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Let Ω ⊂ R
N , N � 2, be a smooth bounded domain. For s ∈ (1/2, 1), we consider a

problem of the form{
(−Δ)su = μ(x) D

2
s(u) + λf(x), in Ω,

u = 0, in R
N \ Ω,

where λ > 0 is a real parameter, f belongs to a suitable Lebesgue space, μ ∈ L∞(Ω)
and D

2
s is a nonlocal ‘gradient square’ term given by

D
2
s(u) =

aN,s

2

∫
RN

|u(x) − u(y)|2
|x − y|N+2s

dy.

Depending on the real parameter λ > 0, we derive existence and non-existence
results. The proof of our existence result relies on sharp Calderón–Zygmund type
regularity results for the fractional Poisson equation with low integrability data. We
also obtain existence results for related problems involving different nonlocal
diffusion terms.

Keywords: Fractional Laplacian; Nonlocal gradient; Calderón–Zygmund; Regularity;
Fractional Poisson equation
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1. Introduction and main results

In the last 15 years, there has been an increasing interest in the study of par-
tial differential equations involving integro-differential operators. In particular,
the case of the fractional Laplacian has been widely studied and is nowadays a
very active field of research. This is due not only to its mathematical richness.
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The fractional Laplacian has appeared in a great number of equations modelling
real-world phenomena, especially those which take into account nonlocal effects.
Among others, let us mention applications in quasi-geostrophic flows [15], quan-
tum mechanic [33], mathematical finances [6,18], obstacle problems [8,9,14] and
crystal dislocation [23,24,42].

The first aim of the present paper is to discuss, depending on the real parameter
λ > 0, the existence and non-existence of solutions to the Dirichlet problem{

(−Δ)su = μ(x) D2
s(u) + λf(x), in Ω,

u = 0, in RN \ Ω, (Pλ)

under the assumption⎧⎨⎩
Ω ⊂ RN , N � 2, is a bounded domain with ∂Ω of class C2,
s ∈ (1/2, 1),
f ∈ Lm(Ω) for some m > N/2s and μ ∈ L∞(Ω).

(A1)

Throughout the work, (−Δ)s stands for the, by know classical, fractional Laplacian
operator. For a smooth function u and s ∈ (0, 1), it can be defined as

(−Δ)su(x) := aN,s p.v.
∫

RN

u(x) − u(y)
|x− y|N+2s

dy,

where

aN,s :=
(∫

RN

1 − cos(ξ1)
|ξ|N+2s

dξ
)−1

= −22sΓ (N/2 + s)
πN/2Γ(−s) ,

is a normalization constant and ‘p.v.’ is an abbreviation for ‘in the principal value
sense’. In (Pλ), D2

s is a nonlocal diffusion term. It plays the role of the ‘gradient
square’ in the nonlocal case and is given by

D2
s(u) =

aN,s

2

∫
RN

|u(x) − u(y)|2
|x− y|N+2s

dy. (1.1)

Since they will not play a role in this work, we normalize the constants appearing in
the definitions of (−Δ)s and D2

s and we omit the p.v. sense. However, let us stress
that these constants guarantee

lim
s→1−

(−Δ)su(x) = −Δu(x), ∀u ∈ C∞
0 (RN ), (1.2)

and

lim
s→1−

D2
s(u(x)) = lim

s→1−

cN (1 − s)
2

∫
RN

|u(x) − u(y)|2
|x− y|N+2s

dy

= |∇u(x)|2, ∀u ∈ C∞
0 (RN ). (1.3)

We refer to [22] and [13] respectively for a proof of (1.2) and (1.3). Hence, at least
formally, if s→ 1− in (Pλ), we recover the local problem{−Δu = μ(x)|∇u|2 + λf(x), in Ω,

u = 0, on ∂Ω. (1.4)
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This equation corresponds to the stationary case of the Kardar–Parisi–Zhang model
of growing interfaces introduced in [30]. The existence and multiplicity of solutions
to problem (1.4) and of its different extensions have been extensively studied and
it is still an active field of research. See for instance [3,7,10,21,25,28]. In most of
these papers, the existence of solutions is proved using either a priori estimates or,
when it is possible, a suitable change of variable to obtain an equivalent semilinear
problem. However, neither of these techniques seem to be appropriate to deal with
the nonlocal case (Pλ).

Let us also point out that in [17], using pointwise estimates on the Green function
for the fractional Laplacian, the authors deal with the nonlocal–local problem{

(−Δ)su = |∇u|q + λf(x), in Ω,
u = 0, in RN \ Ω. (1.5)

For s ∈ (1/2, 1), 1 < q < N/(N − (2s− 1)), f ∈ L1(Ω) and λ > 0 small enough they
obtained the existence of a solution to (1.5). This existence result was later com-
pleted in [4] where, under suitable assumptions on f , the authors showed the
existence of a solution to (1.5) for all 1 < q <∞ and λ > 0 small enough.

Following [16,17] we introduce the following notion of weak solution to (Pλ).

Definition 1.1. We say that u is a weak solution to (Pλ) if u and D2
s(u) belong to

L1(Ω), u ≡ 0 in CΩ := RN \ Ω and∫
Ω

u(−Δ)sφdx =
∫

Ω

(
μ(x)D2

s(u) + λf(x)
)
φdx, ∀φ ∈ Xs, (1.6)

where

Xs :=
{
ξ ∈ C(RN ) : Supp ξ ⊂ Ω, (−Δ)sξ(x) exists ∀x ∈ Ω and

|(−Δ)sξ(x)| � C for some C > 0
}
. (1.7)

In the spirit of the existing results for the local case, our first main result shows
the existence of a weak solution to (Pλ) under a smallness condition on λf .

Theorem 1.1. Assume that (A1) holds. Then there exists λ∗ > 0 such that, for all
0 < λ � λ∗, (Pλ) has a weak solution u ∈W s,2

0 (Ω) ∩ C0,α(Ω) for some α > 0.

Remark 1.1.

(a) The definition of W s,2
0 (Ω) will be introduced in § 2.

(b) In 1983, L. Boccardo, F. Murat and J.P. Puel [10] already pointed out that
the existence of solution to (1.4) is not guaranteed for every λf ∈ L∞(Ω).
Some extra conditions are needed. Hence, the smallness condition appearing
in theorem 1.1 was somehow expected.

(c) For λf ≡ 0, u ≡ 0 is a solution to (Pλ) that obviously belongs to W s,2
0 (Ω) ∩

C0,α(Ω). Hence, there is no loss of generality to assume that λ > 0.
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The counterpart of |∇u|2 in (1.4) is played in (Pλ) by D2
s(u). This term appears

in several applications. For instance, let us mention [13,35,38] where it naturally
appears as the equivalent of |∇u|2 when considering fractional harmonic maps into
the sphere.

Let us now give some ideas of the proof of theorem 1.1. As in the local case, see
for instance [36], the existence of solutions to (Pλ) is related to the regularity of
the solutions to a linear equation of the form{

(−Δ)sv = h(x), in Ω,
v = 0, in RN \ Ω. (1.8)

In § 3, we obtain sharp Calderón–Zygmund type regularity results for the fractional
Poisson equation (1.8) with low integrability data. We believe these results are of
independent interest and will be useful in other settings. Actually, § 3 can be read
as an independent part of the present work. In particular, we refer the interested
reader to propositions 3.1, 3.3 and 3.4.

Having at hand suitable regularity results for (1.8) and inspired by [36, § 6], we
develop a fixed point argument to obtain a solution to (Pλ). Note that, due to the
nonlocality of the operator and of the ‘gradient term’, the approach of [36] has to
be adapted significantly. In particular, the form of the set where we apply the fixed
point argument seems to be new in the literature. We consider a subset of W s,1

0 (Ω)
where, in some sense, we require more ‘differentiability’ and more integrability.
This extra ‘differentiability’ is a purely nonlocal phenomena and it is related to our
regularity results for (1.8). See § 4 for more details.

Let us also stress that the restriction s ∈ (1/2, 1) comes from the regularity results
of § 3. If suitable regularity results for (1.8) with s ∈ (0, 1/2] were available, our fixed
point argument would provide the desired existence results to (Pλ). See § 3 and 7
for more details.

Next, let us prove that the smallness condition imposed in theorem 1.1 is somehow
necessary.

Theorem 1.2. Assume (A1) and suppose that μ(x) � μ1 > 0 and f+ 
≡ 0. Then
there exists λ∗∗ > 0 such that, for all λ > λ∗∗, (Pλ) has no weak solutions in
W s,2

0 (Ω).

Remark 1.2.

(a) Observe that, if v is a solution to{
(−Δ)sv = −μ(x) D2

s(v) − λf(x), in Ω,
v = 0, in RN \ Ω,

then u = −v is a solution to (Pλ). Hence, if μ(x) � −μ1 < 0 and f− 
≡ 0 we
recover the same kind of non-existence result and the smallness condition is
also required.

(b) Since we do not use the regularity results of § 3, the restriction s ∈ (1/2, 1) is
not necessary in the proof of theorem 1.2. The result holds for all s ∈ (0, 1).
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Also, in order to show that the regularity imposed on the data f is almost optimal,
we provide a counterexample to our existence result when the regularity condition
on f is not satisfied. The proof makes use of the Hardy potential.

Theorem 1.3. Let Ω ⊂ RN , N � 2, be a bounded domain with ∂Ω of class C2, let
s ∈ (0, 1) and let μ ∈ L∞(Ω) such that μ(x) � μ1 > 0. Then, for all 1 � p < N/2s,
there exists f ∈ Lp(Ω) such that (Pλ) has no weak solutions in W s,2

0 (Ω) for any
λ > 0.

Remark 1.3.

(a) Our first main existence result, theorem 1.1, goes on the line of the existence
results to (1.5) proved in [4,17]. In particular, it seems natural to compare
theorem 1.1 with [4, theorem 5.6]. Both theorems give an existence result
for λ > 0 small enough. On the other hand, let us stress that, when dealing
with problem (1.5), it is not known if non-existence type results on the line
of theorems 1.2 and 1.3 hold.

(b) Let us define

λ := sup{λ ∈ R : (Pλ) has a solution}.
By theorem 1.1 it is clear that, if (A1) holds, then 0 < λ∗ � λ. On the other
hand, if μ(x) � μ1 > 0 and f+ 
≡ 0, by theorem 1.2, it follows that λ � λ∗∗.
Nevertheless, we do not know if λ = λ∗ = λ∗∗.

Using the same kind of approach as in theorem 1.1, i.e., regularity results for (1.8)
and a fixed point argument, one can obtain existence results for related problems
involving different nonlocal diffusion terms and different nonlinearities.

First, we deal with the Dirichlet problem{
(−Δ)su = μ(x)uD2

s(u) + λf(x), in Ω,
u = 0, in RN \ Ω. (P̃λ)

For μ(x) ≡ 1, this problem can be seen as a particular case of the fractional
harmonic maps problem considered in [13,35].

Remark 1.4. The notion of weak solution to (P̃λ) is essentially the same as in
definition 1.1. The only difference is that we now require that u and uD2

s(u) belong
to L1(Ω).

We derive the following existence result for λf small enough.

Theorem 1.4. Assume that (A1) holds. Then, there exists λ∗ > 0 such that, for
all 0 < λ � λ∗, (P̃λ) has a weak solution u ∈W s,2

0 (Ω) ∩ C0,α(Ω) for some α > 0.

