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PROBLEMS AND SOLUTIONS

PROBLEMS

012.1. A Determinantal Inequalityproposed by Heinz NeudeckeCon-
sider a positive definite matriA and its diagonal submatriRg. Show then
that |A| = |Aq4| without using induction

REFERENCE

Anderson T.W. (1958 An Introduction to Multivariate Statistical Analysislew York: John Wiley
& Sons

01.2.2. The R/S Statistics as a Unit Root Tgstoposed by Giuseppe Cava-
liere. Given a time serie$X}i—o,....1, consider therescaled range statistics
(see Hurst1951; and the recent generalization by,L1991) computed on the
differenced procesa X;:

R/S= /A\T]\.[T< max > (AX; — 4)— min 2 (AX; — ﬁ))

t=1,..., Ti=1 t=1,..., Ti=1

.
AX, = X = X, £ =TI AX =T 71Xy — Xo),

t=1
whereAZ is a kernel HAC estimator of the long-run varianceadf,. Show that
R/S can be used to test the null hypothesis

t
Ho: X~ 1(1), X :=Xo+ ut + S,5:= D u;, | Xo| < o as.
i=1

(a) by deriving the asymptotic distribution &¥/S underHy and by showing that a
right tail test based oR/Sis consistent against

(b) 1(2) alternaties i.e, X; = Xo + ut + 2i_; Zj_, u;

(c) 1(1) with trend breaksi.e, X; = Xo + ut + (mo — w)I(t > [aT]) + >i_,u;,
a € (0,1) under the assumption théty} is strong mixing(see Hansgn1992
Condition V1) and thatAZ has kernel functiork( ) satisfying Assumption 1 of
de Jong(2000 and truncation lagy = cT?, y < 3 — 1/r.

REFERENCES

de JongR.M. (2000 A strong consistency proof for heteroskedasticity and autocorrelation consis-
tent covariance matrix estimatotsconometric Theory6, 262—-268

Hansen B.E. (1992 Consistent covariance matrix estimation for dependent heterogeneous pro-
cessesEconometricab0, 967-972

Hurst H. (1951 Long-term storage capacity of reservoifsansactions of the American Society of
Civil Engineers116 770-799

Lo, A.W. (1991) Long-term memory in stock market pricdsconometriceb9, 1279-1313
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SOLUTIONS

00.2.1. Degeneration of Feasible GLS to 2SLS in a Limited-Information
Simultaneous Equation ModeBelution proposed by Chuanming Gao and
Kajal Lahiri. The limited-information simultaneous equations model may be
written as a SUR model

R MEH

Based on a consistent

o | %11 012
012 022

feasible GLS is carried out as

(G )G TG )Gl

Substituting in

o 1 O 07
Sl ————
A A /\2 _A A
011022 — 012 012 011

and using partitioned inversipwe have
YroLs = Qld22Y2Y1 — G12Y2Y2 — 612011 Y3 PY1 + G12Y5PYs ]
= Q[G22Y5Y1 — F12Y2My, — 615611 Y2 Pyil,
whereQ ™" = 6,,Y5Y, — 65261 Y5 PY,.

Finally, noting thatQ = y; — ¥25.5Y», 0 = My,, we haved,, = (1/N)d'D =
(I/N)Y;MY,, Y2¥1 = Y5Y> V2515 T NG12, whered, = (1/N)o’0. Therefore

Vrors = Ql022Y2Y2Vosis T 022NG1, — 615NG 2 — 35011 Y5 Py ]
= Q[G22Y2Y> — 05611 Y5PYo 12515

= Yosis

The conclusion holds for a general model with multiple included endog-
enous variables and predetermined variables in the structural equsg®@Gao
and Lahiri(2000.

REFERENCE

Gagqg C. & K. Lahiri (2000 Further consequences of viewing LIML as an iterated Aitken estima-
tor. Journal of Econometric88, 187—-202
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00.2.2. The Maximum Number of Omitted VariableSelution proposed by
Dmitri L. Danilov and Jan RMagnus If r = 0, the result is simple and well
known We assume that= 1. Let (S: T) be an orthogonat, X k, matrix such
that

X4X, X[ X, S=SA,  X{X,T=0,

where A denotes arr X r diagonal matrix with positive diagonal elements
Notice that the dimensions & and T arek, X r andk, X (k, — r), respec-
tively. BecauseX; X, has full rankk,, we obtain

FXT) =r(XoX,T)=r(T) =k, —r,

so that then X (k, — r) matrix W, = X2T has full column rankHence we may
define the idempotent matrid, = 1, — W, (W5 W5,) "W,
Now, let W, = M, X,S ann X r matrlx Because

Wy = M, X, S= X, S— Wo(Wo Wo) MW X, S
we obtainX;W; = X;X,Sand hence
XX X1 W, = X5 X, X1 X,S= SA,

so thatr = r(X;X; X{W;) = r(Wy) =r and hencer(W,) =r.

