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Here we show that weakly nonlinear flexural-gravity wave packets, such as those
propagating on the surface of ice-covered waters, admit three-dimensional fully
localized solutions that travel with a constant speed without dispersion or dissipation.
These solutions, that are formed at the intersection of line-soliton mean-flow tracks,
have exponentially decaying tails in all directions and are called dromions in contrast
to lumps that decay only algebraically. We derive, by asymptotic expansion and
assuming multiple scales for spatial and temporal variations, the three-dimensional
weakly nonlinear governing equations that describe the coupled motion of the
wavepacket envelope and the underlying mean current. We show that in the limit of
long waves and strong flexural rigidity these equations reduce to a system of nonlinear
elliptic–hyperbolic partial differential equations similar to the Davey–Stewartson I
(DSI) equation, but with major differences in the coefficients. Specifically, and
contrary to DSI equations, the elliptic and hyperbolic operators in the flexural-gravity
equations are not canonical resulting in complications in analytical considerations.
Furthermore, standard computational techniques encounter difficulties in obtaining the
dromion solution to these equations owing to the presence of a spatial hyperbolic
operator whose solution does not decay at infinity. Here, we present a direct (iterative)
numerical scheme that uses pseudo-spectral expansion and pseudo-time integration
to find the dromion solution to the flexural-gravity wave equation. Details of this
direct simulation technique are discussed and properties of the solution are elaborated
through an illustrative case study. Dromions may play an important role in transporting
energy over the ice cover in the Arctic, resulting in the ice breaking far away from the
ice edge, and also posing danger to icebreaker ships. In fact we found that, contrary
to DSI dromions that only exist in water depths of less than 5 mm, flexural-gravity
dromions exist for a broad range of ice thicknesses and water depths including values
that may be realized in polar oceans.

Key words: sea ice, solitary waves, surface gravity waves

1. Introduction
Dromions are spatially localized (i.e. hump-like) surface structures that can travel

with a constant speed without changing form, and hence can transport mass,
momentum and more importantly energy over long distances. They are formed at
the intersection of underlying mean-flow line solitons (the so-called ghost solitons)
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2 M.-R. Alam

and take their name from the Greek word dromos which means tracks (Fokas &
Santini 1990). These surface structures are three-dimensional counterparts of the
well-known two-dimensional solitons, and similar to the two-dimensional solitons
decay exponentially fast along horizontal coordinates. The only other known three-
dimensional localized solution of water waves is the ‘lump’ solution that decays
algebraically over distance. A number of three-dimensional systems are known to
admit lumps, amongst them are the Kadomtsev–Petviashvili equation (e.g. Ablowitz
& Segur 1979), the Benney–Luke equation (e.g. Berger & Milewsky 2000), the full
Euler equation (e.g. Groves & Sun 2008), and the Davey–Stewartson equation (e.g.
Kim & Akylas 2005, with algebraically decaying tails). However physically relevant
dromion solutions are limited so far to the surface-tension-dominated regime of the
Davey–Stewartson equation.

The Davey–Stewartson (DS) equation (Davey & Stewartson 1974) is a three-
dimensional extension of the nonlinear Schrödinger equation (NLS). It is a set of
two partial differential equations for the wavepacket envelope amplitude and the
mean underlying flow. The DS equation in its general form has been a subject of
extensive research (e.g. Champagne & Winternitz 1988; Clarkson & Hood 1994; Hizel,
Turgay & Guldogan 2009). Of our particular interest are, however, the fully (spatially)
localized surface solutions. Utilizing Bäcklund transformation Boiti et al. (1988) found
the first spatially exponentially decaying localized solutions to the shallow-water
DS equation in the limit of surface-tension-dominated regimes (the so-called DSI
equation, see Djordjevic & Redekopp 1977 for a derivation). This solution was then
rederived, extended and generalized by a number of techniques such as the inverse
scattering transform (Fokas & Santini 1990, who first proposed the name dromion),
the bilinear/direct method (Gilson & Nimmo 1991) and the Wronskian formulation
(Hietarinta & Hirota 1990). These solutions are all, as stated above, for the surface-
tension-dominated regime that requires (for water waves) a water depth of less than
5 mm, and hence are of limited practical applications.