Next, motivated by some other results on fractional harmonic maps into the
sphere [19,20] and some classical results of harmonic analysis [41, chapter V],
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we consider a different diffusion term. Depending on the real parameter λ > 0, we
study the existence of solutions to the Dirichlet problem{

(−Δ)su = μ(x)|(−Δ)s/2u|q + λf(x), in Ω,
u = 0, in RN \ Ω,

(Qλ)

under the assumption⎧⎨⎩
Ω ⊂ RN , N � 2, is a bounded domain with ∂Ω of class C2,
f ∈ Lm(Ω) for some m � 1 and μ ∈ L∞(Ω),
s ∈ (1/2, 1) and 1 < q < N/(N −ms).

(B1)

Remark 1.5. If m � N/s, we just need to assume 1 < q <∞ in (B1).

Since the diffusion term considered in (Qλ) is different from the ones in (Pλ)
and (P̃λ), we shall make precise the notion of weak solution to (Qλ).

Definition 1.2. We say that u is a weak solution to (Qλ) if u ∈ L1(Ω),
|(−Δ)s/2u| ∈ Lq(Ω), u ≡ 0 in CΩ and∫

Ω

u(−Δ)sφdx =
∫

Ω

(
μ(x)|(−Δ)s/2u|q + λf(x)

)
φdx, ∀φ ∈ Xs, (1.9)

where Xs is defined in (1.7).

Theorem 1.5. Assume that (B1) holds. Then there exists λ∗ > 0 such that, for all
0 < λ � λ∗, (Qλ) has a weak solution u ∈W s,1

0 (Ω).

Remark 1.6. The regularity results for (1.8) that we need to prove theorem 1.5 are
different from the ones used in theorems 1.1 and 1.4. Nevertheless, the restriction
s ∈ (1/2, 1) still arises out of these regularity results. See proposition 3.5 for more
details.

Finally, for s ∈ (0, 1) and φ ∈ C∞
0 (RN ), following [37,39], we define the (distri-

butional Riesz) fractional gradient of order s as the vector field ∇s : RN → RN

given by

∇sφ(x) :=
∫

RN

φ(x) − φ(y)
|x− y|s

x− y

|x− y|
dy

|x− y|N , ∀ x ∈ RN . (1.10)

Then we deal with the Dirichlet problem{
(−Δ)su = μ(x)|∇su|q + λf(x), in Ω,
u = 0, in RN \ Ω. (Q̃λ)

Remark 1.7. The notion of weak solution to (Q̃λ) has to be understood as in
definition 1.2.

Theorem 1.6. Assume that (B1) holds. Then there exists λ∗ > 0 such that, for all
0 < λ � λ∗, (Q̃λ) has a weak solution u ∈W s,1

0 (Ω).
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We end this section describing the organization of the paper. In § 2, we introduce
the suitable functional setting to deal with our problems and we also recall some
known results that will be useful. In § 3, which is independent of the rest of the
work, we prove Calderón–Zygmund type regularity results for the fractional Poisson
equation (1.8). Section 4 is devoted to the proofs of theorems 1.1 and 1.4. Section 5
contains the proofs of theorems 1.2 and 1.3. Section 6 deals with (Qλ) and (Q̃λ),
i.e., it is devoted to the proofs of theorems 1.5 and 1.6. Finally, in § 7, we present
some remarks and open problems.

Notation

(1) In RN , we use the notations |x| =
√
x2

1 + · · · + x2
N and BR(y) = {x ∈ RN :

|x− y| < R}.
(2) For a bounded open set Ω ⊂ RN we denote its complementary as CΩ, i.e.,

CΩ = RN \ Ω.

(3) For p ∈ (1,∞), we denote by p′ the conjugate exponent of p, namely p′ =
p/(p− 1) and by p∗s the Sobolev critical exponent i.e., p∗s = Np/(N − sp) if
sp < N and p∗s = +∞ in case sp � N .

(4) For u ∈ L∞(Ω) we use the notation ‖u‖∞ = ‖u‖L∞(Ω) = esssupx∈Ω |u(x)|.

2. Functional setting and useful tools

In this section, we present the functional setting and some auxiliary results that
will play an important role throughout the paper. We begin recalling the definition
of the fractional Sobolev space.

Definition 2.1. Let Ω be an open set in RN and s ∈ (0, 1). For any p ∈ [1,∞), the
fractional Sobolev space W s,p(Ω) is defined as

W s,p(Ω) :=
{
u ∈ Lp(Ω) :

∫∫
Ω×Ω

|u(x) − u(y)|p
|x− y|N+sp

dxdy <∞
}
.

It is a Banach space endowed with the usual norm

‖u‖W s,p(Ω) :=
(
‖u‖p

Lp(Ω) +
∫∫

Ω×Ω

|u(x) − u(y)|p
|x− y|N+sp

dxdy
)1/p

.

Having at hand this definition we introduce the suitable space to deal with our
problems and we refer to [22] for more details on fractional Sobolev spaces.

Definition 2.2. Let Ω ⊂ RN be a bounded domain with boundary ∂Ω of class C0,1

and s ∈ (0, 1). For any p ∈ [1,∞). We define the space W s,p
0 (Ω) as

W s,p
0 (Ω) :=

{
u ∈W s,p(RN ) : u = 0 in RN \ Ω

}
.

It is a Banach space endowed with the norm

‖u‖W s,p
0 (Ω) :=

(∫∫
DΩ

|u(x) − u(y)|p
|x− y|N+sp

dxdy
)1/p

,
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where

DΩ := (RN × RN ) \ (CΩ × CΩ) = (Ω × RN ) ∪ (CΩ × Ω).

In order to prove some of the Calderón–Zygmund type regularity results of § 3,
we will use the relation between the fractional Sobolev space W s,p(RN ) and the
Bessel potential space defined below.

Definition 2.3. Let s ∈ (0, 1). For any p ∈ [1,∞), the Bessel potential space
Ls,p(RN ) is defined as

Ls,p(RN ) :=
{
u ∈ Lp(RN ) such that u = (I − Δ)−s/2f with f ∈ Lp(RN )

}
.

It is a Banach space endowed with the norm

|||u|||Ls,p(RN ) := ‖u‖Lp(RN ) + ‖f‖Lp(RN ).

Remark 2.1.

(a) Having in mind the fractional gradient of order s introduced in (1.10), let us
point out that in [39, theorem 1.7] it is proved that

Ls,p(RN ) =
{
u ∈ Lp(RN ) such that |∇su| ∈ Lp(RN )

}
,

with the equivalent norm

‖u‖Ls,p(RN ) := ‖u‖Lp(RN ) + ‖∇su‖Lp(RN ).

(b) Notice also that in the case where s is an integer and 1 < p <∞, by [5,
theorem 7.63, (f)] we know that Ls,p(RN ) = W s,p(RN ). Differently, in case
s ∈ (0, 1), the two previous spaces does not coincide. However, for all 0 < ε <
s and all 1 < p <∞, by [5, theorem 7.63, (g)], it follows that Ls+ε,p(RN ) ⊂
W s,p(RN ) ⊂ Ls−ε,p(RN ) with continuous inclusions.

Finally, we recall here two known results of harmonic and functional analysis
that will be key in the proofs of the results contained in § 3.

Lemma 2.1. [41, theorem I, § 1.2, chapter V] Let 0 < λ < N and 1 � p < 	 <∞ be
such that 1/	+ 1 = 1/p+ λ/N. For g ∈ Lp(RN ), we define

Jλ(g)(x) =
∫

RN

g(y)
|x− y|λ dy.

Then, it follows that:

(a) Jλ is well defined in the sense that the integral converges absolutely for almost
all x ∈ RN .

(b) If p > 1, then ‖Jλ(g)‖L�(RN ) � cp,q‖g‖Lp(RN ).

(c) If p = 1, then
∣∣{x ∈ RN |Jλ(g)(x) > σ}∣∣ � (A‖g‖L1(RN )/σ)�.
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Let us introduce the real numbers 0 � s1 � η � s2 � 1 and 1 � p1, p2, p � ∞ and
assume that they satisfy

η = θs1 + (1 − θ)s2 and
1
p

=
θ

p1
+

1 − θ

p2
with 0 < θ < 1. (2.1)

Moreover, let us introduce the condition

s2 = p2 = 1 and
1
p1

� s1. (2.2)

Lemma 2.2. [12, theorem 1] Assume that (2.1) holds and (2.2) fails. Then, for
every θ ∈ (0, 1), there exists a constant C = C(s1, s2, p1, p2, θ) > 0 such that

‖w‖W η,p(RN ) � C‖w‖θ
W s1,p1 (RN )‖w‖1−θ

W s2,p2 (RN )
, ∀ w ∈W s1,p1(RN ) ∩W s2,p2(RN ).

3. Regularity results for the fractional Poisson equation

The main goal of this section, which is independent of the rest of the work, is to
prove sharp Calderón–Zygmund type regularity results for the fractional Poisson
equation {

(−Δ)sv = h(x), in Ω,
v = 0, in RN \ Ω, (3.1)

under the assumption⎧⎨⎩
Ω ⊂ RN , N � 2, is a bounded domain with ∂Ω of class C2,
s ∈ (1/2, 1),
h ∈ Lm(Ω) for some m � 1.

(3.2)

First of all, let us precise the notion of weak solution to (3.1).

Definition 3.1. We say that v is a weak solution to (3.1) if v ∈ L1(Ω), v ≡ 0 in
CΩ := RN \ Ω and ∫

Ω

v(−Δ)sφdx =
∫

Ω

h(x)φdx, ∀φ ∈ Xs,

where Xs is defined in (1.7).

Under our assumption (3.2), the existence and uniqueness of solutions to (3.1) is
a particular case of [16, proposition 2.4] (see also [1,34, § 1]). Having this in mind,
we prove several regularity results for (3.1). Our first main result reads as follows:

Proposition 3.1. Assume (3.2) and let v be the unique weak solution to (3.1) and
t ∈ (0, 1):

(1) If m = 1, then v ∈W t,p
0 (Ω) for all 1 � p < N/(N − (2s− t)) and there exists

C1 = C1(s, t, p,Ω) > 0 such that

‖v‖W t,p
0 (Ω) � ‖v‖W t,p(RN ) � C1‖h‖L1(Ω).
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(2) If 1 < m < N/2s, then v ∈W t,p
0 (Ω) for all 1 � p � mN/(N −m(2s− t)) and

there exists C1 = C1(m, s, t, p,Ω) > 0 such that

‖v‖W t,p
0 (Ω) � ‖v‖W t,p(RN ) � C1‖h‖Lm(Ω).

(3) If N/2s � m < N/(2s− 1), then v ∈W t,p
0 (Ω) for all 1 � p <

mN/(t(N −m(2s− 1))) and there exists C1 = C1(m, s, t, p,Ω) > 0 such that

‖v‖W t,p
0 (Ω) � ‖v‖W t,p(RN ) � C1‖h‖Lm(Ω).

(4) If m � N/(2s− 1), then v ∈W t,p
0 (Ω) for all 1 � p <∞.

Remark 3.1.

(a) The previous results are sharp in the sense that, if ‘we take t = s = 1’, we
recover the classical sharp regularity results for the local case and those cannot
be improved. See for instance [37, chapter 5].

