
PROBLEMS AND SOLUTIONS

PROBLEMS

01+2+1+ A Determinantal Inequality, proposed by Heinz Neudecker+ Con-
sider a positive definite matrixA and its diagonal submatrixAd+ Show then
that 6A6 # 6Ad6 without using induction+

REFERENCE

Anderson, T+W+ ~1958! An Introduction to Multivariate Statistical Analysis.New York: John Wiley
& Sons+

01+2+2+ The R/S Statistics as a Unit Root Test, proposed by Giuseppe Cava-
liere+ Given a time series$Xt %t50, + + + ,T , consider therescaled range statistics
~see Hurst, 1951; and the recent generalization by Lo, 1991! computed on the
differenced processDXt :
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DXt 5 Xt 2 Xt21, [m 5 T21 (

t51
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DXt 5 T21~XT 2 X0!,

where ZlT
2 is a kernel HAC estimator of the long-run variance ofDXt + Show that

R0S can be used to test the null hypothesis

H0 :X ; I ~1!,Xt :5 X0 1 mt 1 St ,St :5 (
i51

t

ui ,6X06 , ` a+s+

~a! by deriving the asymptotic distribution ofR0S underH0 and by showing that a
right tail test based onR0S is consistent against

~b! I ~2! alternatives, i+e+, Xt 5 X0 1 mt 1 (i51
t (j51

i uj

~c! I ~1! with trend breaks, i+e+, Xt 5 X0 1 mt 1 ~m0 2 m!I~t . @aT # ! 1 (i51
t ui ,

a [ ~0,1! under the assumption that$ut % is strong mixing~see Hansen, 1992,
Condition V1! and that ZlT

2 has kernel functionk~ ! satisfying Assumption 1 of
de Jong~2000! and truncation lagqT 5 cTg, g , 1

2
_ 2 10r+
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SOLUTIONS

00+2+1+ Degeneration of Feasible GLS to 2SLS in a Limited-Information
Simultaneous Equation Model—Solution, proposed by Chuanming Gao and
Kajal Lahiri+ The limited-information simultaneous equations model may be
written as a SUR model:

Fy1

y2
G 5 Fy2 0

0 XGFg

bG1 Fu

vG +
Based on a consistent

ZS 5 F [s11 [s12

[s12 [s22
G,

feasible GLS is carried out as

F [gFGLS

ZbFGLS
G 5 FSy2 0

0 XD' ZS21Sy2 0

0 XDG21FSy2 0

0 XD' ZS21Sy1

y2
DG +

Substituting in

ZS21 5
1

[s11 [s22 2 [s12
2 F [s22 2 [s12

2 [s12 [s11
G

and using partitioned inversion, we have

[gFGLS 5 Q@ [s22y2
' y1 2 [s12y2

' y2 2 [s12
2 [s11

21y2
'Py1 1 [s12y2

'Py2#

5 Q@ [s22y2
' y1 2 [s12y2

'My2 2 [s12
2 [s11

21y2
'Py1# ,

whereQ21 5 [s22y2
' y2 2 [s12

2 [s11
21y2

'Py2+
Finally, noting that [u 5 y1 2 [g2SLSy2, [v 5 My2, we have [s22 5 ~10N! [v ' [v 5

~10N!y2
'My2, y2

' y1 5 y2
' y2 [g2SLS1 N [s12, where [s12 5 ~10N! [v ' [u+ Therefore,

[gFGLS 5 Q@ [s22y2
' y2 [g2SLS1 [s22N [s12 2 [s12N [s22 2 [s12

2 [s11
21y2

'Py1#

5 Q@ [s22y2
' y2 2 [s12

2 [s11
21y2

'Py2# [g2SLS

5 [g2SLS+

The conclusion holds for a general model with multiple included endog-
enous variables and predetermined variables in the structural equation; see Gao
and Lahiri~2000!+

REFERENCE

Gao, C+ & K + Lahiri ~2000! Further consequences of viewing LIML as an iterated Aitken estima-
tor+ Journal of Econometrics98, 187–202+
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00+2+2+ The Maximum Number of Omitted Variables—Solution, proposed by
Dmitri L + Danilov and Jan R+ Magnus+ If r 5 0, the result is simple and well
known+We assume thatr $ 1+ Let ~S: T ! be an orthogonalk2 3 k2 matrix such
that

X2
'X1 X1

'X2S5 SL, X1
'X2T 5 0,

where L denotes anr 3 r diagonal matrix with positive diagonal elements+
Notice that the dimensions ofS and T are k2 3 r and k2 3 ~k2 2 r !, respec-
tively+ BecauseX2