We are interested in the possibility of existence of dromions, and the conditions
under which they may appear, in flexural-gravity wave systems. This interest is
motivated by the observations of large-amplitude waves penetrating far into the ice-
covered areas of polar waters. Liu & Mollo-Christensen (1988), for instance, cite an
observation of ∼1 m tall wave in the Weddell sea in the solid ice pack 560 km from
the ice edge that resulted in the breakup of the ice pack (see also Marko 2003 for
a more recent observation of similar phenomenon in the Sea of Okhotsk). To travel
such distances, three-dimensional effects clearly play a significant role. Nevertheless,
while linear and nonlinear two-dimensional flexural-gravity waves have received much
attention (e.g. Forbes 1986) the literature on the three-dimensional problem is sparse
and is focused mainly on the problem of moving pressure (i.e. load) on the ice (e.g.
Miles & Sneyd 2003; Parau & Vanden-Broeck 2011).

Here, we consider the three-dimensional propagation of weakly nonlinear flexural-
gravity wave packets similar to those propagating on the ice cover of the Arctic
Ocean. We show that the governing equation for the evolution of wave packets in an
ice-covered shallow sea reduces to a system of elliptic–hyperbolic Davey–Stewartson
equations similar to the DSI equation but with different coefficients for which a closed-
form dromion solution does not exist. Specifically, governing equations of flexural-
gravity waves are non-canonical (due to elliptic and hyperbolic operators being out of
sync) leading to complications in analytical considerations. For instance theorems on
the existence and regularity of solutions of the DSI equation (e.g. Hayashi & Hirata
1996) do not apply in (and to our knowledge cannot be extended to) the present
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Dromions of flexural-gravity waves 3

context. The elliptic–hyperbolic subfamily of the Davey–Stewartson equation is also
not readily amenable to conventional computational techniques (owing to the presence
of a spatial hyperbolic operator whose solution does not necessarily decay at infinity)
and therefore has been the subject of only a few numerical considerations in the past.
These studies generally target the time integration of the initial-value problem and
require (non-vanishing) boundary conditions (as functions of time) to be specified a
priori, say from an analytical solution (White & Weideman 1994; Besse, Mauser &
Stimming 2004).

Here we devise a computational scheme to find dromion solutions to the general
elliptic–hyperbolic subfamily of the Davey–Stewartson equation. We propose an
iterative scheme based on the pseudo-spectral technique for the elliptic equation
and pseudo-time integration for the hyperbolic equation to find a steadily translating
dromion solution in a co-moving frame of reference whose speed and direction is
also determined by our numerical method. Utilizing this approach we are able to find
dromion solutions of the flexural-gravity wavepackets. The direct scheme converges
very fast (order of minutes on a laptop) and is stable for a broad range of dromion
geometries. As a side result, the numerical scheme developed here can also integrate
in time the initial-value problem associated with the governing equations, and therefore
can be used to study stability and time-evolution of dromions as well as any other
initial condition.

The equation derived and results presented here are also relevant to propagation of
waves on pontoon-type very large floating structures (VLFSs) such as floating airports
(e.g. Japanese mega-float concept, Suzuki 2005), floating bridges, and in general
in hydroelasticity (Korobkin, Parau & Vanden-Broeck 2011). The Davey–Stewartson
equation has applications in other areas of science such as quantum field theory
(Schultz, Ablowitz & Bar Yaacov 1987), ferromagnetism (Leblond 1999), plasma
physics (Duan 2003) and nonlinear optics (Leblond 2001) where results and
techniques developed here may have implications.