(b) In the particular case of the fractional Laplacian of order s ∈ (1/2, 1) and for
h ∈ L1(Ω), we improve the regularity results of [1,31,34]. Note however that
in the three quoted papers the authors deal with more general operators and
cover the full range s ∈ (0, 1). Furthermore, in [31] the authors also deal with
measures as data.

(c) Since s ∈ (1/2, 1), observe that t < 2s for all t ∈ (0, 1).

As we believe it has its own interest, let us highlight a particular case of the
previous result which follows directly from proposition 3.1 considering t = s.

Corollary 3.2. Assume (3.2) and let v be the unique weak solution to (3.1):

(1) If m = 1, then v ∈W s,p
0 (Ω) for all 1 � p < N/(N − s) and there exists

C1 = C1(s, p,Ω) > 0 such that

‖v‖W s,p
0 (Ω) � ‖v‖W s,p(RN ) � C1‖h‖L1(Ω).

(2) If 1 < m < N/2s, then v ∈W s,p
0 (Ω) for all 1 � p � mN/(N −ms) and there

exists C1 = C1(m, s, p,Ω) > 0 such that

‖v‖W s,p
0 (Ω) � ‖v‖W s,p(RN ) � C1‖h‖Lm(Ω).

(3) If N/2s � m < N/(2s− 1), then v ∈W s,p
0 (Ω) for all 1 � p <

mN/(s(N −m(2s− 1))) and there exists C1 = C1(m, s, p,Ω) > 0 such that

‖v‖W s,p
0 (Ω) � ‖v‖W s,p(RN ) � C1‖h‖Lm(Ω).

(4) If m � N/(2s− 1), then v ∈W s,p
0 (Ω) for all 1 � p <∞.

In the following two results we complete the information obtained in proposi-
tion 3.1 when h ∈ Lm(Ω) for some m > N/2s.
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Proposition 3.3. Assume (3.2) and let v be the unique weak solution to (3.1) and
t ∈ (0, s) :

(1) If N/2s � m < N/(2s− t) then v ∈W t,p
0 (Ω) for all 1 � p <

mN/(N −m(2s− t)) and there exists C2 = C2(m, s, t, p,Ω) > 0 such that

‖v‖W t,p
0 (Ω) � ‖v‖W t,p(RN ) � C2‖h‖Lm(Ω).

(2) If m � N/(2s− t) then v ∈W t,p
0 (Ω) for all 1 � p <∞ and there exists

C2 = C2(m, s, t, p,Ω) > 0 such that

‖v‖W t,p
0 (Ω) � ‖v‖W t,p(RN ) � C2‖h‖Lm(Ω).

Proposition 3.4. Assume (3.2) and let v be the unique weak solution to
(3.1) and t ∈ (s, 1). If N/2s � m < N/s then v ∈W t,p

0 (Ω) for all 1 � p <
mN/(N −m(2s− t)) and there exists C2 = C2(m, s, t, p,Ω) > 0 such that

‖v‖W t,p
0 (Ω) � ‖v‖W t,p(RN ) � C2‖h‖Lm(Ω).

Remark 3.2. Notice that, in the case where t ∈ (s, 1), propositions 3.1 and 3.4
complete and somehow give a more precise information than the result obtained
in [32].

Remark 3.3. The proofs of propositions 3.1, 3.3 and 3.4 are postponed to
subsection 3.1

Due to the nonlocality of the fractional Laplacian, several notions of regularity
can be studied. The following results, which generalize the fractional regularity
proved in [34, theorem 24] with a different approach, can be seen as the counterpart
of proposition 3.1 to deal with (Qλ) and (Q̃λ).

Proposition 3.5. Assume (3.2) and let v be the unique weak solution to (3.1) and
t ∈ (0, s] :

(1) If m = 1, then (−Δ)t/2v ∈ Lp(Ω) for all 1 � p < N/(N − (2s− t)) and there
exists C3 = C3(s, t, p,Ω) > 0 such that

‖(−Δ)t/2v‖Lp(Ω) � C3‖h‖L1(Ω).

(2) If 1 < m < N/(2s− t), then (−Δ)t/2v ∈ Lp(Ω) for all 1 � p �
mN/(N −m(2s− t)) and there exists C3 = C3(s, t,m, p,Ω) > 0 such that

‖(−Δ)t/2v‖Lp(Ω) � C3‖h‖Lm(Ω).
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(3) If m � N/(2s− t) then (−Δ)t/2v ∈ Lp(Ω) for all 1 � p <∞ and there exists
C3 = C3(s, t,m, p,Ω) > 0 such that

‖(−Δ)t/2v‖Lp(Ω) � C3‖h‖Lm(Ω).

Corollary 3.6. Assume (3.2) and let v be the unique weak solution to (3.1):

(1) If m = 1, then |∇sv| ∈ Lp(Ω) for all 1 � p < N/(N − s) and there exists
C4 = C4(s, p,Ω) > 0 such that

‖∇sv‖Lp(Ω) � C4‖h‖L1(Ω).

(2) If 1 < m < N/s, then |∇sv| ∈ Lp(Ω) for all 1 � p � mN/(N −ms) and there
exists C4 = C4(s,m, p,Ω) > 0 such that

‖∇sv‖Lp(Ω) � C4‖h‖Lm(Ω).

(3) If m � N/s then |∇sv| ∈ Lp(Ω) for all 1 � p <∞ and there exists
C4 = C4(s,m, p,Ω) > 0 such that

‖∇sv‖Lp(Ω) � C4‖h‖Lm(Ω).

Remark 3.4. The proofs of proposition 3.5 and corollary 3.6 will be given in
subsection 3.2

Remark 3.5.

(a) The Calderón–Zygmund type regularity results that we are going to prove rely
on [4, lemma 2.15]. Since the fractional Laplacian is somehow a derivative of
order 2s, it is not clear if [4, lemma 2.15] holds true for s ∈ (0, 1/2]. Hence,
with this approach we are limited to deal with s ∈ (1/2, 1). One of the main
difficulties in order to deal with s ∈ (0, 1/2] is that we cannot use the regular-
ity of the gradient of the solutions to (3.1). Hence, a direct purely non-local
approach is missing. In trying to develop this purely non-local approach, we
used the representation formula and were lead to obtain pointwise estimates
on the ‘non-local gradient’ of the corresponding Green function. Nevertheless,
we did not succeed.

(b) Let us also stress that [4, lemma 2.15] depends on the representation formula
for the fractional Laplacian and pointwise estimates on the corresponding
Green function and its gradient. If the corresponding pointwise estimates (see
for instance [4, lemma 2.10] and [17, proposition 2.2] where they are gathered)
were available for more general divergence-like operators, [4, lemma 2.15]
would directly extend and so would do our results. It may be also interesting
to obtain the estimates without the explicit representation formula as pointed
out in [4, § 6].
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3.1. Proofs of propositions 3.1, 3.3 and 3.4

Proof of proposition 3.1.

(1) Let v be the unique weak solution to (3.1). By [34, theorem 23], we know that,
for all 1 � p1 < N/(N − 2s), there exists C5 = C5(s, p1,Ω) > 0 such that

‖v‖Lp1 (RN ) � C5‖h‖L1(Ω). (3.3)

On the other hand, by [4, lemma 2.15], we know that, for all 1 � p2 <
N/(N − (2s− 1)), there exists C6 = C6(s, p2,Ω) > 0 such that

‖v‖W 1,p2 (RN ) � C6‖h‖L1(Ω). (3.4)

Also, by lemma 2.2 applied with η = t, s1 = 0 and s2 = 1, we have that

‖v‖W t,p(RN ) � C‖v‖1−t
Lp1 (RN )

‖v‖t
W 1,p2 (RN ). (3.5)

The result follows from (3.3)–(3.5) using that

1 � 1
p

=
1 − t

p1
+

t

p2
>

(1 − t)(N − 2s) + t(N − (2s− 1))
N

=
N − (2s− t)

N
.

(2) Let v be the unique weak solution to (3.1). By [34, theorems 16
and 24], we know that, for all 1 � p1 � mN/(N − 2ms), there exists
C5 = C5(s,m, p1,Ω) > 0 such that

‖v‖Lp1 (RN ) � C5‖h‖Lm(Ω). (3.6)

On the other hand, by [4, lemma 2.15], we know that, for all 1 � p2 �
mN/(N −m(2s− 1)), there exists C6 = C6(s,m, p2,Ω) > 0 such that

‖v‖W 1,p2 (RN ) � C6‖h‖Lm(Ω). (3.7)

Finally, by lemma 2.2 applied with η = t, s1 = 0 and s2 = 1, we know
that (3.5) holds. The result follows from (3.5), (3.6) and (3.7) using that

1 � 1
p

=
1 − t

p1
+

t

p2
� (1 − t)(N − 2ms) + t(N −m(2s− 1))

mN

=
N −m(2s− t)

mN
.

(3) Let v be the unique weak solution to (3.1). By [34, theorem 15], we know
that, for all 1 � p1 <∞, there exists C5 = C5(s,m, p1,Ω) > 0 such that

‖v‖Lp1 (RN ) � C5‖h‖Lm(Ω). (3.8)

By [4, lemma 2.15] we know that (3.7) holds. Moreover, by lemma 2.2 applied
with η = t, s1 = 0 and s2 = 1, it follows that (3.5) holds. The result follows
from (3.5), (3.7) and (3.8) using that

1 � 1
p

=
1 − t

p1
+

t

p2
>
t(N −m(2s− 1))

mN
.
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(4) Let v be the unique weak solution to (3.1). By [34, theorem 15] we know
that (3.8) holds. On the other hand, by [4, lemma 2.15], we know that, for
all 1 � p2 <∞, there exists C6 = C6(s,m, p2,Ω) > 0 such that

‖v‖W 1,p2 (RN ) � C6‖h‖Lm(Ω). (3.9)

The result follows from lemma 2.2 applied with η = t, s1 = 0 and s2 = 1.

�

Now, using the Bessel potential space Ls,p(RN ) and [5, theorems 7.58 and 7.63,
(g)], we prove propositions 3.3 and 3.4. We begin proving a regularity result in the
Bessel potential space and some useful consequences.

Proposition 3.7. Assume (3.2) and let v be the unique weak solution to (3.1):

(1) If m = 1, then v ∈ Ls,p(RN ) for all 1 � p < N/(N − s) and there exists C7 =
C7(s, p,Ω) > 0 such that

‖v‖Ls,p(RN ) � C7‖h‖L1(Ω).

(2) If 1 < m < N/s, then v ∈ Ls,p(RN ) for all 1 � p � mN/(N −ms) and there
exists C7 = C7(m, s, p,Ω) > 0 such that

‖v‖Ls,p(RN ) � C7‖h‖Lm(Ω).

(3) If m � N/s, then v ∈ Ls,p(RN ) for all 1 � p <∞ and there exists C7 =
C7(m, s, p,Ω) > 0 such that

‖v‖Ls,p(RN ) � C7‖h‖Lm(Ω).

Proof. Assume (3.2) and let v be the unique weak solution to (3.1). Taking into
account remark 2.1, (a), we have just to show the regularity of |∇sv| where ∇s is
defined in (1.10). By a density argument and [37, lemma 15.9] we have that

|∇sv(x)| � 1
N − (1 − s)

∫
RN

|∇v(y)|
|x− y|N−(1−s)

dy a.e. in RN . (3.10)

Let us then split into three cases:

(1) m = 1.
By [4, lemma 2.15] we get v ∈W 1,q(RN ) for all 1 � q < N/(N − (2s− 1)).
Thus, by lemma 2.1, we conclude that |∇sv(x)| ∈ Lp(RN ) for all 1 � p <
N/(N − s).