'X2 has full rankk2, we obtain

r ~X2T ! 5 r ~X2
'X2T ! 5 r ~T ! 5 k2 2 r,

so that then 3 ~k2 2 r ! matrix W2 [ X2T has full column rank+ Hence, we may
define the idempotent matrixM2 5 In 2 W2~W2

'W2!21W2
' +

Now, let W1 [ M2X2S, an n 3 r matrix+ Because

W1 5 M2 X2S5 X2S2 W2~W2
'W2!21W2

'X2S,

we obtainX1
'W1 5 X1

'X2S and, hence,

X2
'X1 X1

'W1 5 X2
'X1 X1

'X2S5 SL,

so thatr 5 r ~X2
'X1 X1

'W1! # r ~W1! # r and, hence, r ~W1! 5 r+
Next, let W [ ~W1 :W2!+ We already know thatr ~W1! 5 r and r ~W2! 5

k2 2 r+ BecauseM2W2 5 0, it follows that W1
'W2 5 0 and, hence, that r ~W! 5

r ~W1! 1 r ~W2! 5 r 1 k2 2 r 5 k2+
Finally, we observe that

M2 X2 5 X2 2 X2T~W2
'W2!21W2

'X2 5 X2 P

for some matrixP and, hence,

W 5 ~W1 :W2! 5 ~M2 X2S:X2T ! 5 ~X2 PS:X2T ! 5 X2Q

for somek2 3 k2 matrix Q+ Becauser ~W! 5 k2, Q is non-singular+
It is now easy to see thatW2 is orthogonal to bothW1 andX1+ Also, the space

spanned by thek2 columns ofW is identical to the space spanned by thek2

columns ofX2, so thatX2b2 5 Wd for some choice ofd ~namelyd 5 Q21b2!+
Hence, the estimator Zb1 obtained from a regression ofy on X1 andX2 will be
identical to the estimator obtained from a regression ofy on X1 andW1, andW1

only hasr columns+
When drawing inferences aboutb1, we assume thatu ; N~0,s2In!+ The es-

timator ofs2 will be biased upward if we deleteW2 from our regression, even
thoughW2 is orthogonal to bothX1 and W1, just as in the standard textbook
case+

PROBLEMS AND SOLUTIONS 485

https://doi.org/10.1017/S0266466601172105 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466601172105


00+2+3+ Effects of Transforming the Duration Variable in Accelerated Failure
Time (AFT) Models—Solution,1 proposed by S+K+ Sapra+

~a! ~i! y 5 kt: The moment generating function of lny is

Mln y~s! 5 Mln~kt!~s! 5 ksE~t s! 5 ksMln t ~s!+ (2)

Therefore, the cumulant generating function of lny is

Kln y~s! 5 s ln k 1 Kln t ~s!+ (3)

Equation~3! yields

Kln y
' ~s! 5 ln k 1 Kln t

' ~s!, (4)

and

Kln y
'' ~s! 5 Kln t

'' ~s!, (5)

where the primes denote the derivatives+ Therefore,

E~ ln y! 5 Kln y
' ~0! 5 ln k 1 Kln t

' ~0! 5 ln k 1 E~ ln t ! 5 ln k 1 b 'x, (6)

Var~ln r ! 5 Kln y
'' ~0! 5 Kln t

'' ~0! 5 Var~ln t ! 5 s2 ~constant!+ (7)

Hence, we may write

ln y 5 ln k 1 b 'x 1 «, (8)

which is an AFT model because lny and « are homoskedastic, as seen in
equation~7!+

~ii ! y 5 t k: The derivation in part~i! can be easily modified for this case to show
that

E~ ln y! 5 Kln y
' ~0! 5 k~Kln t

' ~0!! 5 kE~ ln t ! 5 k~b 'x!, (9)

Var~ln y! 5 Kln y
'' ~0! 5 k2~Kln t

'' ~0!! 5 k2 Var~ln t! 5 k2s2 ~constant!+ (10)

Hence, we may write lny 5 k~b 'x! 1 k«, which is an AFT model because
ln y andk« are homoskedastic+

~b! ~i! y 5 a 1 bt: From equation~1! in the problem, we have

y 5 a 1 bt 5 a 1 b exp~b 'x 1 «!+ (12)

Therefore, we may write

ln y 5 ln~a 1 b exp~b 'x 1 «!!