2. Governing equations
We consider the propagation of waves on a uniform thin elastic sheet (e.g. a layer of

ice) overlying a fluid of depth h. We assume that the fluid is incompressible (density
ρ), and the motion of fluid particles is irrotational so that the potential theory applies.
We define a velocity potential φ such that ∇φ = u where u is the velocity vector. We
also define a Cartesian coordinate system with the x, y-axes along the (flat) seafloor,
and z-axis positive upward. If η(x, y, t) denotes the elevation of the elastic sheet (and
hence water surface) from the mean surface level, then the governing equations read

∇2φ = 0, 0< z< h+ η(x, y), (2.1a)
ηt + ηxφx + ηyφy = φz, z= h+ η(x, y), (2.1b)

φt + gη + 1
2
|∇φ|2+D

ρ
∇4η = 0, z= h+ η(x, y), (2.1c)

φz = 0, z= 0, (2.1d)

where ∇4 = ∂xxxx + 2∂xxyy + ∂yyyy is the bi-Laplacian operator and D = Et3/12(1 − ν2)

is the flexural rigidity of the elastic sheet in which t is its thickness and E, ν are
respectively its Young’s modulus and Poisson’s ratio. Note that in deriving (2.1c) we
have assumed that propagating waves are much longer that the sheet thickness so that
the thin-plate approximation is justified (see e.g. Strathdee, Robinson & Haines 1991,
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4 M.-R. Alam

for a detailed discussion). We define the following dimensionless variables:

x∗ = x

λ
, y∗ = y

λ
, z∗ = z

h
, η∗ = η

a
, t∗ = t

√
gh

λ
, φ∗ = φh

λa
√

gh
, (2.2)

where λ and a are respectively the typical wavelength and amplitude of the surface
wave. Using (2.2), (2.1) after dropping asterisks (for notational simplicity) becomes

δ2(φxx + φyy)+ φzz = 0, 0< z< 1+ εη, (2.3a)

δ2[ηt + ε(ηxφx + ηyφy)] = φz, z= 1+ εη, (2.3b)

φt + η + 1
2
ε

(
φ2

x + φ2
y +

1
δ2
φ2

z

)
+ H(ηxxxx + 2ηxxyy + ηyyyy)= 0, z= 1+ εη, (2.3c)

φz = 0, z= 0, (2.3d)

where

H = D

ρgλ4
, ε = a

h
, δ = h

λ
. (2.4)

We are interested in a harmonic wave of wavenumber k with a slowly varying
amplitude in both x, y directions. To achieve this solution we assume ε � O(1) and
introduce the following different-scale variables:

ξ = x− cpt, ζ = ε(x− cgt), Y = εy, τ = ε2t, (2.5)

where cp(k), cg(k) are to be determined (at this stage we leave cp(k), cg(k) as arbitrary
unknowns, but later will show that they correspond to the phase and group velocities).
We further assume that the solution to the governing equations (2.3) can be expressed
by a convergent series in terms of our small parameter ε. In terms of new variables
(2.5) we suggest the form

φ(ξ, ζ,Y, z, τ )= f0(ζ,Y, τ )+
∞∑

n=0

εn

{
n+1∑
m=0

Fnm(z, ζ,Y, τ )Em + c.c.

}
, (2.6)

η(ξ, ζ,Y, τ )=
∞∑

n=0

εn

{
n+1∑
m=0

Anm(ζ,Y, τ )Em + c.c.

}
, (2.7)

where E = exp(ikξ), A00 = 0 and c.c. represents complex conjugates. The aim is to
find the equation governing the evolution of A01(ζ,Y, τ ). The procedure of getting this
equation is algebraically tedious, but standard (e.g. Johnson 1997) and we will only
highlight major steps.

At the leading order, i.e. O(ε0) = O(1), a progressive wave solution with amplitude
A01(ζ,Y, τ ) results in an expression for the unknown cp = ω/k:

c2
p =

tanh δk
δk

β (2.8)

with β = 1 + Hk4. Equation (2.8) is called the dispersion relation of the system (2.3)
and reduces to the gravity-wave dispersion relation at the limit of H = 0. At the first
order, i.e. O(ε1), cg is obtained in the form

cg = 1
2

cp

(
1+ 2δk

sinh 2δk
+ 2α
β

)
, (2.9)
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Dromions of flexural-gravity waves 5

where α = 2Hk4. It can be shown that cg = dω/dk, and is in fact the group velocity of
the system (2.3). Proceeding to the second order, i.e. O(ε2), the governing equation for
A0 ≡ A01(ζ,Y, τ ) is obtained in the form of two coupled partial differential equations:

−2ikcpA0,τ − kcpω
′′(k)A0,ζ ζ − cpcgA0,YY

+ k2(2cp + βcgsech2δk)A0f0,ζ + k2

2c2
p

Γ A0 |A0|2 = 0, (2.10a)

(1− c2
g)f0,ζ ζ + f0,YY =−β

2

c2
p

(
2cp

β
+ cg

cosh2δk

)(|A0|2
)
,ζ

(2.10b)

where qΓ = p1(h̃) + p2 in which, if we define h̃ ≡ Hk4 and σ ≡ tanh δk, then
q= (−15+ σ 2)h̃+ σ 2 and

p1(h̃)= (−62σ 2 + 34σ 4 − 2σ 6 + 30)h̃4 + (115σ 4 − 8σ 6 + 159− 318σ 2)h̃3

+ (−462σ 2 + 141σ 4 − 12σ 6 + 237)h̃2 + (73σ 4 − 218σ 2 + 117− 8σ 6)h̃, (2.11)

p2 = 9− 12σ 2 + 13σ 4 − 2σ 6. (2.12)

We can further simplify (2.10) by defining new variables

τ † = τ cg

2k
, ζ † = ζ√

|c2
g − 1|

, A† = A

√
k2|Γ |
8c3

pcg
,

f †
0 = f0

B

2cpcg

√
|c2

g − 1|
, Y† = Y,

 (2.13)

where B= k2(2cp + βcgsech2δk). Dropping daggers, (2.10) yields

iA0,τ + kω′′(k)s1

cg(c2
g − 1)

A0,ζ ζ + A0,YY − 2A0f0,ζ − 4s2A0 |A0|2 = 0, (2.14a)

s1f0,ζ ζ − f0,YY − 4E s1s2 (|A0|2),ζ = 0, (2.14b)

where E = βB2/[Γ k4(c2
g − 1)], s1 = sign(c2

g − 1) and s2 = sign Γ . In the absence
of flexural compliance (H = 0) (2.14a) and (2.14b) reduce respectively to (2.15) and
(2.14) of Davey & Stewartson (1974).

Note that here we used a nonlinear-flow/linear-plate model equation (similar to e.g.
Hǎrǎguş-Courcelle & Il’ichev 1998; Parau & Vanden-Broeck 2011) that for (relatively)
large-amplitude deformation of the elastic sheet may be physically restrictive. To
account for nonlinearities in higher deflections a number of modification may be
incorporated such as using a nonlinear Kirchhoff–Love model (Milewski, Vanden-
Broeck & Wang 2011), or von Kármán’s theory (that considers in-plane forces but
assumes small slopes, e.g. Chen et al. 2003). Incorporation of these models results in
modified coefficients in (2.10). The numerical technique of § 3 is for general values of
coefficients and can be used to look for localized surface solutions of these modified
equation as well.

3. Numerical scheme for a dromion solution
Dromions are three-dimensional fully localized and spatially exponentially decaying

surface structures that can move with a constant speed without any change in their
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6 M.-R. Alam

form. In the context of water waves it is known that the surface-tension-dominated
regime of the shallow-water Davey–Stewartson equation, the so-called DSI limit,
admits a dromion solution. In this section we show that the governing equations for
flexural-gravity wavepackets can also admit dromion solutions. We devise a pseudo-
spectral iterative scheme along with a pseudo-time integration method to find the exact
form of these solutions in the co-moving frame of reference.

Let us consider a supercritical case (cg > 1) of (2.14), therefore s1 = +1. In this
case and to get a canonical form of the governing equation we further introduce the
following change of variables:

v = f0,ζ − 4E s2 |A0|2, u= A0

√
|1+ 2E |, (3.1)

by which we obtain from (2.14):

iuτ + puζ ζ + uYY − 2uv − 4s2s3u |u|2 = 0, (3.2a)

vζ ζ − vYY − 4qs2s3 (|u|2),YY = 0, (3.2b)

where p= kω′′(k)/[cg(c2
g − 1)], q= E /(1+ 2E ) and s3 = sign 1+ 2E .