(2) 1 < m < N/s.
The result follows arguing on the same way.

(3) m � N/s.
In this case, sincem � N/s and Ω is a bounded domain then f ∈ Lm̄(Ω) for all
m̄ < N/s. In particular, using the second point it follows that v ∈ Ls,p̄(RN )
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for all 1 � p̄ � m̄N/(N − sm̄). Letting m̄ ↑ N/s, we reach that p̄ ↑ ∞. Hence
v ∈ Ls,p(RN ) for all 1 � p <∞.

�

Corollary 3.8. Assume (3.2) and let v be the unique weak solution to (3.1):

(1) If N/2s � m < N/s then v ∈W s′,p
0 (Ω) for all 0 < s′ < s and all 1 � p �

mN/(N −ms). Moreover, there exists C8 = C8(m, s, s′, p,Ω) > 0 such that

‖v‖
W s′,p

0 (Ω)
� ‖v‖W s′,p(RN ) � C8‖h‖Lm(Ω).

(2) If m � N/s, then v ∈W s′,p
0 (Ω) for all 0 < s′ < s and all 1 � p <∞. More-

over, there exists C8 = C8(m, s, s′, p,Ω) > 0 such that

‖v‖
W s′,p

0 (Ω)
� ‖v‖W s′,p(RN ) � C8‖h‖Lm(Ω).

Remark 3.6. Observe that without loss of generality we can assume in the proof
that p > 1. For p = 1 the result follows from proposition 3.1 and the continuous
embedding W s,p(RN ) ⊂W s′,p(RN ).

Proof.

(1) Let v be the unique weak solution to (3.1). By proposition 3.7, (2) we know
that v ∈ Ls,p(RN ) for all 1 � p � mN/(N −ms). Thus, by [5, theorem 7.63,
(g)] (see also remark 2.1) we conclude that v ∈W s′,p

0 (Ω) for all 0 < s′ < s
and

‖v‖
W s′,p

0 (Ω)
� C‖v‖Ls,p(RN ) � C8‖h‖Lm(Ω).

(2) Let v be the unique weak solution to (3.1). In this case, by proposition 3.7,
we know that v ∈ Ls,p(RN ) for all 1 � p <∞. Hence, by [5, theorem 7.63,
(g)], we conclude.

�

Proof of proposition 3.3. First observe that, since t ∈ (0, s) it follows that
N/(2s− t) < N/s. We then consider separately the two cases:

(1) Let v be the unique weak solution to (3.1). By corollary 3.8, (1), we have that
v ∈W s′,p1(RN ) for all 0 < s′ < s and all 1 � p1 � mN/(N −ms). Moreover,
there exists C8 = C8(m, s, s′, p1,Ω) > 0 such that

‖v‖
W

s′,p1
0 (Ω)

� ‖v‖W s′,p1 (RN ) � C8‖h‖Lm(Ω). (3.11)

On the other hand, by [5, theorem 7.58], we have that v ∈
W η,q1(RN ) for all 0 < η < s′ < s and all 1 � q1 � Np1/(N − p1(s′ − η)) �
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mN/(N −m(s+ s′ − η)). Moreover, there exists C > 0 such that

‖v‖W η,q1 (RN ) � C‖v‖W s′,p1 (RN ) � C C8‖h‖Lm(Ω). (3.12)

We fix then p ∈ [1,mN/(N −m(2s− t))) and observe that we can find η ∈
(t, s′) such that

1 � p � mN

N −m(s+ s′ − η)
.

The result follows from (3.12) using the continuous embedding W η,p(RN ) ⊂
W t,p(RN ).

(2) The result follows arguing as in the proof of proposition 3.7, (3) using
proposition 3.3, (1).

�

Proof of proposition 3.4. Let v be the unique weak solution to (3.1). By
corollary 3.8, (1), we know that, for all 0 < s′ < s and all 1 � p1 � mN/(N −ms),
there exists C8 = C8(m, s, s′, p1,Ω) > 0 such that

‖v‖
W

s′,p1
0 (Ω)

� ‖v‖W s′,p1 (RN ) � C8‖h‖Lm(Ω). (3.13)

On the other hand, by [4, lemma 2.15], we know that, for all 1 � p2 �
mN/(N −m(2s− 1)), there exists C6 = C6(s,m, p2,Ω) > 0 such that

‖v‖W 1,p2 (RN ) � C6‖h‖Lm(Ω). (3.14)

Also, by lemma 2.2 applied with η = t, s1 = s′ and s2 = 1, we know that

‖v‖W t,p′ (RN ) � C‖v‖(1−t)/(1−s′)
W s′,p1 (RN )

‖v‖(t−s′)/(1−s′)
W 1,p2 (RN )

, (3.15)

with

1
p′

=
1

1 − s′

(
1 − t

p1
+
t− s′

p2

)
.

We fix then an arbitrary 1 � p < mN/(N −m(2s− t)) and observe that we can
choose s′ < s such that p′ = p. Hence, the result follows from (3.13)–(3.15). �

3.2. Proofs of proposition 3.5 and corollary 3.6

Next, using again [4, lemma 2.15] but with a different approach, we prove
proposition 3.5. As a consequence we will obtain corollary 3.6.
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Proof of proposition 3.5. Let v be the unique weak solution to (3.1) and define,
for x ∈ RN arbitrary,

S1 := {y ∈ RN : dist(y,Ω) > 2} and

S2 := {y ∈ RN : dist(y,Ω) � 2 and |x− y| � 1}.
Then, observe that, for all x ∈ Ω,

|(−Δ)t/2v(x)| �
∫

RN

|v(x) − v(y)|
|x− y|N+t

dy

�
∫

S1

|v(x) − v(y)|
|x− y|N+t

dy +
∫

S2

|v(x) − v(y)|
|x− y|N+t

dy

+
∫

B1(x)

|v(x) − v(y)|
|x− y|N+t

dy

=: I1(x) + I2(x) + I3(x). (3.16)

Now, let us estimate each one of the three terms. First observe that

I1(x) =
∫

S1

|v(x)|
|x− y|N+t

dy �
∫

S1

|v(x)|
dist(y,Ω)N+t

dy

= |v(x)|
∫

S1

dy
dist(y,Ω)N+t

dy = c1(N, t,Ω)|v(x)|, ∀x ∈ Ω. (3.17)

Next, using that Ω is a bounded domain and the triangular inequality, we deduce
that

I2(x) �
∫

S2

|v(x) − v(y)|dy � c2(Ω)|v(x)| + ‖v‖L1(Ω), ∀x ∈ Ω. (3.18)

Finally, following the arguments of [22, proposition 2.2], we deduce that

I3(x) =
∫

B1(0)

|v(x) − v(x+ z)|
|z|

1
|z|N+t−1

dz =
∫

B1(0)

∫ 1

0

|∇v(x+ τz)|
|z|N+t−1

dτ dz

�
∫ 1

0

∫
RN

|∇v(w)|
|w − x|N+t−1

τ t−1 dw dτ

=
(∫

RN

|∇v(w)|
|w − x|N+t−1

dw
)(∫ 1

0

τ t−1 dτ
)

=
1
t

∫
RN

|∇v(w)|
|w − x|N+t−1

dw, ∀x ∈ Ω. (3.19)

From (3.16)–(3.19), we deduce that

|(−Δ)t/2v(x)| � c(s, t,Ω)
(
|v(x)| +

∫
RN

|∇v(w)|
|w − x|N+t−1

dw + ‖v‖L1(Ω)

)
, ∀x ∈ Ω,

(3.20)
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and so, exploiting again the fact that Ω is a bounded domain and using the Hölder
and triangular inequalities, for all 1 � p <∞, we obtain that

‖(−Δ)t/2v‖Lp(Ω) � c2(s, t,Ω)

(
‖v‖Lp(Ω) +

∥∥∥∥∫
RN

|∇v(w)|
|w − x|N+t−1

dw
∥∥∥∥

Lp(RN )

)
.

(3.21)
Now, let us split the rest of the proof into three parts:

(1) m = 1.
By [4, lemma 2.15] we know that v ∈W 1,σ

0 (Ω) for all 1 � σ <
N/(N − (2s− 1)) and that there exists C6 = C6(s, σ,Ω) > 0 such that

‖∇v‖Lσ(RN ) � C6‖h‖L1(Ω).

Thus, applying lemma 2.1, we deduce that∥∥∥∥∫
RN

|∇v(w)|
|w − x|N+t−1

dw
∥∥∥∥

L�(RN )

� C C6‖h‖L1(Ω), ∀ 1 � 	 <
N

N − (2s− t)
.

(3.22)

Also, by [34, theorem 23], we know that, for all 1 � γ < N/(N − 2s), there
exists C5 = C5(s, γ,Ω) > 0 such that

‖v‖Lγ(Ω) � C5‖h‖L1(Ω). (3.23)

Taking into account (3.22)–(3.23), the result follows from (3.21).

(2) 1 < m < N/(2s− t).
The result follows arguing as in (1) using [34, theorems 15, 16 and 24] instead
of [34, theorem 23].

(3) m � N/(2s− t).
It follows from proposition 3.5, (2) arguing as in the proof of proposition 3.7,
(3).

�

Proof of corollary 3.6. By [37, lemma 15.9] we know that

∇su(x) =
1

N − (1 − s)

∫
RN

∇u(y)
|x− y|N+s−1)

dy. (3.24)

Hence, we have that

|∇su(x)| � C

∫
RN

|∇u(y)|
|x− y|N+s−1

dy. (3.25)

The result then follows arguing as in the proof of proposition 3.5. �
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3.3. Convergence and compactness

We end this section presenting a result of convergence and one of compact-
ness for the fractional Poisson equation (3.1). They will be used in the proofs
of theorems 1.1, 1.4, 1.5 and 1.6.

Proposition 3.9. Let Ω ⊂ RN , N � 2, be a bounded domain with ∂Ω of class C2,
let s ∈ (1/2, 1), let {hn} ⊂ L1(Ω) be a sequence such that hn → h in L1(Ω) and let
vn be the unique weak solution to{

(−Δ)svn = hn(x), in Ω,
vn = 0, in RN \ Ω,

for all n ∈ N, and v be the unique weak solution to{
(−Δ)sv = h(x), in Ω,
v = 0, in RN \ Ω.

Then vn → v in W s,p
0 (Ω) for all 1 � p < N/(N − s).

Proof. First of all observe that the existence of vn and v are insured by [16,
proposition 2.4]. Now, let us define wn = vn − v and observe that wn satisfies

{
(−Δ)swn = hn(x) − h(x), in Ω,
wn = 0, in RN \ Ω.

By proposition 3.1, (1), we know that, for all 1 � p < N/(N − s), there exists
C3 = C3(s, p,Ω) > 0 such that

‖wn‖W s,p
0 (Ω) � C3‖hn − h‖L1(Ω).

Hence, since hn → h in L1(Ω), it follows that wn → 0 in W s,p
0 (Ω) for all 1 � p <

N/(N − s) and so, that vn → v in W s,p
0 (Ω) for all 1 � p < N/(N − s), as desired.

