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Modelling the thermal behaviour of gas bubbles
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In most cases, the dominant mechanism of energy dissipation for a bubble in volume
oscillations is the thermal energy exchanged with the liquid. The process is subtle and its
precise description a matter of some complexity. These features have prevented its ready
incorporation in many applications, which forcedly have to rely on the rather inaccurate
polytropic pressure–volume relation. This paper develops two approximate models of the
thermal interaction, formulated in terms of ordinary differential equations, which can be
readily added to standard Rayleigh–Plesset-type formulations at a modest computational
cost.
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1. Introduction

With their large number of applications in natural phenomena, technology and medicine,
gas bubbles in liquids have been the object of a voluminous literature. In spite of their
apparent simplicity, these minute entities present unexpectedly complex features that are
not easily incorporated into models. In particular, the dynamic response of gas bubbles
to variations of the ambient pressure depends on the gas pressure in the bubble, which,
in its turn, is critically dependent on the gas temperature. In addition to its effect on
the gas pressure, the liquid–gas energy exchange is also the dominant mechanism for
the conversion of compression work into heat, thereby determining the dissipation of
mechanical energy.

These processes are well understood in the linear approximation (see e.g. Devin 1959;
Plesset & Prosperetti 1977). In the more interesting nonlinear case, however, while a
reasonable theory has been available for some time (see e.g. Prosperetti 1991), it has
not been possible so far to simplify it to the point of making it widely usable without
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a relatively large investment of effort. For this reason, nearly universal use is made in the
literature of the polytropic model, in which the gas pressure p is approximated in terms of
the bubble volume V as

pVκ = p0Vκ
0 , (1.1)

with κ a polytropic index and the subscript 0 denoting equilibrium values; in particular,
V0 = 4

3πR3
0 with R0 the equilibrium radius. While this model may represent the real

behaviour of the gas pressure in restricted conditions and parameter ranges, it can be
used with confidence only within the narrow boundaries of small-amplitude motion
with a well-defined frequency and, furthermore, it completely misses the thermal
dissipative effects. Another important deficiency is the inability to reliably predict the
bubble temperature, thus limiting its usefulness in applications such as sonochemistry.
Furthermore, the stability of the bubble and, ultimately, its integrity depend on the
radial acceleration, which rests on the correct prediction of the internal pressure. A more
sophisticated model was developed by Toegel, Hilgenfeldt & Lohse (2002) in terms of
the average temperature in the bubble. While this model gives a better agreement with
the detailed theory (Stricker, Prosperetti & Lohse 2011), it provides no information on the
temperature distribution in the bubble, which can be strongly non-uniform.

It is the purpose of this paper to present a simplified version of the theory mentioned
before, which, in spite of some limitations, accurately reproduces the correct gas pressure
and temperature in a useful range of conditions and parameters. Crucially, this approximate
theory is cast in the form of ordinary differential equations, which therefore do not add
much of an overhead to the modelling. The simplified theory is compared with a full
Navier–Stokes solution of the thermo-fluid dynamics of the gas bubble to demonstrate its
accuracy and to identify its limitations.

Since the focus here is on the gas contained in the bubble (except in one case, see
figure 5), for the radial motion we use a simple incompressible Rayleigh–Plesset equation,
namely

RR̈ + 3
2

Ṙ2 = 1
ρl

[
p(t) − Pl(t) − 2σ

R
− 4μl

Ṙ
R

]
, (1.2)

with ρl and μl the liquid density and dynamic viscosity and σ the surface tension
coefficient. The instantaneous bubble radius is R = R(t), the gas pressure in the bubble
is p(t) and the time-dependent ambient pressure in the liquid is Pl(t); the overdot denotes
time differentiation.