We now consider the limit of shallow water (kδ = µ � 1) and further assume
H = O(1/µ2)(note that for stiff materials such as ice H is typically a very large
number). Defining H ≡ Hµ2/δ4 the coefficients of (3.2) simplify to

p= 1− 10H

1− 5H
, q= 1− 15H

1− 25H
, (3.3)

and s1 = sign(5H −1), s2 = sign(1−15H ), s3 = sign−(1−25H )/(1−5H ). Clearly
if s1 =+1 (as assumed before), then s2 = s3 =−1 and (3.2) turns into

iuτ + puζ ζ + uYY − 2uv − 4u |u|2 = 0, (3.4a)

vζ ζ − vYY − 4q (|u|2),YY = 0. (3.4b)

If parameters p and q could take the value of unity then (3.4) would turn into the
famous Davey–Stewartson I (DSI) equation for which an analytical dromion solution
exists. In the case of our interest, and based on the supercritical assumption cg > 1,
the ranges of coefficients are 2 6 p 6∞ and 1/2 6 q 6 3/5 for which a closed-form
solution to (3.4) is unavailable, and standard direct numerical simulations are very
limited due to the complicated nature of these equations. Specifically (3.4) is a set of
respectively an elliptic and a hyperbolic nonlinear partial differential equation. Spatial
hyperbolicity of (3.4b) causes difficulties for many numerical techniques such as finite
difference (by making the coefficient matrix poorly conditioned) and spectral methods
(by not allowing same wavenumber (i.e. kx = ky) modes to exist). To make the matter
more complicated, the solution to v(ζ,Y, t) (as we will show later) is not periodic in
any direction, and does not decay to zero at infinity, but to non-zero asymptotic tracks
whose forms are not known a priori (White & Weideman 1994; Besse et al. 2004).

Here we present an iterative computational scheme based on pseudo-spectral
expansion and pseudo-time integration that can converge to the dromion solution
of the general form of system (3.4). We first note that the dromion solution to
(3.4), if it exists, is stationary in a co-moving frame of reference (whose speed and
direction are also to be determined). We therefore re-write governing equations (3.4)
in a frame of reference moving with a constant speed along a general velocity vector.
Specifically we define new independent variables ζ ∗ = ζ − cζ τ and Y∗ = Y − cYτ . We
further assume a time-dependent phase for u in the co-moving frame of reference,
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Dromions of flexural-gravity waves 7

i.e. u(ζ ∗,Y∗, τ )= u∗(ζ ∗,Y∗) exp(iατ). Dropping asterisks, (3.4) now becomes

−αu− icζuζ − icYuY + puζ ζ + uYY − 2uv − 4u |u|2 = 0, (3.5a)

vζ ζ − vYY − 4q (|u|2),YY = 0, (3.5b)

where u, v are now functions of ζ,Y only.
A dromion solution has a fully localized (exponentially decaying) surface profile

u, and two intersecting tracks for v (the hump of the surface elevation profile is
at the intersection of tracks). The iterative computational algorithm consists of three
steps: (i) starting from an initial guess for (u, v) we solve (3.5a) to find an updated
(corrected) profile for u; (ii) this new u is substituted in (3.5b) and an exact v solution
of (3.5b) is found; (iii) this new v along with the updated u (obtained in step (i)) are
used as new initial conditions for step (i) and the loop is repeated until convergence is
achieved.