�

Proposition 3.10. Let Ω ⊂ RN , N � 2, be a bounded domain with ∂Ω of class C2,
let s ∈ (1/2, 1) and let h ∈ L1(Ω). Then the operator S : L1(Ω) →W s,p

0 (Ω) given
by S(h) = v with v the unique weak solution to (3.1) is compact for all 1 � p <
N/(N − s).

Proof. Let {fn} ⊂ L1(Ω) be a bounded sequence. By [17, proposition 2.4] we
know that S is a compact operator from L1(Ω) to W 1,p1

0 (Ω) for all 1 � θ <
N/(N − (2s− 1)). Hence, for all 1 � θ < N/(N − (2s− 1)), up to a subsequence
we have that S(fn) → v for some v ∈W 1,θ

0 (Ω). By Sobolev inequality, this implies,
for all 1 � σ < N/(N − 2s), that S(fn) → v in Lσ(Ω) and v ∈ Lσ(Ω).
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Now, applying lemma 2.2 with η = s, s1 = 0 and s2 = 1, we obtain that

‖S(fn) − v‖W s,p
0 (Ω) � C‖S(fn) − v‖1−s

Lσ(RN )
‖S(fn) − v‖s

W 1,θ(RN )

= C‖S(fn) − v‖1−s
Lσ(Ω)‖S(fn) − v‖s

W 1,θ
0 (Ω)

, (3.26)

for p satisfying 1/p = (1 − s)/σ + s/θ. Hence, the result follows from (3.26) using
that

1 � 1
p
>
N − s

N
.

�

4. Proofs of theorems 1.1 and 1.4

This section is devoted to prove theorems 1.1 and 1.4. As indicated in § 1, once we
have the regularity results of § 3, we follow the approach first develop in [36, § 6].
Let us begin with two elementary technical lemmas that will be useful in the proofs
of both theorems.

Lemma 4.1. Let a, b > 0, p > 1 and c∗ := ((p− 1)/p)(1/papb)1/(p−1). Then, the
function g : [0,∞) → R given by

g(t) = ap(bt+ c∗)p − t,

has exactly one root t∗ ∈ (0,∞).

Proof. First observe that, g′(t) = 0 if and only if

t = t∗ :=
1
b

(
1

papb

)1/(p−1)

− c∗

b
=

1
pb

(
1

papb

)1/(p−1)

∈ (0,∞).

Moreover, observe that

g′′(t∗) = (p− 1)papb2
(

1
papb

)(p−2)/(p−1)

> 0.

Thus, we deduce that g has an strict global minimum on t = t∗. Finally, observe
that

g(t∗) = ap

(
1

papb

)p/(p−1)

− 1
b

(
1

papb

)1/(p−1)

+
p− 1
pb

(
1

papb

)1/(p−1)

= 0, g(0) > 0 and lim
t→∞ g(t) = ∞.

Hence, we conclude that g has exactly one root t∗ ∈ (0,∞). �
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Lemma 4.2. Let Ω ⊂ RN be a bounded domain with boundary ∂Ω of class C0,1 and
let s ∈ (0, 1). For all ε > 0 satisfying 0 < s− ε < s+ ε < 1 and all 1 � σ < r there
exists C9 = C9(s, ε, σ, r,Ω) > 0 such that∥∥∥∥∥

(∫
RN

|u(x) − u(y)|σ
|x− y|N+sσ

dy
)1/σ

∥∥∥∥∥
Lr(Ω)

� C9‖u‖W s+ε,r
0 (Ω), ∀u ∈W s+ε,r

0 (Ω). (4.1)

Proof. First of all, observe that∫
Ω

(∫
RN

|u(x) − u(y)|σ
|x− y|N+sσ

dy
)r/σ

dx

=
∫

Ω

(∫
RN∩{|x−y|<1}

|u(x) − u(y)|σ
|x− y|N+sσ

dy

+
∫

RN∩{|x−y|�1}

|u(x) − u(y)|σ
|x− y|N+sσ

dy

)r/σ

dx

� cr,σ

⎡⎣∫
Ω

(∫
RN∩{|x−y|<1}

|u(x) − u(y)|σ
|x− y|N+sσ

dy

)r/σ

dx

+
∫

Ω

(∫
RN∩{|x−y|�1}

|u(x) − u(y)|σ
|x− y|N+sσ

dy

)r/σ

dx

⎤⎦
=: cr,σ(J1 + J2). (4.2)

Let us then estimate J1. Applying Hölder inequality, we have that

J1 =
∫

Ω

(∫
RN∩{|x−y|<1}

|u(x) − u(y)|σ
|x− y|Nσ/r+(s+ε)σ

|x− y|εσ

|x− y|N−Nσ/r
dy

)r/σ

dx

�
∫

Ω

⎡⎣(∫
RN∩{|x−y|<1}

|u(x) − u(y)|r
|x− y|N+(s+ε)r

dy

)

×
(∫

RN∩{|x−y|<1}

dy
|x− y|N−(εσr/(r−σ))

)(r−σ)/σ
⎤⎦ dx.

Furthermore, since∫
RN∩{|x−y|<1}

dy
|x− y|N−(εσr/(r−σ))

=
∫

B1(0)

dz
|z|N−(εσr/(r−σ))

= CJ1(ε, σ, r) <∞,

we deduce that

J1 � C̃J1

∫
Ω

(∫
RN∩{|x−y|<1}

|u(x) − u(y)|r
|x− y|N+(s+ε)r

dy

)
dx � C̃J1‖u‖r

W s+ε,r
0 (Ω)

. (4.3)
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Now, arguing as with J1, we obtain that

J2 =
∫

Ω

(∫
RN∩{|x−y|�1}

|u(x) − u(y)|σ
|x− y|Nσ/r+(s−ε)σ

dy
|x− y|N−Nσ/r+εσ

)r/σ

dx

�
∫

Ω

(∫
RN∩{|x−y|�1}

|u(x) − u(y)|r
|x− y|N+(s−ε)r

dy

)

×
(∫

RN∩{|x−y|�1}

dy
|x− y|N+(εσr/(r−σ))

)(r−σ)/σ

dx.

Hence, since ∫
RN∩{|x−y|�1}

dy
|x− y|N+(εσr/(r−σ))

=
∫

RN\B1(0)

dz
|z|N+(εσr/(r−σ))

= CJ2(ε, σ, r) <∞,

and W s+ε,r
0 (Ω) ⊂W s−ε,r

0 (Ω), it follows that

J2 � C̃J2

∫
Ω

(∫
RN∩{|x−y|�1}

|u(x) − u(y)|r
|x− y|N+(s−ε)r

dy

)
dx � C̃J2‖u‖r

W s−ε,r
0 (Ω)

� CJ2‖u‖r
W s+ε,r

0 (Ω)
. (4.4)

The result follows from (4.2), (4.3) and (4.4). �

Remark 4.1. Observe that the constant C9 = C9(s, ε, σ, r,Ω) > 0 obtained in the
previous lemma is not stable when s→ 1−. More precisely, if s→ 1− then ε→ 0
and this implies that C9 → +∞.

4.1. Proof of theorem 1.1

Let us begin recalling that, under the assumption (A1), f ∈ Lm(Ω) for some
m > N/2s. Hence, since we are working in a bounded domain, without loss of
generality, we can assume that m ∈ (N/2s,N/(2s− 1)). Moreover, observe that,
for λf ≡ 0, u ≡ 0 is a solution to (Pλ) and, for μ ≡ 0, (Pλ) reduces to (3.1). Hence,
we may assume that ‖μ‖∞ 
= 0 and ‖f‖Lm(Ω) 
= 0.

Next, we fix some notation that we use throughout this subsection. First, we fix
r = r(m, s) > 0 such that

1 < 2m < r <
mN

s(N −m(2s− 1))
,

and ε = ε(r,m, s) > 0 such that

1 < r <
mN

(s+ ε)(N −m(2s− 1))
<

mN

s(N −m(2s− 1))
, s+ ε < 1,

and s− ε >
1
2
.
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Also, we introduce and fix the constants C1, given by proposition 3.1, (3) applied
with t = s+ ε and p = r, C10 := C2

9 |Ω|(r−2m)/rm, where C9 is the constant given
by lemma 4.2, and

λ∗ :=
1

4‖f‖Lm(Ω)C
2
1C10‖μ‖∞ .

By the definition of λ∗ and lemma 4.1, we know there exists and unique l ∈ (0,∞)
such that

C1(C10‖μ‖∞l + λ∗‖f‖Lm(Ω)) = l1/2. (4.5)

Having fixed the above constants, we introduce

E :=
{
v ∈W s,1

0 (Ω) :
∫∫

DΩ

|u(x) − u(y)|r
|x− y|N+(s+ε)r

dxdy � lr/2

}
,

which is a closed convex set of W s,1
0 (Ω). Then, we define T : E →W s,1

0 (Ω) by
T (ϕ) = u, where u is a weak solution to

{
(−Δ)su = μ(x) D2

s(ϕ) + λf(x), in Ω,
u = 0, in RN \ Ω, (4.6)

and observe that problem (Pλ) is equivalent to the fixed point problem u = T (u).
Hence, to prove theorem 1.1, we shall show that T has fixed point belonging to
W s,2

0 (Ω) ∩ C0,α(Ω) for some α > 0.

Lemma 4.3. Assume that (A1) holds. Then T is well defined.

Proof. First of all, by Hölder inequality and lemma 4.2, observe that for all ϕ ∈ E,

∫
Ω

D2
s(ϕ) dx � c(r,Ω)

(∫
Ω

(D2
s(ϕ))r/2 dx

)2/r

� cC2
9‖ϕ‖2

W s+ε,r
0 (Ω)

= cC2
9 l. (4.7)

Hence, for all ϕ ∈ E, it follows that

‖μ(x)D2
s(ϕ) + λf(x)‖L1(Ω) � cC2

9‖μ‖∞l + |λ| ‖f‖L1(Ω) = C <∞. (4.8)

Thanks to [34, theorem 23] and proposition 3.1, if the right hand side in (4.6)
belongs to L1(Ω), problem (4.6) has an unique weak solution and it belongs to
W s,1

0 (Ω). Thus, the result follows from (4.8). �

Lemma 4.4. Assume (A1) and let 0 < λ � λ∗. Then T (E) ⊂ E.
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Proof. For an arbitrary ϕ ∈ E, we define u = T (ϕ). Now, by proposition 3.1 and
since 0 < λ � λ∗ , it follows that(∫∫

DΩ

|u(x) − u(y)|r
|x− y|N+(s+ε)r

dxdy
)1/r

� C1

∥∥μ(x)D2
s(ϕ) + λf(x)

∥∥
Lm(Ω)

� C1‖μ‖∞
∥∥D2

s(ϕ)
∥∥

Lm(Ω)
+ C1λ

∗‖f‖Lm(Ω).

(4.9)

Also, by lemma 4.2, Hölder inequality and the definition of C10, we obtain that

‖D2
s(ϕ)‖Lm(Ω) � |Ω|(r−2m)/rm‖(D2

s(ϕ))1/2‖2
Lr(Ω) � C2

9 |Ω|(r−2m)/rm‖ϕ‖2
W s+ε,r

0 (Ω)

= C10‖ϕ‖2
W s+ε,r

0 (Ω)
.