Next let W = (W;:W,). We already know that(W;) = r andr(W,) =
k, — r. BecauseM,W, = 0, it follows that W, W, = 0 and hence thatr (W) =
rWy) +r(We) =1+ ky, —r =Kk

Finally, we observe that

My X, = X, — X, T(Ws Wa) "W X, = X, P
for some matrixP and hence
W: (W]_:WZ):(M2X28:X2T):(X2PS: X2T):X2Q

for somek, X k, matrix Q. Becausea (W) = k,, Q is non-singular

It is now easy to see th&t, is orthogonal to botW, andX;. Also, the space
spanned by thé, columns of W is identical to the space spanned by the
columns ofX,, so thatX,3, = W5 for some choice 06 (namelys = Q7 18,).
Hence the estimatoi3; obtained from a regression gfon X; and X, will be
identical to the estimator obtained from a regression of X; andW,;, andW,
only hasr columns

When drawing inferences abogt, we assume that ~ N(0, o ?l,,). The es-
timator of o2 will be biased upward if we deletd, from our regressigreven
thoughW; is orthogonal to both; and W, just as in the standard textbook
case
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00.2.3. Effects of Transforming the Duration Variable in Accelerated Failure
Time (AFT) Models—Solutighproposed by ¥. Sapra

(@ (i) y= kt: The moment generating function ofyris
Miny(S) = Minge (S) = KSE(1%) = KM ((S). (2)
Therefore the cumulant generating function of yris
Kiny(s) = sink + Kj,4(s). 3)

Equation(3) yields

Kiny(s) = Ink + Ky ((s), (4)
and
Kiny(8) = Kin((s), ()

where the primes denote the derivativ€kerefore
E(Iny) = K5, (0) =Ink+ Kj,(0) =Ink+ E(Int) = Ink + B'X, (6)
Var(Inr) = Kj7(0) = K5 (0) = Var(Int) = o2 (constank (7
Hence we may write
Iny =Ink+ B'x+ &, (8)
which is an AFT model because ynand ¢ are homoskedasti@as seen in
equation(7).

(i) y = t*: The derivation in parti) can be easily modified for this case to show
that
E(Iny) = Kihy(0) = k(Kpr(0) = KE(In t) = k(BX), (9)
Var(Iny) = Ki;,(0) = k?(Kj1(0)) = k? Var(Int) = k¢ (constant.  (10)

Hence we may write Iny = k(B'x) + ke, which is an AFT model because
Iny andke are homoskedastic
(b) (i) y=a+ bt: From equatior(1) in the problemwe have

y=a+bt=a+bexp(8'x+ g). (12)
Therefore we may write
Iny =In(a+ bexp(B'x+ ¢))

= In(bexp(B'x + &){1 + a/bexp(—(B8'x + 3))}), (13)

or

Iny=Inb+ B'x+ ¢ (14)
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wheree* = ¢ + In(1 + a/bexp(—(B'x + ¢))) is heteroskedastic because
Var(e*) depends orB’x.
Hence it follows that(14) is not an AFT model
(i) y = exp(a + bt): From (1) of the problemwe have

Iny=a+¢" (15)

wheree* = bexp(B'x + ¢) is heteroskedastic because W) depends on
B'x. Hence it follows that (15) is not an AFT model
(c) Without loss of generalityassume thaE(Intg) = 0 (for E(Intp) = a # 0, simply
replace exp—B'x) with exp(a — B'x) below). Then the hazard function of the
density function oft is

Ax(t) = exp(=B'X) Ao(texp(—B'X)), (16)

where g is the baseline hazardazard function of the density function ).
For the density function of = f(t), wheref is a differentiable function of,
the hazard function of the density functionyfs given by

Ax(y) = (dy/dt)~* exp(—=B"X) Ao(exp(—=B"X) T ~1(y)). 17)

Therefore substituting fordy/dt andf ~1(y) for each definition ofy into equation
(17), we have

1 y = kt: A, (y) = k™t exp(—=B'X) Ao( Yk * exp(—B'X)), (18)
2 y =t A (y) = kYK exp(=B'X) Aoy exp(—B'X)), 19)
3. y=a+ bt: A, (y) = b exp(—8'X) Ao(b~(y — a)exp(—B'x)), (20)
4 y = exp(a + bt):
A(y) = (by) ™ exp(=B'X) Ao(b~*(Iny — a)exp(—B'x)). (21)
NOTE

1. A solution has been proposed independently by Walter Distaso and Steve Lawford

REFERENCE

Kalbfleisch dD. & R.L. Prentice(1980 The Statistical Analysis of Failure Time Datdew York:
John Wiley & Sons