2. Gas pressure and temperature in the homobaric approximation

A simple estimate based on the integration of the gas momentum equation shows that
the pressure difference between the bubble centre and its surface is of the order of

p(R(t), t) − p(0, t)
p̄

= O
(

R
λ

Ṙ
c
,

Ṙ2

c2

)
, (2.1)

with p̄ an average pressure, and λ and c representative values of the sound wavelength
and speed in the bubble. The smallness of the quantities on the right-hand side of this
estimate suggests that the spatial variation of p in the bubble can be neglected. As shown
in Prosperetti (1991), with the assumption of a perfect nature of the gas in the bubble, this
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observation leads to a differential equation for the gas pressure:

ṗ = 3
R

[(γ − 1)k[∂rT]r=R − γ pṘ], (2.2)

in which T is the absolute temperature, γ the ratio of the gas specific heats and k the
gas thermal conductivity. A second consequence is a differential equation for the gas
temperature, which, in terms of the scaled radial coordinate y = r/R(t), is

γ

γ − 1
p∂tT + 1

R2 (k∂yT − y[k∂yT]y=1)∂yT = Tṗ + T
R2y2 ∂y(ky2∂yT). (2.3)

The second group of terms on the left-hand side represents the convective contribution to
gas energy transport. This partial differential equation is not particularly difficult to solve
(see e.g. Kamath & Prosperetti 1989), but including this step in the modelling of complex
bubble phenomena is cumbersome and has not been frequently done.

In basing our simplified models on this formulation, we will keep Ts, the liquid
temperature at the bubble surface, constant. This step is not necessary, as one could couple
the energy equation in the liquid to our approximate model, but is in keeping with the aim
to develop a simplified theory. As for the accuracy of the approximation, a simple estimate
of the magnitude of the variation of Ts is given by (see e.g. Kamath & Prosperetti 1989)
(Ts − T∞)/(Tc − Ts) � √

kgcpgρg/(klcplρl), with T∞ the liquid temperature far from the
bubble, Tc the gas temperature at the centre of the bubble, cp the specific heat, and indices
g and l referring to gas and liquid, respectively. With typical values of the parameters
involved, we find that (Ts − T∞)/(Tc − Ts) ∼ 10−3, which justifies the approximation
(see also Stricker et al. 2011).

3. Simplified models

An important constraint to be satisfied in developing a simplified theory of thermal
processes in the interior of a bubble is conservation of the gas mass: unless mass is strictly
conserved, the bubble exhibits a spurious growth or shrinkage (Prosperetti 1991).

In the perfect-gas approximation, m0, the total mass of gas initially present in the bubble,
can be written as m0 = 4

3πR3
0p0/(RGT0/M), with RG the universal gas constant and M

the molecular mass of the gas. The invariance of this mass in the course of the bubble
motion requires the constancy of

m0 = 4π

∫ R(t)

0
r2ρ(r, t) dr = 4πR3p

RG/M

∫ 1

0

y2

T
dy, (3.1)

in which ρ is the gas density. It is not difficult to show that the time derivative of m0 as
expressed by this relation vanishes exactly if T satisfies the energy equation (2.3), which
suggests that this equation is a good starting point for the development of an approximate
model. We will use it to calculate the gas pressure from a suitable approximation to the
temperature distribution.
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After multiplication of the energy equation (2.3) by y2 and integration over the bubble
volume, a few simple steps lead to the result

γ

γ − 1
p

d
dt

〈T〉 = −3γ pṘ
R

〈T〉 + 3k
R2

[
[2Ts + (γ − 2)〈T〉][∂yT]y=1 − 2

∫ 1

0
y2(∂yT)2 dy

]
,

(3.2)

in which we have used (2.2) to express ṗ in the first term on the right-hand side and 〈T〉,
the volume-averaged gas temperature, is defined by

〈T〉 = 3
∫ 1

0
y2T dy. (3.3)

In the derivation we have neglected the temperature dependence of the gas thermal
conductivity, for which the value corresponding to the undisturbed liquid temperature
should be used, given its importance for the determination of the heat flux at the wall.

We developed two versions of the simplified model. In the first one the gas temperature
is approximated as a biquadratic function

T( y, t) = Tc(t) + A(t)y2 + B(t)y4, (3.4)

with Tc the centre temperature. Owing to the constancy of the bubble surface temperature,
it is necessary that Tc + A + B = Ts at each instant, so that the temperature in this model
has, in fact, two degrees of freedom. The simpler model is quadratic, and can be obtained
from the biquadratic one simply by taking B = 0 and dropping equation (3.6) below. This
particular ansatz for the temperature distribution is inspired by the nature of the solutions
of the energy equation in the limit of large thermal diffusivity derived in Prosperetti (1991).
In that work it is shown that the first correction to an isothermal gas is a quadratic term in y,
while the second correction contains terms proportional to y2 and y4. It is also interesting
to note that a simple quadratic polynomial happens to be an exact solution of the energy
equation (2.3). This solution is, however, of little interest because, for consistency of the
relations to which it leads, it requires that A = 0 so that the gas remains isothermal. We
have also experimented with a bicubic polynomial of the form T( y, t) = Tc + Cy3 + Dy6,
which has the advantage of simplifying the integration in (3.1) but otherwise performs
similarly to (3.4).