Thus, since ϕ ∈ E, we have that

‖D2
s(ϕ)‖Lm(Ω) � C10l. (4.10)

From (4.5), (4.9) and (4.10), it follows that(∫∫
DΩ

|u(x) − u(y)|r
|x− y|N+(s+ε)r

dxdy
)1/r

� C1(C10‖μ‖∞ l + λ∗‖f‖Lm(Ω)) = l1/2.

Hence, since by proposition 3.1 we also know that u ∈W s,1
0 (Ω), we conclude that

u ∈ E and so, that T (E) ⊂ E. �

Lemma 4.5. Assume that (A1) holds. Then T is continuous.

Proof. Let {ϕn} ⊂ E be a sequence such that ϕn → ϕ in W s,1
0 (Ω) and define un =

T (ϕn), for all n ∈ N, and u = T (ϕ). To show that un → u in W s,1
0 (Ω), and so, that

T is continuous, we prove that

gn(x) := D2
s(ϕn) + λf(x) → g(x) := D2

s(ϕ) + λf(x), in L1(Ω). (4.11)

Indeed, if (4.11) holds, the result follows from proposition 3.9.
First of all, using the notation ψn = ϕn − ϕ and the reverse triangle inequality,

we obtain that

‖D2
s(ϕn) − D2

s(ϕ)‖L1(Ω)

=
∫

Ω

∣∣∣∣∫
RN

|ϕn(x) − ϕn(y)|2 − |ϕ(x) − ϕ(y)|2
|x− y|N+2s

dy
∣∣∣∣ dx

�
∫

Ω

∣∣∣∣∫
RN

(|ϕn(x) − ϕn(y)| + |ϕ(x) − ϕ(y)|) |ψn(x) − ψn(y)|
|x− y|N+2s

dy
∣∣∣∣ dx

=
∫

Ω

(∫
RN

|ϕn(x) − ϕn(y)| + |ϕ(x) − ϕ(y)|
|x− y|N/2+s

· |ψn(x) − ψn(y)|
|x− y|N/2+s

dy
)

dx.
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Applying then Hölder inequality, we deduce that

‖D2
s(ϕn) − D2

s(ϕ)‖L1(Ω)

�
∫

Ω

[(∫
RN

(|ϕn(x) − ϕn(y)| + |ϕ(x) − ϕ(y)|)2
|x− y|N+2s

dy
)1/2

×
(∫

RN

|ψn(x) − ψn(y)|2
|x− y|N+2s

dy
)1/2

]
dx

�
(∫

Ω

(∫
RN

(|ϕn(x) − ϕn(y)| + |ϕ(x) − ϕ(y)|)2
|x− y|N+2s

dy
)

dx
)1/2

×
(∫

Ω

(∫
RN

|ψn(x) − ψn(y)|2
|x− y|N+2s

dy
)

dx
)1/2

=
(∫

Ω

(∫
RN

(|ϕn(x) − ϕn(y)| + |ϕ(x) − ϕ(y)|)2
|x− y|N+2s

dy
)

dx
)1/2

‖D2
s(ϕn − ϕ)‖1/2

L1(Ω)

=: I1 · I2 .

Taking into account the above inequality, if we show that I1 is bounded and I2 goes
to zero, we deduce that ‖D2

s(ϕn) − D2
s(ϕ)‖L1(Ω) → 0.

Claim 1: I1 is bounded. Directly observe that

I1 � 2
[∫

Ω

(∫
RN

|ϕn(x) − ϕn(y)|2
|x− y|N+2s

dy
)

dx+
∫

Ω

(∫
RN

|ϕ(x) − ϕ(y)|2
|x− y|N+2s

dy
)

dx
]

= 2
[‖D2

s(ϕn)‖L1(Ω) + ‖D2
s(ϕ)‖L1(Ω)

]
. (4.12)

Since ϕn, ϕ ∈ E for all n ∈ N, by (4.7), we have that[‖D2
s(ϕn)‖L1(Ω) + ‖D2

s(ϕ)‖L1(Ω)

]
� 2cC2

9 l <∞,

and so, that I1 is bounded.

Claim 2: I2 goes to zero. Let θ ∈ (0, 1) be small enough to ensure that
(2 − θ)/(1 − θ) < r. By Hölder inequality, it follows that

‖D2
s(ϕn − ϕ)‖L1(Ω)

=
∫

Ω

(∫
RN

|ψn(x) − ψn(y)|2
|x− y|N+2s

dy
)

dx

=
∫

Ω

(∫
RN

|ψn(x) − ψn(y)|θ
|x− y|(N+s)θ

|ψn(x) − ψn(y)|2−θ

|x− y|N(1−θ)+s(2−θ)
dy

)
dx

�
∫

Ω

[(∫
RN

|ψn(x) − ψn(y)|
|x− y|N+s

dy
)θ (∫

RN

|ψn(x) − ψn(y)|(2−θ)/(1−θ)

|x− y|N+s((2−θ)/(1−θ))
dy

)1−θ
]

dx

https://doi.org/10.1017/prm.2019.60 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.60


Nonlinear fractional Laplacian problems with nonlocal ‘gradient terms’ 2707

�
(∫

Ω

(∫
RN

|ψn(x) − ψn(y)|
|x− y|N+s

dy
)

dx
)θ

×
(∫

Ω

(∫
RN

|ψn(x) − ψn(y)|(2−θ)/(1−θ)

|x− y|N+s((2−θ)/(1−θ))
dy

)
dx

)1−θ

. (4.13)

Hence, since ϕn → ϕ in W s,1
0 (Ω) implies that∫

Ω

(∫
RN

|ψn(x) − ψn(y)|
|x− y|N+s

dy
)

dx→ 0, (4.14)

if we prove that ∫
Ω

(∫
RN

|ψn(x) − ψn(y)|(2−θ)/(1−θ)

|x− y|N+s((2−θ)/(1−θ))
dy

)
dx (4.15)

is bounded, we can conclude that I2 goes to zero, as desired. Since we have cho-
sen θ ∈ (0, 1) small enough in order to ensure that (2 − θ)/(1 − θ) < r and Ω is a
bounded domain, it follows that

∫
Ω

(∫
RN

|ψn(x) − ψn(y)|(2−θ)/(1−θ)

|x− y|N+s((2−θ)/(1−θ))
dy

)
dx

� C(r,Ω)

(∫
Ω

(∫
RN

|ψn(x) − ψn(y)|(2−θ)/(1−θ)

|x− y|N+s((2−θ)/(1−θ))
dy

)r/((2−θ)/(1−θ))

dx

)((2−θ)(1−θ))/r

.

(4.16)

Applying then lemma 4.2 and the triangular inequality we have that∫
Ω

(∫
RN

|ψn(x) − ψn(y)|(2−θ)/(1−θ)

|x− y|N+s((2−θ)/(1−θ)
dy

)
dx � C‖ψn‖W s+ε,r

0 (Ω)

� C̃
[
‖ϕn‖W s+ε,r

0 (Ω) + ‖ϕ‖W s+ε,r
0 (Ω)

]
� 2 C̃ l1/2 = Ĉ, (4.17)

where C, C̃ and Ĉ are positive constants independent of n. Thus, we conclude
that (4.15) is indeed bounded.

From claims 1 and 2 we deduce that ‖D2
s(ϕn) − D2

s(ϕ)‖L1(Ω) → 0. This implies
that gn → g in L1(Ω), as desired, and the result follows. �

Lemma 4.6. Assume that (A1) holds. Then T is compact.

Proof. Let {ϕn} ⊂ E be a bounded sequence in W s,1
0 (Ω) and define un = T (ϕn)

for all n ∈ N. We have to show that un → u in W s,1
0 (Ω) for some u ∈W s,1

0 (Ω).
Since {ϕn} ⊂ E for all n ∈ N, arguing as in lemma 4.3, we deduce that {D2

s(ϕn)}
is a bounded sequence in L1(Ω). Hence, if we define

gn(x) := D2
s(ϕn) + λf(x), ∀n ∈ N,

we have that {gn} is a bounded sequence in L1(Ω). The result then follows from
proposition 3.10. �
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Proof of theorem 1.1. Since E is a closed convex set of W s,1
0 (Ω) and, by lem-

mas 4.3, 4.4, 4.5 and 4.6, we know that T is continuous, compact and satisfies
T (E) ⊂ E, we can apply the Schauder fixed point Theorem to obtain u ∈ E such
that T (u) = u. Thus, we conclude that (Pλ) has a weak solution for all 0 < λ � λ∗.
Finally, since u ∈W s,1

0 (Ω) ∩W s,r
0 (Ω) for some 1 < 2 < r, by lemma 2.2 applied

with s1 = s2 = s, we deduce that u ∈W s,2
0 (Ω). Moreover, since r > N/s, by [22,

theorem 8.2], we know that every ϕ ∈ E belongs to C0,α(Ω) for some α > 0. �

4.2. Proof of theorem 1.4

First observe that, as before, without loss of generality we can assume m ∈
(N/2s,N/s), ‖μ‖∞ 
= 0 and ‖f‖Lm(Ω) 
= 0. Next, let us fix some notation. We fix

r =
3mN
N +ms

(4.18)

and ε := ε(r,m, s) > 0 such that

1 < r <
mN

N −m(s− ε)
<

mN

N −ms
, s+ ε < 1 and s− ε >

1
2
.

Also, we introduce and fix the constants C2, given by corollary 3.4 applied with
t = s+ ε and p = r, C11 := SN,rCC

2m
9 , where SN,r is the optimal constant in the

Sobolev inequality (see for instance [37, proposition 15.5] for a very beautiful proof),
C is the smallest constant guaranteeing the continuous embedding W s+ε,r

0 (Ω) ⊂
W s,r

0 (Ω) and C9 is the constant given by lemma 4.2, and

λ∗ :=
2

3‖f‖Lm(Ω),

(
1

3C3
2C11‖μ‖∞

)1/2

.

Then, by lemma 4.1 we know that there exists and unique l ∈ (0,∞) such that

C2(C11‖μ‖∞l + λ∗‖f‖Lm(Ω)) = l1/3. (4.19)

Having fixed all these constants, we define

E1 :=
{
v ∈W s,1

0 (Ω) :
∫∫

DΩ

|u(x) − u(y)|r
|x− y|N+(s+ε)r

dxdy � lr/3

}
,

which is a closed convex set of W s,1
0 (Ω), and T1 : E1 →W s,1

0 (Ω) by T1(ϕ) = u, with
u a weak solution to{

(−Δ)su = μ(x)ϕD2
s(ϕ) + λf(x), in Ω,

u = 0, in RN \ Ω. (4.20)

Observe that (P̃λ) is equivalent to the fixed point problem u = T1(u). Hence, we
shall prove that T1 has a fixed point belonging toW s,2

0 (Ω) ∩ C0,α(Ω) for some α > 0.

Lemma 4.7. For all ϕ ∈W s+ε,r
0 (Ω), it follows that

‖ϕD2
s(ϕ)‖Lm(Ω) � C11‖ϕ‖3

W s+ε,r
0 (Ω)

. (4.21)

https://doi.org/10.1017/prm.2019.60 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.60


Nonlinear fractional Laplacian problems with nonlocal ‘gradient terms’ 2709

Proof. First observe that, with the above notation, we have that

2 <
2mr∗s
r∗s −m

= r.