00.2.4. Conflict among Criteria for Testing Hypotheses: Examples from Non-
Normal Distributions—Solution® proposed by NK. Dastoor By considering a
scalar parameter case of the univariate exponential family of distributiloiss
solution provides a theorem and corollary that not only contain as special cases
the results for the distributions specified in the problem but also provide other
simple exampled_et X be a continuousgor discret¢ random variable with sup-
port S C R and probability density functioor probability function f(x,6),
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whered € QO C R and the parameter spaceis an open intervalFor § € Q,
let f(x,0) denote the exponential family

f(x,0) = exp{a(d) + b(x) + c(§)d(x)} forxe § Q)

wherea(0), b(x), c(0), andd(x) are scalar functionsa(#) andc(6) are(non-
constank twice continuously differentiable ofy, the first derivative ofc(6),
c’(0), is finite and positive for alp € Q, andd = E[d(X)]. This definition of

0 is convenient for showing the results stated in the problem and is the mean-
value parametrization of the exponential fange Lehmann and Casell®298
equation(5.17), p. 116, LC). If d(x) = X, then(1) reduces to the scalar param-
eter case of the linear exponential family as defined by Gourierblonfort,
and Trognon(1984 Definition 1, p. 683 GMT). The usual regularity condi-
tions are assumed to hold so thiatparticular Sdoes not depend oh By not-
ing thatd = E[d(X)], if X is a continuougor discret¢ random variablgthen
differentiating (with respect to#) the identity [,esf(Xx,0)dx = 1 (or

Sees f(x,0) =1) yields
a'(f) = —6c'(6); )

see GMT(Property 1p. 683 and LC(Problem 56(a), p. 66).
Given a random sampbe,, x,,..., X,,, the log-likelihood function is

L(8) = n{a(8) + b+ dc(6)},

whereb = (1/n) > ; b(x,) andd = (1/n) X{., d(x,). Using(2), the score func-
tion s(6) = L'(8) = n{a’(#) + dc'(6)} can be written as

s(6) = n(d—6)c’(6). (3)

Becauses'(8) = n{(d — )c”(9) — c¢'(6)} andE[d(X)] = 6, the information
matrix 1 (6) = —E[s'(#)] simplifies to

1(#) = nc'(9). (4)

For a given samplét is now assumed that € Q, which ensures the existence
of the unrestricted maximum likelihood estimatdLE) of 0; i.e., becausd) is
an open interval and'(0) is finite and positive for alb € Q, (3) shows thatif

d € O, thens(d) = 0 for # = d, so the MLE off is d asL(6) has a global
maximum atd = d.

To test the null hypothesibly: 6 = 6y against the alternativel;: 6 # 6,
wheref, € Q, the Wald and Lagrange multiplier statistics are given by Buse
(1982 equations(3) and (6), pp. 154—155 asW = (6 — 6,)2l (6) andLM =
s(60)%/1(6,), respectivelywhered is the unrestricted MLE of. Using (3), (4),
andd = d, these test statistics can then be written as

W=n(d—6y)%c’'(d) and LM =n(d— 6,)3c’'(6,), (5)
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which show that the relationship between them depends on the behaei¢f pf
Now letg(6) = 1/c’(6); then by differentiatingd = E[d(X)] with respect td
and using(2), it is easily seen thag(f) = V[d(X)]; see GMT(Property 3
p. 684) and LC(equation(5.18), p. 116).

THEOREM Given the framework above,

w LM < g(d) ) = ( 9(6o)-
<

Proof. The test statistics i5) with ¢’'(8) = 1/g(0) yield

n(d — 6,)2[9(6,) — g(d)]
g(d)g(6o)

from which the result follows as the denominator is finite and positive B

W-LM =

COROLLARY. Given the framework above, if d(¥)x and d#) is a strictly
increasing function on, then

>

LM & x{ = { 6,,
<

wW

wherex = (1/n) 21 %

Proof. If d(x) = x, thend = X and the result follows from the theorem and
the definition of a strictly increasing function u

Some members ofl) are considered belgwhereR* = {y|y > 0}; parts
(a)—(c) contain the distributions specified in the probldror each distribution
in parts(a)—(d) below the forms ofQ, f(x,6), andc(#) are conveniently pro-
vided in Table | of GMT(p. 685).

(a) Let X be a Poisson variate with = R", S= {0} U N, andf(x,0) = (1/x!)e ?6*
Here d(x) = x, ¢(8) = In9 andg(#) = 6. Becausey() is a strictly increasing
function, the corollary provides the relationship betwé&andLM. In particu-
lar, the corollary withfy = 3 shows thaiWW= LM iff 0 < X = 3 andW = LM iff
%X = 3, the result required in par@) of the problem In this exampleif every
observation in a sample is zerthenL(6) = —né; therefore (as 0& Q) the
unrestricted MLE ofé does not existHence it is customary to assume that
at least one observation is positjiwghich is equivalent to the assumption that
de Q.