In the end we opted for the biquadratic form, as the numerical method used in
several earlier studies for a precise integration of the energy equation is based on an
expansion of the unknown temperature in a series of even Chebyshev polynomials, which
only contain even powers of y (see e.g. Kamath & Prosperetti 1989; Hao, Zhang &
Prosperetti 2017). Additional powers of y could be added to (3.4) with several options
for the equations necessary to determine the new coefficients. One possibility would
be a collocation method, in which the energy equation (2.3) is enforced at a suitable
number of collocation points 0 ≤ yj < 1. Indeed, one version of the Chebyshev expansion
method could be considered as an example of this approach. Another possibility would
be to use higher-order moments of the temperature distribution beyond (3.3) such as∫ 1

0 yn+2T( y, t) dy with n = 1, 2, . . .. These extensions would, however, render necessary
the evaluation of the integral in (3.1) by numerical, rather than analytical, means. Thus, as
long as a simple approximate model is acceptable, it seems that the use of the biquadratic
approximation recommends itself in terms of its simplicity and, as will be shown, its
reasonable accuracy.
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Modelling the thermal behaviour of gas bubbles

In order to determine one of the two degrees of freedom of the temperature distribution
(3.4), we use the integral form (3.2) of the energy equation, finding

γ p
γ − 1

d
dt

〈T〉 = −3γ pṘ
R

〈T〉+ 6k
R2

[
[2Ts+(γ − 2)〈T〉](A+2B) − 4

5
A2 − 16

9
B2 − 16

7
AB
]

,

(3.5)

with 〈T〉 = Tc + 3
5 A + 3

7 B. To determine the other degree of freedom, we use the
differential form of the energy equation evaluated at the bubble centre, which, after
eliminating ṗ by means of (2.2), is

γ

γ − 1
pṪc = 3Tc

R2 [2(γ − 1)k(A + 2B) − γ pRṘ] + 6kTcA
R2 . (3.6)

The pressure is calculated from the expression (3.1) for the gas mass. The calculation
of the integral of 1/T in (3.1) gives the following results, in all of which the expression
[tan−1

√
X]/

√
X should be interpreted as [tanh−1 √−X]/

√−X for X < 0:

(i) If h = A2 − 4TcB > 0, with 2f = A − √
h and 2g = A + √

h, we find∫ 1

0

y2

Tc + Ay2 + By4 dy = 1√
h

[√
g
B

tan−1

√
B
g

−
√

f
B

tan−1

√
B
f

]
. (3.7)

(ii) If h = A2 − 4TcB < 0, the result is∫ 1

0

y2

Tc + Ay2 + By4 dy = 1√−h

[
Γi log

(√
Tc + √

B +
√

2
√

BTc − A√
Ts

)
+ θΓr

]
,

(3.8)

in which the real and imaginary parts of the complex quantity Γ = Γr − iΓi are
given by

Γr =
√√√√1

2

(√
Tc

B
− A

2B

)
, Γi =

√√√√1
2

(√
Tc

B
+ A

2B

)
, (3.9a,b)

and the angle θ is found from
√

Ts cos θ = √
Tc − √

B,
√

Ts sin θ =
√

A + 2
√

TcB.
(iii) If B = 0 and A > 0,

∫ 1

0

y2

Tc + Ay2 + By4 dy = 1
A

[
1 −

√
Tc

A
tan−1

√
A
Tc

]
. (3.10)

(iv) If h = 0 and A > 0,∫ 1

0

y2

Tc + Ay2 + By4 dy = 1
2B

[(
B
Tc

)1/4

tan−1
(

B
Tc

)1/4

− 1
1 + √

Tc/B

]
, (3.11)

while, for A < 0,∫ 1

0

y2

Tc + Ay2 + By4 dy = − 1
2B

[(
B
Tc

)1/4

tanh−1
(

B
Tc

)1/4

+ 1
1 − √

Tc/B

]
.