To solve (3.5a), i.e. step (i), a pseudo-spectral method, in which nonlinear terms
are calculated in physical space and linear terms in spectral space, can be utilized.
Dealing with equation (3.5b), i.e. step (ii), is however more involved. Equation (3.5b)
is a spatial hyperbolic equation with a forcing term (last term on the left-hand side)
that decays exponentially to zero as we move away from the centre. Nevertheless, the
solution v, in general, does not decay to zero away from the centre and is not periodic
in any spatial direction. Therefore the boundary condition for v in a finite domain
of our interest, say (ζ,Y) ∈ [−π,π] × [−π,π], is also unknown. In our scheme we
treat one of spatial coordinates (say Y) in (3.5b) as a pseudo-time. As a result (3.5b)
can be considered a forced wave equation with only one unknown, i.e. the initial
condition at Y =−π, that is, v(ζ,−π). Evolving this equation over the pseudo-time Y
and under the effect of external forcing, i.e. 4q (|u|2),YY in (3.5b), the solution v(ζ,Y)
is obtained. The updated values of the solution u, v are better approximations (than the
initial guess) to (3.5a) and are iterated again (step (iii)) until convergence is achieved.
Intermediate steps, such as error treatment say by a Newton–Raphson method, may
accelerate the convergence rate.

To make our direct computational scheme more efficient, we divide our system (3.5)
into the following linear and nonlinear terms:

F(u)+F (u, v)= 0, G(v)+ G (u)= 0, (3.6)

where F,G are linear elliptic/hyperbolic operators and F ,G are nonlinear functions
of their arguments (e.g. F contains the first five terms on the left-hand side of (3.5a)
and so on). We also write u= u0 + up, v = v0 + vp where u0, v0 are base solutions (i.e.
an approximate solution) and up, vp are corrections to the base (not necessarily small).
Therefore, (3.6) can be written in the form

F(up)=−F (u0 + up, v0 + vp)− F(u0), (3.7a)

G(vp)=−G (u0 + up)− G(v0). (3.7b)

We take as the base solution (u0, v0), the analytical one-dromion solution of the DSI
equation (i.e. (3.4) with p = q = 1), which is in terms of our variables (e.g. Gilson &
Nimmo 1991)

u(ζ,Y, τ )= 2
√
δϑrθr

ϕψ

W
e−iατ , v(ζ,Y, τ )=−2∂YY log W , (3.8)
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8 M.-R. Alam

where

W = 1+ c1e2ς + c2e−2% + c3e2ς−2%, (3.9)

ς =
√

2
2
ϑr[(ζ + Y)− (2√2ϑi − cζ − cY)τ ],

% =
√

2
2
θr[(−ζ + Y)− (2√2θi + cζ − cY)τ ],

 (3.10)

with arbitrary c1, c2, c3 > 0 provided that δ = c1c2−c3 > 0; also ϑ = ϑr+iϑi, θ = θr+iθi

and α = |ϑ |2+ |θ |2. The functions

ϕ = exp

{√
2

2
[ϑ(ζ + Y)+ (iϑ2

√
2+ ϑcζ + ϑcY)τ ]

}
, (3.11a)

ψ = exp

{
−√2

2
[θ(−ζ + Y)+ (iθ 2

√
2− θcζ + θcY)τ ]

}
, (3.11b)

are solutions to the Schrödinger equations iϕt − icζϕζ − icYϕY + (1/2) (∂ζ + ∂Y)
2 ϕ = 0

and iψt− icζψζ − icYψY−(1/2) (∂ζ − ∂Y)
2 ψ = 0. Clearly if we choose cζ =

√
2(ϑi−θi)

and cY =
√

2(ϑi + θi), then v becomes stationary and u only has a periodic phase (i.e.
−αt) but does not travel/deform over time.The above solution can be obtained from
a modified inverse-scattering transform technique (Fokas & Santini 1990) or bilinear
method (Gilson & Nimmo 1991).