Hence, by Hölder and Sobolev inequalities and using that W s+ε,r
0 (Ω) ⊂W s,r

0 (Ω)
with continuous inclusion, we obtain that

‖ϕD2
s(ϕ)‖m

Lm(Ω) � SN,rC ‖ϕ‖m
W s+ε,r

0 (Ω)

∥∥∥∥∥
(∫

RN

|ϕ(x) − ϕ(y)|2
|x− y|N+2s

dy
)1/2

∥∥∥∥∥
2m

Lr(Ω)

.

Since r > 2, the result follows from lemma 4.2. �

Corollary 4.8. Assume that (A1) holds. Then T1 is well defined.

Proof. Since Ω is a bounded domain and m > N/2s > 1 the result follows from
lemma 4.7 arguing as in the proof of lemma 4.3. �

Lemma 4.9. Assume (A1) and let 0 < λ � λ∗. Then T1(E1) ⊂ E1.

Proof. Let us consider an arbitrary ϕ ∈ E and define u = T1(ϕ). By corollary 3.4,
since that 0 < λ � λ∗, we have that(∫∫

DΩ

|u(x) − u(y)|r
|x− y|N+(s+ε)r

dxdy
)1/r

� C2‖μ‖∞
∥∥ϕD2

s(ϕ)
∥∥

Lm(Ω)
+ C2λ

∗‖f‖Lm(Ω).

(4.22)
Hence, since ϕ ∈ E, by lemma 4.7 and (4.19), it follows that(∫∫

DΩ

|u(x) − u(y)|r
|x− y|N+(s+ε)r

dxdy
)1/r

� C2(C11‖μ‖∞ l + λ∗‖f‖Lm(Ω)) = l1/3.

Thus, as by proposition 3.1 we also know that u ∈W s,1
0 (Ω), we conclude that u ∈ E1

and so, that T1(E1) ⊂ E1. �

Lemma 4.10. Assume (A1). Then T1 is continuous.

Proof. Let {ϕn} ⊂ E be a sequence such that ϕn → ϕ in W s,1
0 (Ω) and define un =

T1(ϕn), for all n ∈ N, and u = T1(ϕ). Arguing as in the proof of lemma 4.5, we just
have to prove that

ϕnD2
s(ϕn) → ϕD2

s(ϕ), in L1(Ω). (4.23)

First observe that, since r > N/s > N/(s+ ε), for all ϕ ∈ E1, it follows that

‖ϕ‖L∞(Ω) � C

∫∫
DΩ

|ϕ(x) − ϕ(y)|r
|x− y|N+(s+ε)r

dxdy � lr/3. (4.24)

Hence, since ϕn → ϕ in W s,1
0 (Ω), by Vitali’s Convergence Theorem we deduce that

ϕn → ϕ in Lα(Ω) for all 1 � α <∞.
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Next, observe that

‖ϕnD2
s(ϕn) − ϕD2

s(ϕ)‖L1(Ω)

= ‖ϕn(D2
s(ϕn) − D2

s(ϕ)) + D2
s(ϕ)(ϕn − ϕ)‖L1(Ω)

� ‖ϕn(D2
s(ϕn) − D2

s(ϕ))‖L1(Ω) + ‖D2
s(ϕ)(ϕn − ϕ)‖L1(Ω)

� ‖ϕn‖∞‖D2
s(ϕn) − D2

s(ϕ)‖L1(Ω) + ‖D2
s(ϕ)‖Lm(Ω)‖ϕn − ϕ‖Lm′ (Ω)

=: I1 + I2 (4.25)

Then, arguing exactly as in lemma 4.5 and using that ‖ϕn‖∞ � C (independent of
n) we deduce that I1 → 0. On the other hand, we know that ‖D2

s(ϕ)‖Lm(Ω) <∞.
Hence, since ϕn → ϕ in Lα(Ω) for all 1 � α <∞, we also obtain that I2 → 0. We
then conclude that (4.23) holds, as desired. �

Proof of theorem 1.4. Observe that the compactness of T1 follows arguing
exactly as in lemma 4.6. Hence, since E1 is a closed convex set of W s,1

0 (Ω) and, by
lemmas 4.9, 4.8 and 4.10 we know that T1 is well defined, continuous and satisfies
T1(E1) ⊂ E1, we can apply the Schauder fixed point Theorem to obtain u ∈ E1 such
that T1(u) = u. Thus, we conclude that (P̃λ) has a weak solution for all 0 < λ � λ∗.
Finally, since u ∈W s,1

0 (Ω) ∩W s,r
0 (Ω) for some 1 < 2 < r, by lemma 2.2 we deduce

that u ∈W s,2
0 (Ω). Moreover, since r > N/s, by [22, theorem 8.2], we know that

every ϕ ∈ E1 belongs to C0,α(Ω) for some α > 0. �

5. Proofs of theorems 1.2 and 1.3

In this section, we prove theorems 1.2 and 1.3. The aim of these theorems is to
justify the hypotheses considered in theorem 1.1. First we prove that (Pλ) has no
solutions for λ large and so, that the smallness condition is somehow necessary to
have existence of solution.

Proof of theorem 1.2. Assume that (Pλ) has a solution u ∈W s,2
0 (Ω) and let φ ∈

C∞
0 (Ω) be an arbitrary function such that∫

Ω

f(x)φ2(x) dx > 0,

Considering φ2 as test function in (Pλ) we observe that∫
Ω

(−Δ)suφ2(x) dx =
∫

Ω

μ(x)
∫

RN

|u(x) − u(y)|2
|x− y|N+2s

φ2(x) dy dx+ λ

∫
Ω

f(x)φ2(x)dx.

(5.1)
Now, on one hand, since μ(x) � μ1 > 0 and D2

s is symmetric in x, y, it follows that∫
Ω

μ(x)
∫

RN

|u(x) − u(y)|2
|x− y|N+2s

φ2(x) dy dx

=
∫∫

DΩ

μ(x)
|u(x) − u(y)|2
|x− y|N+2s

φ2(x) dy dx
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� μ1

∫∫
DΩ

|u(x) − u(y)|2
|x− y|N+2s

φ2(x) dy dx

=
μ1

2

∫∫
DΩ

|u(x) − u(y)|2
|x− y|N+2s

φ2(x) dy dx+
μ1

2

∫∫
DΩ

|u(x) − u(y)|2
|x− y|N+2s

φ2(y) dy dx

� μ1

4

∫∫
DΩ

|u(x) − u(y)|2
|x− y|N+2s

(φ(x) + φ(y))2 dy dx. (5.2)

On the other hand, by Young’s inequality, it follows that∫
Ω

(−Δ)suφ2(x)dx

=
∫∫

DΩ

(u(x) − u(y))(φ2(x) − φ2(y))
|x− y|N+2s

dy dx

=
∫∫

DΩ

(u(x) − u(y))(φ(x) − φ(y))(φ(x) + φ(y))
|x− y|N+2s

dydx

�
∫∫

DΩ

|u(x) − u(y)||φ(x) + φ(y)|
|x− y|N

2 +s
· |φ(x) − φ(y)|

|x− y|N
2 +s

dydx

� μ1

4

∫∫
DΩ

|u(x) − u(y)|2
|x− y|N+2s

(φ(x) + φ(y))2 dy dx+
1
μ1

∫∫
DΩ

|φ(x) − φ(y)|2
|x− y|N+2s′ dy dx

(5.3)

Hence, substituting (5.2) and (5.3) into (5.1), we deduce that, if (Pλ) has a solution,
then

1
μ1

∫∫
DΩ

|φ(x) − φ(y)|2
|x− y|N+2s

dy dx � λ

∫
Ω

f(x)φ2(x) dx, (5.4)

which gives a contradiction for λ large enough. �

Now, we prove theorem 1.3. This theorem shows that the regularity considered
on f is almost optimal. Just the limit case f ∈ LN/2s(Ω) remains open. In order to
prove this result, we make use of the following proposition which is a consequence
of the fractional Hardy inequality [27, theorem 1.1].

Proposition 5.1. Let Ω ⊂ RN , N � 2, be a bounded domain with boundary ∂Ω of
class C2 such that 0 ∈ Ω, 0 < s < 1 and p > 1. Then:

(1) [2, lemma 3.4] If we set

Λ(Ω) := inf

⎧⎪⎪⎨⎪⎪⎩
∫∫

DΩ

|φ(x) − φ(y)|p
|x− y|N+ps

dxdy∫
Ω

|φ(x)|p
|x|ps

dx
: φ ∈ C∞

0 (Ω) \ {0}

⎫⎪⎪⎬⎪⎪⎭ ,

it follows that Λ(Ω) = ΛN,s,p where ΛN,s,p > 0 is the optimal constant in the
fractional Hardy inequality given in [27, theorem 1.1].
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(2) The weight |x|−ps is optimal in the sense that, for all ε > 0, if follows that

inf

⎧⎪⎪⎨⎪⎪⎩
∫∫

DΩ

|φ(x) − φ(y)|p
|x− y|N+ps

dxdy∫
Ω

|φ(x)|p
|x|ps+ε

dx
: φ ∈ C∞

0 (Ω) \ {0}

⎫⎪⎪⎬⎪⎪⎭ = 0.

Proof. Since the proof of (1) can be found in [2, lemma 3.4], we just provide the
proof of (2). Let ε > 0 be fixed but arbitrarily small. We assume by contradiction
that there exists a smooth bounded domain Ω ⊂ RN such that 0 ∈ Ω and

Λε(Ω) := inf

⎧⎪⎪⎨⎪⎪⎩
∫∫

DΩ

|φ(x) − φ(y)|p
|x− y|N+ps

dxdy∫
Ω

|φ(x)|p
|x|ps+ε

dx
: φ ∈ C∞

0 (Ω) \ {0}

⎫⎪⎪⎬⎪⎪⎭ > 0. (5.5)

Let us then observe that for any Br(0) ⊂ Ω, it follows that

0 < Λε(Ω) � Λε(Br(0)). (5.6)

Moreover, observe that for φ ∈ C∞
0 (Br(0)) we have that∫

Br(0)

|φ(x)|p
|x|ps+ε

dx � 1
rε

∫
Br(0)

|φ(x)|p
|x|ps

dx. (5.7)

Hence, gathering (5.6)–(5.7), it follows that, for all φ ∈ C∞
0 (Br(0)),

0 < Λε(Ω) � Λε(Br(0)) �

∫∫
DBr(0)

|φ(x) − φ(y)|p
|x− y|N+ps

dxdy∫
Br(0)

|φ(x)|p
|x|ps+ε

dx

� rε

∫∫
DBr(0)

|φ(x) − φ(y)|p
|x− y|N+ps

dxdy∫
Br(0)

|φ(x)|p
|x|ps

dx
.