(3.12)
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In order to ascertain the validity of the models, we compare their results with those of
a finite-volume-based numerical solution of the spherically symmetric balance equations
for the gas mass, momentum and total energy coupled with the Rayleigh–Plesset equation
(1.2) for the motion of the boundary. The bubble volume is discretized into N spherical
shells indexed by i = 1, 2, . . . , N, each one with volume Vi = 4

3πR3( y3
i+1/2 − y3

i−1/2)

bounded by surfaces of area Si+1/2 = 4πR2y2
i+1/2, with yi+1/2R denoting the surface

separating Vi from Vi+1; we define y1/2 = 0 and yN+1/2 = 1. The equations are discretized
by a finite-volume method. The discretized form of the equation of continuity, for example,
is

Ṁi = Fi−1/2 − Fi+1/2, (3.13)

with Mi = ρiVi the gas mass in the spherical shell. The fluxes are given by
Fi+1/2 = ρuw

i+1/2[ui+1/2 − yi+1/2Ṙ]Si+1/2, with the density ρuw
i+1/2 approximated with a

second-order-accurate upwind interpolation, which is found to be necessary for numerical
stability during the violent phases of the bubble motion. Subtraction of the interface
velocity yi+1/2Ṙ is necessary since the use of the variable y causes the interfaces to
move with the changing bubble radius. Use was made of 50 cells with refinement near
the interface; standard convergence studies proved that this resolution was adequate.

Summary of the approximate models: For the convenience of the reader, we summarize
here the equations that need to be solved for the present models, both of which rely on a
suitable form of the Rayleigh–Plesset equation (compressible or incompressible) to couple
the bubble radius with the internal gas pressure.

(a) For the biquadratic model, the two degrees of freedom of the gas temperature are
determined by integrating the two ordinary differential equations (3.5) and (3.6).
Any two of 〈T〉, Tc, A or B can be taken as the unknowns, noting the relations Tc +
A + B = Ts, with Ts the constant liquid temperature, and 〈T〉 = Tc + 3

5 A + 3
7 B. The

pressure is found from (3.1) in which the integral is to be evaluated according to one
of (3.7)–(3.12), whichever is appropriate.

(b) For the quadratic model, the gas temperature has only one degree of freedom that
can be determined by integrating (3.5) with B = 0 and A = Ts − Tc. The pressure is
found from (3.1) in which the value of the integral is given by (3.10).

4. Results

In illustrating the performance of the approximate models, we will study bubbles driven
into oscillation by a harmonically varying ambient pressure

Pl(t) = p∞ − pa sin ωt, (4.1)

with p∞ the static pressure, taken as 100 kPa, and pa the acoustic pressure amplitude
oscillating at the angular frequency ω. Since the focus of this work is on the bubble
interior, we will not vary the physical properties of the liquid, just using those of water
at Ts = 20 ◦C with ρl = 998 kg m−3, σ = 0.0725 J m−2 and μl = 10−3 Pa s. For the gas
we use the properties of air at the same temperature with k = 0.0259 W m−1 K−1.
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Modelling the thermal behaviour of gas bubbles

R0 (μm) ν0 (kHz) κ

500 6.41 1.35
100 31.38 1.28

10 299.7 1.07
1 3874.1 1.00

TABLE 1. Equilibrium bubble radius R0, linear resonance frequency ν0 and linear polytropic
index κ for the bubble radii considered in this work.

Frequency

A
m

pl
itu

de

FIGURE 1. Illustrating the general features of a resonance peak for a nonlinear softening
oscillator such as a gas bubble; the dashed lines show unstable points.

A good way to gain a quick overall impression of the models’ performance is a
consideration of graphs of the normalized maximum oscillation amplitude,

R∗
M = Rmax − R0

R0
, (4.2)

with Rmax the maximum radius attained in the course of a steady oscillation, versus the
ratio ν/ν0 with ν = ω/2π and ν0 the natural frequency for linear oscillations of the bubble.
The values of ν0 for the bubble radii that we consider are given in table 1 together with the
linear-theory polytropic index.

