ dy dx

−mvq̈1 +mvyv(θ̈ cos θ − θ̇ 2 sin θ)+mvxv(θ̈ sin θ + θ̇ 2 cos θ)
)
δq1 dt

+

∫ t2

t1

( ∫ L

0

∫ η

0
(−φxt sin θ − φxθ̇ cos θ − φyt cos θ + φyθ̇ sin θ − q̈2 − g

− (φxx sin θ + φyx cos θ)(φx + θ̇ (y+ d2))

− (φxy sin θ + φyy cos θ)(φy − θ̇ (x+ d1))) ρ dy dx

−mvq̈2 +mvyv(θ̈ sin θ + θ̇ 2 cos θ)−mvxv(θ̈ cos θ − θ̇ 2 sin θ)−mvg
)
δq2 dt

+

∫ t2

t1

( ∫ L

0

∫ η

0

[
φx(−q̇1 sin θ + q̇2 cos θ)+ φy(−q̇1 cos θ − q̇2 sin θ)

− g(cos θ(x+ d1)− sin θ(y+ d2))
]
ρ dy dx+mvyv(q̈1 cos θ + q̈2 sin θ)

−mvxv(−q̈1 sin θ + q̈2 cos θ)−mv(x2
v + y2

v)θ̈ −mvg(xv cos θ − yv sin θ)
)
δθ dt= 0.

(3.9)

From (3.9), we conclude that invariance of L with respect to a variation in the
free-surface elevation Γ yields the dynamic free-surface boundary condition in (1.1),
invariance of L with respect to a variation in the velocity potential Φ yields the field
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Variational principles for wave–vessel–slosh interactions

equation in Ω(t), invariance of L with respect to a variation in the velocity potential
Φ at Y =−H(X) gives the bottom boundary condition in (1.1), invariance of L with
respect to a variation in the velocity potential Φ at Y = Γ (X, t) gives the kinematic
free-surface boundary condition in (1.1) and invariance of L with respect to a variation
in the velocity potential Φ on S gives the contact condition on the wetted surface of
the vessel,

∂Φ

∂n
= Ẋs · n on S. (3.10)

Finally, invariance of L with respect to variations in q1, q2 and θ gives the
hydrodynamic equations of motion for the rigid body in the sway/surge (q1), heave
(q2) and roll/pitch (θ) directions respectively, which are

(i)

(mv +mf )q̈1 −

∫ L

0

∫ η

0
(−φxt cos θ + φyt sin θ + θ̇ (φx sin θ + φy cos θ)

+ (φx + θ̇ (y+ d2))(φyx sin θ − φxx cos θ)

+ (φy − θ̇ (x+ d1))(φyy sin θ − φxy cos θ)) ρ dy dx

−mvyv(θ̈ cos θ − θ̇ 2 sin θ)−mvxv(θ̈ sin θ + θ̇ 2 cos θ)

−

∫
S

P(X, Y, t)n1 ds= 0, (3.11)

(ii)

(mv +mf ) (g+ q̈2)+

∫ L

0

∫ η

0
( φxt sin θ + φyt cos θ + θ̇ (φx cos θ − φy sin θ)

+ (φxx sin θ + φyx cos θ)(φx + θ̇ (y+ d2))

+ (φxy sin θ + φyy cos θ)(φy − θ̇ (x+ d1))) ρ dy dx

−mvyv(θ̈ sin θ + θ̇ 2 cos θ)+mvxv(θ̈ cos θ − θ̇ 2 sin θ)

−

∫
S

P(X, Y, t)n2 ds= 0, (3.12)

(iii)

mv(x2
v + y2

v)θ̈ −

∫ L

0

∫ η

0
[ φx(−q̇1 sin θ + q̇2 cos θ)+ φy(−q̇1 cos θ − q̇2 sin θ)

− g(cos θ(x+ d1)− sin θ(y+ d2)) ] ρ dy dx−mvyv(q̈1 cos θ + q̈2 sin θ)
+mvxv(−q̈1 sin θ + q̈2 cos θ)+mvg(xv cos θ − yv sin θ)

−

∫
S

P(X, Y, t)(Q′xs · n) ds= 0, (3.13)

where P(X, Y, t) is defined in (3.4) and mf =
∫ L

0

∫ η
0 ρ dy dx is independent of time.

In summary, the equations of motion for the exterior water waves in Ω(t) are (1.1)
with the contact boundary condition (3.10). The equations of motion for the interior
fluid motion are the field equation (2.5) with the boundary conditions (2.7)–(2.9)
which are dynamically coupled to the hydrodynamic equations of motion for the rigid
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body (3.11)–(3.13). The terms including the pressure field P(X, Y, t) in the q1, q2

equations and also in the θ equation in (3.11)–(3.13) are the forces and moment
respectively acting on the rigid body due to the exterior water waves. Similarly, the
integral terms including the derivatives of φ(x, y, t) are the forces and moment acting
on the rigid body due to the interior fluid motion.