Before presenting numerical results we would like to comment that the relation
between the shallow-water limit of the DS equation and the weakly nonlinear shallow-
water models such as the Benney–Luke (BL) (Benney & Luke 1964) or KP equation
(Kadomtsev & Petviashvili 1970) is similar to that of the shallow-water NLS versus
Korteweg–de Vries (KdV) equations. For the latter, it is straightforward to show that
the long-wave limit of NLS matches the short-wave limit of KdV when rewritten
for the envelope (e.g. Johnson 1997; note that the DS and NLS family govern the
evolution of the envelope of carrier waves whereas KdV, BL and KP govern the
primitive waves). In 2 + 1 dimension, BL and KP further assume a slow (i.e. different
scale) transverse variation (cf. Osborne 2009, §§1.4.2 and 2.4.2). If this together with
the long-wave assumption is employed then the DS equation can be reduced to an
envelope equation derived from the KP equation (Freeman & Davey 1975). Therefore
(3.4) may also be obtained if we first derive the KP equation for flexural-gravity waves
and calculate the envelope under proper assumptions discussed above, or equivalently
the KP equation for flexural-gravity waves can be derived from (3.4). In their original
forms, however, shallow-water DS and KP equations are distinct and admit different
mathematical properties. For instance the shallow-water limit of the DS equation
includes explicit coupling with the mean field whereas KP does not.

4. Results and discussion
For illustrating the performance of direct simulation and properties of a flexural-

gravity dromion we pick a base solution (3.8) with parameters c1 = 2, c2 = 1, c3 = 1
and ϑ = 2 + 4i, θ = 3 + 0.5i. It then follows that if we move to a moving coordinate
system with speeds cζ = 4.95, cY = 6.36 the base profile will be stationary, except for
a time-dependent phase with the coefficient α = 29.25. A dromion solution to (3.5)
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FIGURE 1. A dromion solution of the flexural-gravity wavepackets. This solution is obtained
from our numerical iterative scheme near a base dromion of the DSI equation (3.5) with
parameters c1 = 2, c2 = c3 = 1 and ϑ = 2 + 4i, θ = 3 + 0.5i. Computation parameters
are Nx = Ny = 256. For pseudo-time evolution of hyperbolic equation (3.5b) we take
δY/δζ = 1/4. The solution has converged with a relative error of the order of computer
accuracy, i.e. O(10−15). (a) The profile of wavepacket envelope u; (b) underlying current
v (negative values are shown for clearer presentation); (c,d) real and imaginary parts of u;
(e,f ) correction values up, vp.

with p = 2, q = 3/5 is obtained using this base solution, with initial conditions
up = vp = 0 and by the numerical scheme formulated above. This dromion solution
is shown in figure 1. Specifically, figure 1(a) shows the magnitude of the envelope of
waves u, figure 1(b) shows the underlying tracks (note that v is related to the current
below the surface through (3.1)), figure 1(c,d) plots real and imaginary parts of u and
figure 1(e,f ) plots the difference between dromions of the flexural-gravity waves and
the DSI equation.

The dromion amplitude of flexural-gravity waves is much smaller than that of the
DSI equation (figure 1a,e) while their general geometry is similar. The difference in
the amplitude may reach an order of magnitude or higher for narrower dromions. The
correction in v is however relatively small (∼%25, cf. figure 1b,f ). The converged
velocities are cζ = 6.32, cY= 6.60, and α = 28.96. Therefore the direction of motion
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of this dromion is ∼6◦ to the right of the base dromion. Note that the relative value
of |up|/|u| > O(1), and therefore up cannot be treated as a perturbation to the DSI
dromion in (3.7). This is not unexpected as small changes in the coefficient of PDEs
are known to be able to easily change even the qualitative behaviour of the solution.
In fact it was not obvious to us that (3.8) would admit a dromion solution even if
the DSI equation has such a solution until our computation proved the existence of
such solutions. A broad range of dromion solutions to (3.8) for a variety of parameters
can be computed by the proposed scheme. Flexural-gravity dromions differ (sometimes
significantly) in size, direction of motion and symmetricity from those of the DSI
equation.

Mean-field tracks (that propagate in the water beneath the ice cover) are associated
with no elevation in physical space (i.e. ice cover), and hence are sometimes called
ghost solitons (Hietarinta 1990; Radha & Lakshmanan 1994). It is to be noted,
nevertheless, that these structures correspond to a flow field in the fluid context
and therefore carry energy. Underlying mean-field tracks of dromions, mathematically
speaking, need to either extend to infinity or to proper boundary conditions in the
case where they are in a (semi-) confined space. Clearly, for dromions to appear in a
physical space (i.e. in a real ice-covered sea) the mean field does not necessarily need
to extend to infinity, but just to an order of magnitude longer than the typical length
scale of the problem (e.g. dromion size). For the farther distance the existence/shape of
the mean field will be governed by a higher-order equation (cf. Hogan (1985), but the
extension has not been pursued here).