The general appearance of graphs of R∗
M versus frequency, introduced by Lauterborn

(1976), is well known. Resonance peaks appear in the neighbourhood of ν/ν0 equal to the
ratio of two small integers corresponding to harmonic, subharmonic and ultra-harmonic
resonances. Since the bubble is a ‘softening’ oscillator, the frequency resulting in the
largest oscillation amplitude decreases with increasing amplitude and, as a consequence,
the resonance peaks bend to the left unlike the case of a linear oscillator. This feature
results in frequency ranges in which the steady oscillation amplitude has two stable values,
located on the solid portion of the lines sketched in figure 1, and one unstable value located
on the dashed portion of the line. Which steady state will ultimately be attained in any
specific case depends on the fact that the space of initial conditions is divided into two
domains of attraction, one for each stable steady state.

In the present study, all the simulations were started from equilibrium. In the direction
of increasing frequency, we found that the oscillation amplitude gradually increased
following the lower rising branch of the resonant peak of figure 1. This behaviour indicates
that the state of equilibrium belongs to the domain of attraction of the lower stable steady
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state. When the point of vertical tangency of the curve R∗
M versus ν/ν0 was reached, the

steady oscillation amplitude abruptly jumped to the other larger branch of the resonant
peak, as shown by the upward (blue) arrow in figure 1. As the frequency increased further,
the amplitude decreased following this descending branch until the next resonance was
approached and a similar behaviour repeated itself. Realizing the jump indicated by the
downward (red) arrow of figure 1 would require initial conditions placed in the domain of
attraction of the larger stable steady state.

Figure 2 shows R∗
M versus ν/ν0 for different bubble radii. The left and right panels show

results obtained with the biquadratic and quadratic temperature distributions, respectively.
Panels (a) and (e) are for bubbles with R0 = 1 μm with pa/p∞ = 1.6; panels (b) and ( f )
for R0 = 10 μm with pa/p∞ = 0.8; panels (c) and (g) for R0 = 100 μm with pa/p∞ =
0.5; and panels (d) and (h) for R0 = 500 μm with pa/p∞ = 0.5. The red dots connected by
red lines are the Navier–Stokes results, while the blue symbols are from the approximate
models.

Starting from the results for R0 = 1 μm in the first row of figure 2, we see that
both models capture the bubble behaviour very well. As indicated by the value of the
linear polytropic index in table 1, such small bubbles are very nearly isothermal and
the temperature field is well approximated by both models. The situation is similar for
R0 = 10 μm in the second row. In panel ( f ), the isolated point near the peak of the
first harmonic corresponds to an ultra-harmonic oscillation of order 6/3. Recovering the
harmonic Navier–Stokes solution 2/1 required changing the initial phase of the driving
pressure. The quadratic model is unable to reproduce the subharmonic peak near ν/ν0 = 2.

The third row of figure 2, panels (c) and (g), shows results for R0 = 100 μm with
pa/p∞ = 0.5. In the region of the main resonance, the biquadratic model appears to
behave slightly better than the simpler quadratic one. However, neither model is able to
follow the peak all the way to the amplitude of the Navier–Stokes simulation. Unlike the
biquadratic model, the quadratic model is able to reproduce the subharmonic peak, but it
proves distinctly less accurate below ν/ν0 � 0.5. The biquadratic model does, however,
reproduce the subharmonic peak if the driving is increased from pa/p∞ = 0.5 to 0.7 as
shown later in figure 6.

The fourth row of figure 2, panels (d) and (h), shows results for R0 = 500 μm with
pa/p∞ = 0.5. Here we see a large gap in the region of the main resonance where even
the Navier–Stokes solution fails to reach a steady state. At sufficiently large acoustic
pressures, bubble oscillations can become chaotic (see e.g. Lauterborn & Kurz 2010),
a tendency that increases with the bubble radius and which is possibly the cause of
these gaps. The sensitive dependence of chaotic oscillations on model details rules out a
meaningful comparison of the Navier–Stokes solution with the approximate models. Aside
from the main resonance, the biquadratic model performs reasonably well and proves
clearly superior to the quadratic one.