(b) Let X be a gamma variate with me@nknowna > 0, Q = S= R™, andf(x,0) =
(1/(T(@))(a/6)“x«" e~/ Herg d(X) = X, c() = —(a/0) andg(f) = 6%a.
For any knowrnx > 0, g(6) is a strictly increasing function o, so the relation-
ship betweerW andLM is given by the corollaryin this exampleif « = 1, then
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X'is an exponential variate with me@nso the corollary withgy = 3 shows that
W= LM iff 0 < x= 3 andW = LM iff x = 3, the result required in pacb) of
the problem

(c) Let X be a binomial variate with mea#é, known N € N, Q = (O,N), S=
{0,1,2,...,N}, and

- ()-8

Herg d(x) = x, c(8) = In(6/(N — 6)) andg(#) = (#(N — 6#))/N. For any known
N € N, g(0) is an even function aroungl= N/2 (with a global maximum ofN/4
atf = N/2), so now letdy € [N/2,N). Then it is easily seen thagi(x) > g(6,) iff
X € (N — 6p,6p), g(X) = g(bp) iff x =N — 6, 6, and g(X) < g(bp) iff X €
(0,N — 6p) U (6o, N); thus the theorem wittd = x shows thatfor 6, € [N/2, N),

< (N — 65, 6)
WY =(LM o xE {N — 6,00} : (6)
> (Oa N — 00) U (00’ N)
In (6), if 6o = N/2, then the first partition of2, (N — 6o, 6), is the empty set
thus
N
00=E:>Wz LM forallx € Q= (0,N), (7)

with the equality holding whe = N/2. In this exampleif N = 1, thenX is a
Bernoulli variate with mea andQ = (0,1). SettingN = 1 in (7) shows thatif
6y = 3, thenW = LM, the first result required in part) of the problem Setting
N=1andf,= 3in (6) givesW=LM iff s =x=3ZandW=LMiff0 <x=3
or 3 = x < 1, the second result required in pac of the problemIn this case
whereX is a Bernoulli variatgif the parameter space is extended to the closed
interval[0,1], thenx is still the unrestricted MLE o#b; i.e., if x= 0 (x = 1), then
the likelihood function is strictly decreasin@ncreasing on the closed interval
sof = 0 (A = 1). However asW = (n(X — 60)2)/(X(1 — %)) here the Wald
statistic is not finite ifx = 0,1. Therefore the solution presented here excludes
x = 0,1, whereas the problertas stateglonly excludesk = 0.

(d) Let X be a negative binomial variate with meénknownr > 0, Q = R*, S=
{0} U N, andf(x,0) = (I'(r + x))/(C(r)L(x + 1)) (r/(r + 6))"(6/(r + 0))*
Here d(x) = x, ¢(8) = In(6/(r + #)) andg(6) = (8(r + 6))/r. For any known
r > 0, g(6) is a strictly increasing function of, so the relationship betwea
andLM is given by the corollaryNote thaf by settingr = 1 in this examplethe
corollary provides the relationship betwedhandLM when X has a geometric
distribution with mearg.

(e) If Xis a normal variate with meathand known variance-? > 0, thenW = LM,
as shown by Bus€1982 pp. 155-156. Now let X be a normal variate with
variance #, known meany € R, QO = RY, S = R, and f(x,0) =
(1/N2m0)exp{—(1/26)(x — w)?}. In this case d(x) = (x — w)? c(0) =
—(1/20), andg(#) = 262 Using the fact thagy(6) is a strictly increasing func-
tion onQ, the theorem shows th&¥ = LM iff d = 6,. This example shows that
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a non-normal distribution is not necessary for the well-known inequality
(W= LM) to be non-robust

The definition ofd employed above was motivated by the need to show the
results stated in the problerflowever it is important to note that the Wald
statistic depends on the definition éfand on the specification of the null
hypothesigsee Dagenais and Dufqur991 p. 1607). For examplethe prob-
ability density function of an exponential variate is often written in the form
f(x,0) = e~ with O = S= R", in which case E[X] = 1/6. By using this
version of the probability density function to test the null hypothesis specified
asHo: 0 = 6,, it can be shown thatV = LM = n(1 — X6,)? a result different
than that stated in pafb) of the problem

NOTE

1. Five excellent solutions have been proposed independent(jntsiphabetical order Badi
H. Baltagi (the poser of the problemWalter Distaso and Steve Lawfqréfrancisco JGoerlich
Yulia Kotlyarova and Diego LubianFrancisco JGoerlich noted that example) was solved by
Godfrey (1988 Sect 2.6, pp. 59—-60.
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