5 ln~b exp~b 'x 1 «!$11 a0b exp~2~b 'x 1 3!!%!, (13)

or

ln y 5 ln b 1 b 'x 1 «*, (14)

486 PROBLEMS AND SOLUTIONS

https://doi.org/10.1017/S0266466601172105 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466601172105


where «* 5 « 1 ln~1 1 a0b exp~2~b 'x 1 «!!! is heteroskedastic because
Var~«*! depends onb 'x+

Hence, it follows that ~14! is not an AFT model+
~ii ! y 5 exp~a 1 bt!: From ~1! of the problem, we have

ln y 5 a 1 «*, (15)

where«* 5 b exp~b 'x 1 «! is heteroskedastic because Var~«*! depends on
b 'x+ Hence, it follows that ~15! is not an AFT model+

~c! Without loss of generality, assume thatE~ ln t0! 5 0 ~ for E~ ln t0! 5 a Þ 0, simply
replace exp~2b 'x! with exp~a 2 b 'x! below!+ Then the hazard function of the
density function oft is

lx~t ! 5 exp~2b 'x!l0~t exp~2b 'x!!, (16)

wherel0 is the baseline hazard~hazard function of the density function oft0!+
For the density function ofy 5 f~t !, wheref is a differentiable function oft,

the hazard function of the density function ofy is given by

lx~ y! 5 ~dy0dt!21 exp~2b 'x!l0~exp~2b 'x! f 21~ y!!+ (17)

Therefore, substituting fordy0dt andf 21~ y! for each definition ofy into equation
~17!, we have

1+ y 5 kt: lx~ y! 5 k21 exp~2b 'x!l0~ yk21 exp~2b 'x!!, (18)

2+ y 5 t k: lx~ y! 5 k21y~12k!0k exp~2b 'x!l0~ y10k exp~2b 'x!!, (19)

3+ y 5 a 1 bt: lx~ y! 5 b21 exp~2b 'x!l0~b21~ y 2 a!exp~2b 'x!!, (20)

4+ y 5 exp~a 1 bt!:

lx~ y! 5 ~by!21 exp~2b 'x!l0~b21~ ln y 2 a!exp~2b 'x!!+ (21)

NOTE

1+ A solution has been proposed independently by Walter Distaso and Steve Lawford+

REFERENCE

Kalbfleisch, J+D+ & R+L+ Prentice~1980! The Statistical Analysis of Failure Time Data.New York:
John Wiley & Sons+

00+2+4+ Conflict among Criteria for Testing Hypotheses: Examples from Non-
Normal Distributions—Solution,1 proposed by N+K+ Dastoor+ By considering a
scalar parameter case of the univariate exponential family of distributions, this
solution provides a theorem and corollary that not only contain as special cases
the results for the distributions specified in the problem but also provide other
simple examples+ Let X be a continuous~or discrete! random variable with sup-
port S # R and probability density function~or probability function! f ~x,u!,
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whereu [ V # R and the parameter spaceV is an open interval+ For u [ V,
let f ~x,u! denote the exponential family

f ~x,u! 5 exp$a~u! 1 b~x! 1 c~u!d~x!% for x [ S, (1)

wherea~u!, b~x!, c~u!, andd~x! are scalar functions, a~u! andc~u! are~non-
constant! twice continuously differentiable onV, the first derivative ofc~u!,
c'~u!, is finite and positive for allu [ V, andu [ E @d~X !# + This definition of
u is convenient for showing the results stated in the problem and is the mean-
value parametrization of the exponential family~see Lehmann and Casella, 1998,
equation~5+17!, p+ 116; LC!+ If d~x! 5 x, then~1! reduces to the scalar param-
eter case of the linear exponential family as defined by Gourieroux, Monfort,
and Trognon~1984, Definition 1, p+ 683; GMT!+ The usual regularity condi-
tions are assumed to hold so that, in particular, Sdoes not depend onu+ By not-
ing thatu 5 E @d~X !# , if X is a continuous~or discrete! random variable, then
differentiating ~with respect to u! the identity *x[S f ~x, u! dx 5 1 ~or

(x[S f ~x,u! 5 1! yields

a'~u! 5 2uc'~u!; (2)

see GMT~Property 1, p+ 683! and LC~Problem 5+6~a!, p+ 66!+
Given a random samplex1, x2, + + + , xn, the log-likelihood function is

L~u! 5 n$a~u! 1 Nb 1 Ndc~u!%,

where Nb 5 ~10n!(t51
n b~xt ! and Nd 5 ~10n!(t51

n d~xt !+ Using~2!, the score func-
tion s~u! [ L'~u! 5 n$a'~u! 1 Ndc'~u!% can be written as

s~u! 5 n~ Nd 2 u!c'~u!+ (3)