While the graphs of R∗
M versus frequency help to convey an overall picture of the

model performance, they do not give any information on the precise waveform R(t) of
the oscillation versus time. Figure 3 shows a number of examples of this type for R0 = 10,
100 and 500 μm in the first, second and third rows, respectively, all for the same pressure
amplitudes as in figure 2. The solid lines are the Navier–Stokes solutions and the dashed
lines the biquadratic model predictions. The examples shown have been chosen to be close
to the peaks of the response curves in figure 2 and therefore illustrate, in some sense, the
model performance in relatively difficult cases. Hardly any difference between the two sets
of results can be seen for the 10 μm bubble and the first three examples of the 100 μm
bubble. The last example for this case is for a frequency in the subharmonic region that the
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0.4 0.8
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1.6 3.20.2

0.5

1.0

0
0.4 0.8 1.6 3.20.2

0.5

1.0
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0.4 0.8 1.6 3.20.2
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1.0
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1.5

0

0

1.0

2.0

0

0.4 0.8 1.6 3.20.2

0.4 0.8 1.6 3.20.2 0.4 0.8 1.6 3.20.2

1.0

2.0

0

1.0

2.0

0
0.4 0.8 1.6 3.20.2 0.4 0.8 1.6 3.20.2

0

R*M

R*M

R*M

R*M

(a) (e)

(b) ( f )

(c) (g)

(d ) (h)

FIGURE 2. Normalized maximum radius R∗
M (4.2) for steady oscillations versus sound

frequency ν normalized by the bubble natural frequency ν0. Red lines and points are
Navier–Stokes simulations; blue symbols are approximate models, biquadratic in the left column
and quadratic in the right column. Equilibrium radius R0 = 1 μm and normalized acoustic
pressure amplitude pa/p∞ = 1.6 in (a) and (e), R0 = 10 μm and pa/p∞ = 0.8 in (b) and
( f ), R0 = 100 μm and pa/p∞ = 0.5 in (c) and (g), and R0 = 500 μm and pa/p∞ = 0.5 in (d)
and (h).

approximate model cannot reproduce, and the difference with the Navier–Stokes solution
is quite large. Differences between the Navier–Stokes and approximate models are more
evident for the largest bubble (last row) but are modest.

Going deeper into the model performance, we show in figure 4 the gas temperature
distribution corresponding to the instants marked by circles in some of the panels of the
last two rows of figure 3. We focus on the relatively more demanding cases of R0 = 100
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FIGURE 3. Several examples of steady radius–time curves comparing the Navier–Stokes
solution (solid lines) with the biquadratic model prediction (dashed lines). The four panels in the
first row are for R0 = 10 μm, pa/p∞ = 0.8 with ν/ν0 = 0.29, 0.41, 0.72 and 1.96, respectively;
in the second row for R0 = 100 μm, pa/p∞ = 0.5 with ν/ν0 = 0.312, 0.435, 0.90 and 1.95,
respectively; and in the last for R0 = 500 μm, pa/p∞ = 0.5 with ν/ν0 = 0.305, 0.47, 1.2 and
0.237, respectively.

(first two rows) and 500 μm, because, for smaller bubbles, very little difference is found.
The solid lines (black) are the Navier–Stokes result, the dashed lines (red) the biquadratic
model and the dash-dotted lines (blue) the adiabatic temperature at the same value of
the radius (not necessarily reached at the same instant of time). The first row of figure 4
is for the first panel in the second row of figure 3 and it shows a very good agreement
between the actual and biquadratic temperature distributions at the points of maximum
radius, while the steepness of the distribution near the wall at the points of minimum
radius, which approaches a boundary layer structure, is not captured as accurately. The
effect of this error on the radius, however, is small, as can be seen from figure 3. The
distributions in the second row of figure 4, corresponding to the third panel in the second
row of figure 3, exhibit the same problem during the compression phase and can describe
only in a general sense the turning of the temperature from hot to cold in the middle of the
bubble expansion. The picture is not very different in the third and fourth rows of figure 4
for R0 = 500 μm. Unlike the biquadratic distribution, the quadratic one cannot have a
non-monotonic behaviour and the differences are larger. In most cases, the results given
by the adiabatic model are significantly different.

We show the model’s performance in a demanding case characteristic of
sonoluminescence by focusing on an example inspired by figure 4 of Brenner, Hilgenfeldt
& Lohse (2002), i.e. the oscillations of a 4.5 μm radius air bubble driven at 26.5 kHz by
a pressure amplitude of 1.2 atm. For this case, liquid compressibility effects are important
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FIGURE 4. Example of the gas temperature distribution at the instants marked by circles in
figure 3. The first two rows are for R0 = 100 μm with ν/ν0 = 0.312 and 0.90; and the last two
rows are for R0 = 500 μm with ν/ν0 = 0.305 and 1.2.

and we used the compressible version of the Rayleigh–Plesset equation shown in equation
(20) of Brenner et al. (2002). This is the only change to our model made for the simulations
of this case. The results for the radius–time behaviour are shown in figure 5, where the
lines showing the Navier–Stokes solution and the biquadratic model prediction are hardly
distinguishable from each other.