Thus, by the definition of Λ(Br(0)) and (1), we deduce that 0 < Λε(Ω)/rε �
ΛBr(0) = ΛN,s,p. Since (by assumption) Λε(Ω) > 0 and ΛN,s,p is independent of
Ω, letting r → 0, we obtain a contradiction and the result follows. �

Proof of theorem 1.3. Without loss of generality we choose a bounded domain
Ω with boundary ∂Ω of class C2 such that 0 ∈ Ω. Consider then

f(x) =
1

|x|(N−ε)/m
, (5.8)

for some ε ∈ (0, 1) to be chosen later and observe that, since Ω is bounded, f ∈
Lm(Ω). We assume by contradiction that, for all ε > 0, there exists λε > 0 such
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that (Pλ) has a solution u ∈W s,2
0 (Ω). Arguing as in the proof of theorem 1.2, we

conclude that, for all φ ∈ C∞
0 (Ω) \ {0},

1
μ1

∫∫
DΩ

|φ(x) − φ(y)|2
|x− y|N+2s

dy dx � λε

∫
Ω

f(x)φ2(x)dx = λε

∫
Ω

φ2(x)
|x|(N−ε)/m

dx. (5.9)

Thus, we deduce that

0 < μ1λε inf

⎧⎪⎪⎨⎪⎪⎩
∫∫

DΩ

|φ(x) − φ(y)|2
|x− y|N+2s

dy dx∫
Ω

φ2(x)
|x|(N−ε)/m

dx
: φ ∈ C∞

0 (Ω) \ {0}

⎫⎪⎪⎬⎪⎪⎭ . (5.10)

Nevertheless, since m < N/2s, we can choose ε > 0 small enough to ensure that
(N − ε)/m > 2s. In that case, by proposition 5.1, (2), we have that

inf

⎧⎪⎪⎨⎪⎪⎩
∫∫

DΩ

|φ(x) − φ(y)|2
|x− y|N+2s

dy dx∫
Ω

|φ(x)|2
|x|(N−ε)/m

dx
: φ ∈ C∞

0 (Ω) \ {0}

⎫⎪⎪⎬⎪⎪⎭ = 0,

which contradicts (5.10). Hence, the result follows. �

6. Proofs of theorems 1.5 and 1.6

This section is devoted to the proofs of theorems 1.5 and 1.6. First, having at hand
proposition 3.5, we prove theorem 1.5 using again a fixed point argument. The proof
is similar to the ones performed in § 4. Hence, we skip some details.

Since Ω is bounded, without loss of generality, we assume that 1 � m < N/s.
Also, if λf ≡ 0, it follows that u ≡ 0 is a solution to (Qλ) and, if μ ≡ 0, (Qλ)
reduces to (3.1). Hence, we may also assume that ‖μ‖∞ 
= 0 and ‖f‖Lm(Ω) 
= 0.

Next, we fix some notation that will be used throughout the section. First, we
fix r = r(m, s, q) > 0 such that

1 < qm < r <
mN

N −ms
,

C3 the constant given by proposition 3.5 with p = r and

λ∗ =
q − 1

q‖f‖Lm(Ω)

(
1

qCq
3 |Ω|(r−qm)/r‖μ‖∞

)1/(q−1)

.

Then, by the definition of λ∗ and lemma 4.1, we know that there exists an unique
l ∈ (0,∞) such that

C3(‖μ‖L∞(Ω)|Ω|(r−qm)/mrl + λ∗‖f‖Lm(Ω)) = l1/q. (6.1)

With the above constants fixed, we introduce

E2 :=
{
v ∈W s,1

0 (Ω) : ‖(−Δ)s/2v‖Lr(Ω) � l1/q
}
,
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and observe that E2 is a closed convex set of W s,1
0 (Ω). Then, we define T2 : E2 →

W s,1
0 (Ω) by T2(ϕ) = u with u the unique weak solution to{

(−Δ)su = μ(x)|(−Δ)s/2ϕ|q + λf(x), in Ω,
u = 0, in RN \ Ω,

(6.2)

and observe that (Qλ) is equivalent to the fixed point problem u = T2(u). Hence,
we shall show that T2 has a fixed point.

Lemma 6.1. Assume (B1) and let 0 < λ � λ∗. Then T2 is well defined, T2(E2) ⊂ E2

and T2 is compact.

Proof. The proof of this lemma follows as in lemmas 4.3, 4.4 and 4.6 using
proposition 3.5 instead of proposition 3.1. �

Remark 6.1. The only point in the proof of the previous lemma where we use
0 < λ � λ∗ is to show that T2(E2) ⊂ E2. The rest holds for every λ ∈ R.

Lemma 6.2. Assume that (B1) holds. Then T2 is continuous.

Proof. Let {ϕn} ⊂ E2 be a sequence such that ϕn → ϕ in W s,1
0 (Ω) and define un =

T2(ϕn), for all n ∈ N, and u = T2(ϕ). We shall show that un → u in W s,1
0 (Ω).

Observe that wn = un − u satisfies{
(−Δ)swn = μ(x)

(|(−Δ)s/2ϕn|q − |(−Δ)s/2ϕ|q) , in Ω,
wn = 0, in RN \ Ω.

(6.3)

Hence, if we show that

μ(x)
(
|(−Δ)s/2ϕn|q − |(−Δ)s/2ϕ|q

)
→ 0, in L1(Ω), (6.4)

the result follows from proposition 3.9. Directly, since ϕn, ϕ ∈ E2 and μ ∈ L∞(Ω),
applying the Mean Value Theorem and Hölder inequality, we deduce that∥∥∥μ(x)

(
|(−Δ)s/2ϕn|q − |(−Δ)s/2ϕ|q

)∥∥∥
L1(Ω)

� C

(∫
Ω

|(−Δ)s/2(ϕn − ϕ)|q dx
)1/q

,

(6.5)
where C is a positive constant depending only on ‖μ‖L∞(Ω), l, q and Ω. By (6.5), if
we show that ∫

Ω

|(−Δ)s/2(ϕn − ϕ)|q dx→ 0, (6.6)

the continuity of the operator follows from proposition 3.9. Since ϕn → ϕ in
W s,1

0 (Ω), it follows that ϕn − ϕ→ 0 almost everywhere in Ω. Furthermore, observe
that, for all measurable subset ω ⊂ Ω, we have that∫

ω

|(−Δ)s/2(ϕn − ϕ)|q dx � 2l|ω|(r−q)/q.

Hence, by Vitali’s convergence Theorem, (6.6) holds and the result follows. �
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Proof of theorem 1.5. Since E2 is a closed convex set of W s,1
0 (Ω) and, by lem-

mas 6.1 and 6.2, we know that T2 is continuous, compact and satisfies T2(E2) ⊂ E2,
we can apply the Schauder fixed point Theorem to obtain u ∈ E2 such that
T2(u) = u. Thus, we conclude that (Qλ) has a weak solution for all 0 < λ � λ∗. �

Proof of theorem 1.6. Having at hand corollary 3.6, the result follows arguing
as in theorem 1.5. �

7. Further results and open problems

We end the paper pointing out some possible extensions of our results and
formulating some open problems.

7.1. Further results

(1) In the spirit of the existence results of § 4, we can deal with more general
nonlocal ‘gradient terms’. Actually, we can consider a problem of the form{

(−Δ)su = μ(x)(Bq
s(u))

α + λf(x), in Ω,
u = 0, in RN \ Ω,

where 1 < α � q, f belongs to a suitable Lebesgue space, μ ∈ L∞(Ω) and Bq
s

is given by

Bq
s(u) =

(
aN,s

q

∫
RN

|u(x) − u(y)|q
|x− y|N+sq

dy
)1/q

.

The existence of a solution for λf small enough can be obtained.

(2) On the line of § 6, we can consider a problem of the form{
(−Δ)su = μ(x)|(−Δ)t/2u|q + λf(x), in Ω,
u = 0, in RN \ Ω,

under the assumptions⎧⎨⎩
Ω ⊂ RN , N � 2, is a bounded domain with ∂Ω of class C2,
f ∈ Lm(Ω) for some m � 1 and μ ∈ L∞(Ω),
s ∈ (1/2, 1), t ∈ (0, s], and 1 < q < N/(N −m(2s− t)).

A similar result to theorem 1.5 can be obtained. Concerning the multiplicity
of solutions for this problem, let us consider Ω = B1(0) and define

u(x) = A

(
1

|x|θ − 1
)
,

for some θ < N − 2s. By direct computations, see for instance [26], we obtain
that

(−Δ)su =
C

|x|θ+2s
and (−Δ)t/2u =

Ĉ

|x|θ+t
,
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for some positive constants C = C(N, s, θ) > 0 and Ĉ = C(N, s, t, θ) > 0.
Hence, choosing a suitable constant A, we have that u satisfies to

(−Δ)su = |(−Δ)t/2u|q in Ω,

with q = (θ + 2s)/(θ + t). On the other hand, it is clear that v ≡ 0 is a solution
to this problem. Hence, for this particular case, we may expect have at least
two solutions. We cannot then expect uniqueness of weak solution for q >
N/(N − (2s− t)).

7.2. Open problems

(1) The Calderón–Zygmund type regularity results proved in § 3 deeply rely on [4,
lemma 2.15]. The restriction s ∈ (1/2, 1) comes from this result. It is an open
question if the regularity results of § 3 hold for s ∈ (0, 1/2]. Let us also stress
that, if the corresponding regularity results with s ∈ (0, 1/2] were available,
our approaches to prove theorems 1.1, 1.4, 1.5 and 1.6 would directly provide
the corresponding results.

(2) In the last few years there has been a renewed interest in classical problems
of the form

−Δu = c(x)u+ μ(x)|∇u|2 + h(x), u ∈ H1
0 (Ω) ∩ L∞(Ω).

Following [29,40], several works have appeared proving existence and multi-
plicity results. Does this kind of results hold in the nonlocal case? To be more
precise, let us introduce the Dirichlet problem{

(−Δ)su = c(x)u+ μ(x)D2
s(u) + λf(x), in Ω,

u = 0, in RN \ Ω,

under the assumption (A1) and c ∈ L∞(Ω). It seems interesting to address
the following questions:
(a) Does the uniqueness of (smooth) solutions holds for c(x) � 0?

(b) Under the assumption c(x) � α0 < 0 a.e. in Ω. It is possible to remove
the smallness condition imposed on λ?

(c) It is possible to prove the existence of more than one solution for c(x) � 0,
μ(x) � μ1 > 0 and λ > 0 small enough?

(3) Let us denote by us ∈W s,2
0 (Ω) ∩ Cα(Ω) a solution to (Pλ). An interesting (in

our opinion) open question is to analyse the behaviour of us when s→ 1−. By
the remark 4.1 it is clear that our solution us does not directly converge to a
solution to (1.4). Nevertheless, we hope that an argument in the spirit of the
seminal paper [11] would provide a suitable sequence of modified solutions
that converge to a solution to (1.4). To that end, one needs to obtain uniform
estimates on the constants involved in the proof of theorem 1.1.

(4) Similar questions to (2) and (3) can be formulated concerning the prob-
lems (Qλ) and (Q̃λ).
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6 D. Applebaum, Lévy processes and stochastic calculus. Cambridge Studies in Advanced
Mathematics, vol. 93 (Cambridge: Cambridge University Press, 2004).

7 D. Arcoya, C. De Coster, L. Jeanjean and K. Tanaka. Continuum of solutions for an elliptic
problem with critical growth in the gradient. J. Funct. Anal. 268 (2015), 2298–2335.

8 B. Barrios, A. Figalli and X. Ros-Oton. Free boundary regularity in the parabolic fractional
obstacle problem. Commun. Pure Appl. Math. 71 (2018), 2129–2159.

9 B. Barrios, A. Figalli and X. Ros-Oton. Global regularity for the free boundary in the
obstacle problem for the fractional Laplacian. Am. J. Math. 140 (2018), 415–447.

10 L. Boccardo, F. Murat and J.-P. Puel, Existence de solutions faibles pour des équations
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