Becauses'~u! 5 n$~ Nd 2 u!c''~u! 2 c'~u!% andE @d~X !# 5 u, the information
matrix I ~u! [ 2E @s'~u!# simplifies to

I ~u! 5 nc'~u!+ (4)

For a given sample, it is now assumed thatNd [ V, which ensures the existence
of the unrestricted maximum likelihood estimate~MLE ! of u; i+e+, becauseV is
an open interval andc'~u! is finite and positive for allu [ V, ~3! shows that, if
Nd [ V, then s~u! v 0 for u b Nd, so the MLE ofu is Nd as L~u! has a global

maximum atu 5 Nd+
To test the null hypothesisH0: u 5 u0 against the alternativeH1: u Þ u0,

whereu0 [ V, the Wald and Lagrange multiplier statistics are given by Buse
~1982, equations~3! and ~6!, pp+ 154–155! as W 5 ~ Zu 2 u0!2I ~ Zu! andLM 5
s~u0!20I ~u0!, respectively, where Zu is the unrestricted MLE ofu+ Using ~3!, ~4!,
and Zu 5 Nd, these test statistics can then be written as

W 5 n~ Nd 2 u0!2c'~ Nd! and LM 5 n~ Nd 2 u0!2c'~u0!, (5)
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which show that the relationship between them depends on the behavior ofc'~u!+
Now let g~u! 5 10c'~u!; then, by differentiatingu 5 E @d~X !# with respect tou
and using~2!, it is easily seen thatg~u! 5 V @d~X !#; see GMT~Property 3,
p+ 684! and LC~equation~5+18!, p+ 116!+

THEOREM+ Given the framework above,

W5
,

5

.
6 LM m g~ Nd! 5

.

5

,
6 g~u0!+

Proof. The test statistics in~5! with c'~u! 5 10g~u! yield

W2 LM 5
n~ Nd 2 u0!2 @g~u0! 2 g~ Nd!#

g~ Nd!g~u0!

from which the result follows as the denominator is finite and positive+ n

COROLLARY+ Given the framework above, if d(x)5 x and g~u! is a strictly
increasing function onV, then

W5
,

5

.
6 LM m Sx5

.

5

,
6 u0,

where Sx 5 ~10n!(t51
n xt +

Proof. If d~x! 5 x, then Nd 5 Sx and the result follows from the theorem and
the definition of a strictly increasing function+ n

Some members of~1! are considered below, whereR1 [ $ y6y . 0%; parts
~a!–~c! contain the distributions specified in the problem+ For each distribution
in parts~a!–~d! below, the forms ofV, f ~x,u!, andc~u! are conveniently pro-
vided in Table I of GMT~p+ 685!+

~a! Let X be a Poisson variate withV 5 R1, S5 $0% ø N, andf ~x,u! 5 ~10x!!e2uux+
Here, d~x! 5 x, c~u! 5 ln u andg~u! 5 u+ Becauseg~u! is a strictly increasing
function, the corollary provides the relationship betweenW andLM+ In particu-
lar, the corollary withu0 5 3 shows thatW $ LM iff 0 , Sx # 3 andW # LM iff
Sx $ 3, the result required in part~a! of the problem+ In this example, if every

observation in a sample is zero, then L~u! 5 2nu; therefore, ~as 0 Ó V! the
unrestricted MLE ofu does not exist+ Hence, it is customary to assume that
at least one observation is positive, which is equivalent to the assumption that
Nd [ V+

~b! Let X be a gamma variate with meanu, knowna . 0, V 5 S5 R1, andf ~x,u! 5
~10~G~a!!!~a0u!axa21e2ax0u+ Here, d~x! 5 x, c~u! 5 2~a0u! andg~u! 5 u20a+
For any knowna . 0, g~u! is a strictly increasing function onV, so the relation-
ship betweenW andLM is given by the corollary+ In this example, if a 5 1, then
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X is an exponential variate with meanu, so the corollary withu0 5 3 shows that
W $ LM iff 0 , Sx # 3 andW # LM iff Sx $ 3, the result required in part~b! of
the problem+

~c! Let X be a binomial variate with meanu, known N [ N, V 5 ~0,N!, S 5
$0,1,2, + + + ,N%, and

f ~x,u! 5 SN

xDS u

NDxS12
u

NDN2x

+

Here, d~x! 5 x, c~u! 5 ln~u0~N 2 u!! andg~u! 5 ~u~N 2 u!!0N+ For any known
N [ N, g~u! is an even function aroundu 5 N02 ~with a global maximum ofN04
at u 5 N02!, so now letu0 [ @N02,N!+ Then it is easily seen thatg~ Sx! . g~u0! iff
Sx [ ~N 2 u0,u0!, g~ Sx! 5 g~u0! iff Sx 5 N 2 u0, u0, and g~ Sx! , g~u0! iff Sx [

~0,N 2 u0! ø ~u0,N!; thus, the theorem with Nd 5 Sx shows that, for u0 [ @N02,N!,

W5
,

5

.
6 LM m Sx [ 5

~N 2 u0,u0!