The conclusion from these and other results we have obtained is that the model works
very well for smaller bubbles, for which the gas temperature distribution can be captured
adequately by the biquadratic ansatz (3.3), while, in some cases, its performance may not
be as good near resonances as the radius and driving pressure increase. In particular, the
present approximation can be used to advantage in the modelling of bubbles in medical
applications of ultrasound, for which typical bubble sizes are of the order of micrometres
(see e.g. Dollet, Marmottant & Garbin 2019; Helfield 2019; Versluis et al. 2020). As for the
subharmonic response, which is important in these applications, we show in figure 6 that it
can be reproduced by the biquadratic model for a sufficient driving pressure. Differences
with the Navier–Stokes solution are to be imputed to the imperfect evaluation of damping
on which the bubble behaviour in this frequency range is strongly dependent.
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FIGURE 5. Comparison of the radius–time Navier–Stokes and biquadratic approximate
solutions for a 4.5 μm radius air bubble driven at 26.5 kHz by a pressure amplitude of 1.2 atm.

1.5
0

0.3R*M

0.6

2.0
ν/ν0

2.5

FIGURE 6. Detail of the response curve of a 100 μm radius bubble driven at pa/p∞ = 0.7
in the subharmonic region, to be compared with the same bubble driven at pa/p∞ = 0.5
in figure 2(c).

5. Thermal effects

We now turn to a brief consideration of some further thermal aspects of the problem at
hand. The three panels in figure 7 refer to a 100 μm radius bubble driven by a pressure
amplitude pa/p∞ = 0.5 at a frequency ν/ν0 = 0.9. The radius–time behaviour for this
case is shown in the third panel of figure 3 and some temperature distributions in the
second row of figure 4; it is seen in figure 2 that, for this case, R∗

M � 0.9. Figure 7(a)
compares the centre temperature in the course of a steady oscillation as given by the
Navier–Stokes solution (solid black line), the approximate biquadratic model (dashed
red line) and the adiabatic model (dash-dotted blue line). The horizontal dotted line is
the undisturbed liquid temperature and corresponds therefore to the isothermal model.
The approximate model reproduces well the temperature at the centre of the bubble. The
adiabatic model differs in several significant respects. In the first place, the maximum
is shifted in time, which is a consequence of the insufficient damping of this model.
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FIGURE 7. Some results for R0 = 100 μm, pa/p∞ = 0.5 and ν/ν0 = 0.9 during one steady
cycle: solid line (black), Navier–Stokes; dashed line (red), biquadratic model; dash-dotted line
(blue), adiabatic; and dotted (purple), isothermal. (a) Centre temperature; (b) gas pressure versus
bubble volume; and (c) normalized heat flow rate Q∗ = Q(t)/(8π2ν0p0R3

0).

Secondly, as a consequence of the same deficiency, the width of the peak is much narrower.
This would cause larger radial accelerations, which may lead to the prediction of the
fragmentation of the bubble by the well-known instabilities affecting the radial oscillations
(see e.g. Plesset & Prosperetti 1977). Finally, the gas is predicted to become much colder,
with consequences that will be seen shortly.

Figure 7(b) shows the bubble internal pressure versus volume during a cycle. The
Navier–Stokes and approximate results are difficult to distinguish and nearly overlap,
enclosing a thin region the integral of which (when plotted on linear scales) is the energy
dissipated over a cycle. The area of this loop appears small because the energy loss
per cycle is small compared with the mechanical energies at play (see figure 8 below),
but nevertheless this energy loss is much greater than that due to viscosity or (at this
pressure) acoustic radiation. The dashed blue and dotted purple lines are the adiabatic
and isothermal results, respectively. In view of the functional dependence of p upon V
that these models presuppose, these lines can only enclose a zero area. It is seen that the
adiabatic model predicts a much smaller minimum volume and a larger maximum volume
than the Navier–Stokes solution. Owing to the lack of heat exchange with the liquid of
this model, the temperature and, therefore, the pressure are too low during the expansion.
Accordingly, upon compression, the pressure starts increasing too late and is therefore
unable to slow down the inward motion sufficiently fast. The very large pressure ultimately
reached then causes a larger expansion of the bubble beyond the correct value. For obvious
reasons, the isothermal minimum volume is even smaller than the adiabatic one. Since, as
(1.2) shows, the viscous dissipation is inversely proportional to R, the very small radii
predicted by the adiabatic and isothermal models enhance the effect of viscosity much
above its proper level.