4. Concluding remarks

This paper is devoted to the derivation of new variational principles for 2D
interactions between water waves and a rigid body with interior fluid sloshing.
The complete set of equations of motion and boundary conditions for the exterior
water waves and for the interior fluid motion of the vessel relative to the rotating–
translating coordinate system attached to the moving vessel, and also the exact
nonlinear Euler–Lagrange equations for the rigid-body motion in the sway/surge,
heave and roll/pitch directions, are derived from the presented variational principles.
The proposed variational principles are applicable to ocean engineering problems.
The exact differential equations can be used for the coupled dynamical analysis of
a freely floating ship with water on deck or with interior fluid sloshing in the tanks
which interacts with exterior water waves.

Another interesting application of the presented coupled variational principles is for
the dynamical response analysis of floating ocean wave energy converters (WECs)
such as the OWEL wave energy converter proposed by Offshore Wave Energy Ltd, a
schematic of which can be found on the website http://www.owel.co.uk/. OWEL is a
floating vessel with variable topography and cross-section, open at one end to capture
ocean waves. Once they are trapped, the waves undergo interior fluid sloshing while
the vessel is interacting with exterior waves. A rise in the wave height is induced
within the duct, mainly due to the internal geometry of the WEC. The wave then
creates a seal with the rigid lid, resulting in a moving trapped pocket of air ahead of
the wave front which drives the power take-off.

The proposed variational principles can be used for mathematical modelling of
the pendulum–slosh problem. The rigid-body equation for the pendular motion of a
rectangular vessel suspended from a single rigid pivoting rod, partially filled with an
inviscid fluid, can be derived from a simplified version of the variational principle
(1.7). One can consider the second part of (1.7) with q1= q2= 0 and take the variation
with respect to θ to obtain the rigid-body equation. The complete set of equations of
motion for the interior fluid of the pendulum can be obtained by setting q1 = q2 = 0
in (1.8) and taking the variations with respect to φ and η.

A direction of great interest is to use the variational symplectic methods of
Gagarina et al. (2014, 2016), Bokhove & Kalogirou (2016) and Kalogirou & Bokhove
(2016) to develop energy preserving numerical solvers for the proposed variational
principles (1.7) and (1.8) for interactions between ocean waves and floating structures
dynamically coupled to interior fluid sloshing, and also for the variational principle
(1.8) for the problem of fluid sloshing in vessels undergoing prescribed rigid-body
motion in two dimensions.
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Appendix A. Proof of the variational principle (2.11)

According to the usual procedure in the calculus of variations, equation (1.8)
becomes

δL(φ, η) =
∫ t2

t1

∫ L

0

∫ η(x,t)

0
− ( δφt +∇φ · ∇δφ + θ̇ (y+ d2)δφx

− θ̇ (x+ d1)δφy ) ρ dy dx dt+
∫ t2

t1

∫ L

0
p(x, η, t)δη dx dt, (A 1)

but ∫ t2

t1

∫ L

0

∫ η(x,t)

0
−δφtρ dy dx dt=

∫ t2

t1

∫ L

0
ηtδφ

∣∣y=ηρ dx dt, (A 2)

noting that δφ = 0 at t= t1 and t= t2. Moreover,

−

∫ t2

t1

∫ L

0

∫ η(x,t)

0
θ̇ (y+ d2)δφxρ dy dx dt=−

∫ t2

t1

∫ η

0
θ̇ (y+ d2)δφ

∣∣
x=Lρ dy dt

+

∫ t2

t1

∫ η

0
θ̇ (y+ d2)δφ

∣∣
x=0ρ dy dt+

∫ t2

t1

∫ L

0
ηxθ̇ (η+ d2)δφ

∣∣y=ηρ dx dt (A 3)

and ∫ t2

t1

∫ L

0

∫ η(x,t)

0
θ̇ (x+ d1)δφyρ dy dx dt=

∫ t2

t1

∫ L

0
θ̇ (x+ d1)δφ

∣∣y=ηρ dx dt

−

∫ t2

t1

∫ L

0
θ̇ (x+ d1)δφ

∣∣
y=0ρ dx dt, (A 4)

and using Green’s first identity,

−

∫ t2

t1

∫ L

0

∫ η(x,t)

0
∇φ · ∇δφρ dy dx dt=

∫ t2

t1

∫ L

0

∫ η(x,t)

0
(φxx + φyy)δφρ dy dx dt

−

∫ t2

t1

∫ L

0
(−ηxφx + φy)δφ

∣∣y=ηρ dx dt−
∫ t2

t1

∫ L

0
∇φ · nδφ

∣∣
y=0ρ dx dt

−

∫ t2

t1

∫ η

0
∇φ · nδφ

∣∣
x=0ρ dy dt−

∫ t2

t1

∫ η

0
∇φ · nδφ

∣∣
x=Lρ dy dt, (A 5)

where n is the unit outward normal vector along the rigid walls. Hence, (A 1) is
converted to (2.11).
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