$N 2 u0,u0%

~0,N 2 u0! ø ~u0,N!
6 + (6)

In ~6!, if u0 5 N02, then the first partition ofV, ~N 2 u0,u0!, is the empty set,
thus

u0 5
N

2
n W$ LM for all Sx [ V 5 ~0,N!, (7)

with the equality holding whenSx 5 N02+ In this example, if N 5 1, thenX is a
Bernoulli variate with meanu andV 5 ~0,1!+ SettingN 5 1 in ~7! shows that, if
u0 5 1

2
_ , thenW $ LM, the first result required in part~c! of the problem+ Setting

N 5 1 andu0 5 2
3
_ in ~6! givesW # LM iff 1

3
_ # Sx # 2

3
_ andW $ LM iff 0 , Sx # 1

3
_

or 2
3
_ # Sx , 1, the second result required in part~c! of the problem+ In this case,

whereX is a Bernoulli variate, if the parameter space is extended to the closed
interval @0,1# , then Sx is still the unrestricted MLE ofu; i+e+, if Sx 5 0 ~ Sx 5 1!, then
the likelihood function is strictly decreasing~increasing! on the closed interval,
so Zu 5 0 ~ Zu 5 1!+ However, as W 5 ~n~ Sx 2 u0!2!0~ Sx~1 2 Sx!! here, the Wald
statistic is not finite if Sx 5 0,1+ Therefore, the solution presented here excludes
Sx 5 0,1, whereas the problem~as stated! only excludes Sx 5 0+

~d! Let X be a negative binomial variate with meanu, known r . 0, V 5 R1, S5
$0% ø N, and f ~x,u! 5 ~~G~r 1 x!!0~G~r !G~x 1 1!!!~r0~r 1 u!! r ~u0~r 1 u!!x+
Here, d~x! 5 x, c~u! 5 ln~u0~r 1 u!! andg~u! 5 ~u~r 1 u!!0r+ For any known
r . 0, g~u! is a strictly increasing function onV, so the relationship betweenW
andLM is given by the corollary+ Note that, by settingr 5 1 in this example, the
corollary provides the relationship betweenW andLM whenX has a geometric
distribution with meanu+

~e! If X is a normal variate with meanu and known variances2 . 0, thenW5 LM,
as shown by Buse~1982, pp+ 155–156!+ Now let X be a normal variate with
variance u, known mean m [ R, V 5 R1, S 5 R, and f ~x, u! 5
~10!2pu!exp$2~102u!~x 2 m!2%+ In this case, d~x! 5 ~x 2 m!2, c~u! 5
2~102u!, andg~u! 5 2u2+ Using the fact thatg~u! is a strictly increasing func-
tion onV, the theorem shows thatW b LM iff Nd v u0+ This example shows that
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a non-normal distribution is not necessary for the well-known inequality
~W $ LM ! to be non-robust+

The definition ofu employed above was motivated by the need to show the
results stated in the problem+ However, it is important to note that the Wald
statistic depends on the definition ofu and on the specification of the null
hypothesis~see Dagenais and Dufour, 1991, p+ 1607!+ For example, the prob-
ability density function of an exponential variate is often written in the form
f ~x,u! 5 ue2ux with V 5 S5 R1, in which case, E @X # 5 10u+ By using this
version of the probability density function to test the null hypothesis specified
asH0: u 5 u0, it can be shown thatW 5 LM 5 n~1 2 Sxu0!2, a result different
than that stated in part~b! of the problem+

NOTE

1+ Five excellent solutions have been proposed independently by~in alphabetical order!: Badi
H+ Baltagi ~the poser of the problem!, Walter Distaso and Steve Lawford, Francisco J+ Goerlich,
Yulia Kotlyarova, and Diego Lubian+ Francisco J+ Goerlich noted that example~c! was solved by
Godfrey~1988, Sect+ 2+6, pp+ 59–60!+
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