It is interesting to note that, in the latter part of the expansion phase, the p–V behaviour
is nearly isothermal, while it is closer to adiabatic in the compression phase due to the
slowness of the former and to the rapidity of the latter. A feature worthy of note is that
the loop is displaced above both the isothermal and adiabatic lines. The reason is rectified
heat transfer into the bubble, which causes the gas mean temperature to increase until the
extra heat loss compensates the heat rectification.

Figure 7(c) shows, as a function of time during a cycle, the instantaneous heat
transported out of the bubble given by Q(t) = 4πR2[k∂rT]r=R, with the solid and dashed
lines representing the Navier–Stokes and model predictions. The agreement is far from
perfect, although the model captures the essence of the behaviour.
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FIGURE 8. Normalized rate of work Ẇ∗ = Ẇ/(8π2ν0p0R3
0) (outer loops) and heat flow rate

Q∗ (inner loops) versus bubble radius in the course of a steady oscillation. Solid lines (black),
Navier–Stokes; dashed lines (red), biquadratic model. (a) R0 = 100 μm, pa/p∞ = 0.5, ν/ν0 =
0.9; (b) R0 = 10 μm, pa/p∞ = 0.8, ν/ν0 = 1.1; (c) R0 = 1 μm, pa/p∞ = 1.6, ν/ν0 = 0.92.

Another way to represent the thermo-mechanical behaviour of the bubble is by showing
the rate of work Ẇ = −p dV/dt and heat flow Q(t) versus radius as in figure 8 for, from
left to right, R0 = 100 μm, pa/p∞ = 0.5, ν/ν0 = 0.9 (same as in the previous figure),
R0 = 10 μm, pa/p∞ = 0.8, ν/ν0 = 1.1, and R0 = 1 μm, pa/p∞ = 1.6, ν/ν0 = 0.92. The
solid lines are the Navier–Stokes solution and the dashed lines the biquadratic model
predictions. The mechanical work Ẇ is seen to be predicted better than the thermal energy
loss, although the latter is much closer to the correct result for the smaller 10 and 1 μm
radius bubbles. These results are another confirmation of the fact that the predictions of
the approximate models improve significantly as the bubble radius decreases, as the wall
heat flux tends to be less extreme for smaller bubbles.

6. Conclusions

We have presented two approximate models for the thermal interaction of a gas bubble
with the host liquid. The comparison with a first-principles Navier–Stokes simulation of
the thermo-mechanical process has shown the models to be accurate and therefore useful
over a broad range of parameters. In other parameter ranges, the incorrect estimation
of the energy loss to the liquid makes the models less accurate, but they still offer an
alternative to the polytropic model, which neglects thermal losses entirely. Thus, in spite
of their limitations, these models afford at a modest computational cost a more faithful
representation of the physics of the bubble–liquid thermal interaction than currently
possible without recourse to partial differential equations.

The correct use of the models requires an understanding of their limitations, which,
for both, and for the quadratic model more than for the biquadratic one, lie in an
inability to reproduce the temperature boundary layer that develops with larger bubbles,
larger-amplitude oscillations and faster processes. This deficiency prevents the correct
calculation of the heat exchange with the liquid. If the net heat loss is too small, the
initial transient lasts too long to allow the bubble to reach the steady-state regime at
the correct rate. This is what may prevent the approximate models from reproducing the
large-amplitude results near the fundamental resonance in figures 2(c), (d), (g) and (h).
Secondly, the point of vertical tangency of figure 1 is dependent on damping and, therefore,
the approximate models may be inaccurate near the points in which a jump to the higher
amplitude would occur. Thirdly, some features of the response, such as the subharmonic,
are strongly dependent on the correct amount of damping and, indeed, the approximate
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models perform unevenly in some of these cases. The model of Toegel et al. (2002) (see
also Stricker et al. 2011) incorporates a boundary layer structure and may be preferable in
the parameter ranges where the models presented here have deficiencies.
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