Understanding of stability of the dromion solution is important particularly for
practical applications (i.e. their being observed). Nevertheless, such analysis is not
straightforward (some details follow) and a comprehensive consideration deserves an
independent study. The Lyapunov stability analysis (commonly used for instance for
the study of localized structures of the NLS equation, e.g. Kuznetsov, Rubenchik &
Zakharov 1986) requires the existence of a Hamiltonian. A dromion structure clearly
lacks a Hamiltonian due to its tracks extending beyond (and exchanging energy via)
finite boundaries. However, an indication of stability can be obtained if the governing
equation (3.4) is integrated in time with the initial condition set as its dromion solution
(Nishinari & Yajima 1994). We write down the governing equation in a co-moving
frame of reference (cf. equation (3.5)) but retain the time-derivative term. A fourth-
order Runge–Kutta method is used for the integration in time and δt = 5 × 10−5,
for which the time-integration is convergent. Other parameters are kept the same
as in § 3. Following Nishinari & Yajima (1994) we set the boundary conditions by
the exact solution (and keep them unperturbed), and compare the maximum of the
amplitude |u|max and the first conserved quantity I1 =

∫ |u|2 dζ dY . The solution stays
stable to computational perturbations with oscillating but bounded relative errors of
[|u|max(t)− |u|max(0)]/|u|max(0) < %0.01 and [I1(t)− I1(0)]/I1(0) <%0.1.

While details of applied aspects of the presented solution are beyond the scope of
this paper, we would like to briefly comment on the real-life relevance of assumptions
made here. Ice flexural rigidity is of the order of D ∼ 0.9t3

ice GPa where tice is
the ice thickness. For this rigidity and for an ice thickness of tice ∼ 2 m in water
of depth ∼3.5 m (measured below the ice) waves with wavelengths ∼40 m satisfy
assumptions made here and may form a dromion of amplitude ∼1 m whose size
(i.e. wavelength) is ∼300 m. These numbers are consistent with the rough observation
report of Liu & Mollo-Christensen (1988), except for the water depth that is missing
in their report. Our assumption for the water depth is, however, not unrealistic as the
incident occurred ∼500 km inside the solid icepack.
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5. Conclusion

In this paper we have shown that governing equations for flexural-gravity
wavepackets admit the dromion solution, a three-dimensional fully localized and
spatially exponentially decaying surface structure overlying intersecting mean-flow
tracks (ghost solitons). Dromions of flexural-gravity waves exist for a broad range
of wavelength and water depth, in contrast to dromions of the DSI equation that only
exist for water depth of less than 5 mm.

We showed that the governing equation of the envelope of the wavepacket and
the underlying current is a set of two nonlinear partial differential equations that
each can be elliptic and/or hyperbolic depending on the values of chosen parameters.
Specifically, we showed that in the limit of strong flexural rigidity and long waves,
the system becomes an elliptic/hyperbolic set similar to the DSI equation but in a
non-canonical form whose closed-form dromion solution is elusive.

We developed an iterative direct simulation scheme, using simultaneously a pseudo-
spectral method for the elliptic equation and a pseudo-time integration technique for
the hyperbolic equation. The scheme, when initialized near the ‘cousin’ dromions of
the DSI equation, efficiently converges to the dromion solution of flexural-gravity
waves whose size and direction can be quite different from the base solution
(sometimes by an order of magnitude).

Dromions are efficient mechanisms for transporting mass, momentum and energy
over long distances. In the Arctic they may be behind the presence of large-amplitude
flexural-gravity waves deep inside the icepack that result in the ice cracking/breaking
and in posing dangers to icebreaker ships.
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