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Abstract

Directed energy and turbulence structure are shown to be crucial in understanding the growth of self-similar Rayleigh—
Taylor and incompressible Richtmyer—Meshkov turbulent mixing zones. Averaging over the mixing zone is used to
analyze the response of a modifieet model and a turbulent two-fluid model. Three different transport regimes are then
identified by considering self-similar variable acceleration RT fl¢g&SVARTS, which appear as promising reference
flows for model testing.
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1. INTRODUCTION elementary modeling. The extensively investigated case of
the Kelvin—Helmoltz(KH) turbulent mixing zone$TMZ)
\(/]yill also be considered here as a reference.

The instabilities considered here will all be for initially

Mixing instabilities between two stratified fluids of differ-
entdensities induced by acceleration or gravitation are foun

In many ﬂO\.NS of basm_and applied phygtzsstrophysms, plane ideal interfaces, in the incompressible and fully de-
inertial confinement fusion, etcThe Rayleigh—TaylofRT) C . .
. . e veloped turbulent limits, and between two fluids of vanish-
and Richtmyer—MeshkodRM) instabilities, where accel- . o
S . . . . ingly small density difference4 — 0, zero Atwood number
eration is respectively constant and impulsive, are two im-

portant idealized plane cases commonly used to understaA'g]lt)' F_urthermore, since only broad_quahtgnve features
and predict the main features of such flo@@harp, 1984: will be discussed, all the relevant quantities will be averaged

Kull, 1991; Inogamov, 1999 In the final stage of such overthg wujth of the TMZL(t). This |sthebulk averaging

. ) . approximation already used for the analysis of Atwood

instabilities, a fully developed turbulent regime appears in 4
L number dependendpimonte, 2000. Throughout the fol-

the mixing layer, whose growth follows a more or less steeq

. . oo owing discussion, all bulk averages will be given without

power law, depending on the influence of dissipation an . - . ) :

0 : . . . heir explicit calculations, which are mostly straightforward
molecular mixing. This late time behavior, of practical . .
. ) o . and can also be found in a previous wgtkor, 2001a).
importance in many applications, can be studied through
experiments and modeling, although it is analytically un-
tractable from first principlegSharp, 1984; Kull, 1991;
Inogamov, 1998 Qualitative analysis of other turbulent
layers(wakes, jets, etg.have been available for many de-

cadeg(see, for instance, Tennekes & Lumley, 13 #iit do In the A — 0 limit, experiments and numerical simulations

not seem to have been given for RT and IRM situations. The . . .
) ) . P Show that the average volume fraction profiles of the fluids
aim of the present work is to provide a similar insight on the.

ensemble-averaged flow fields of gravitationally inducedIn the TMZs are practicallyinear functions of the longitu-

mixing layers, in order to eventually suggest a new basis Oﬁinal coordinatex (Read & Youngs, 1983; Burrowst al.
g layers, ysugg 984; Read, 1984; and the numerous collected references in

i i _Dimonte & Schneider, 1997; Llor, 20@L Using the mass
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2. OBSERVED ENERGY BALANCE AND
INTEGRAL LENGTH SCALE
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Table 1. Basic self-similar TMZ growth laws
Instability
RT IRM KH
t n,
L(t) Yo X Agt? Lo<t_> ’ Xo X AUt
0
Vo t \ Mo 1
Ki(t — X (Agt)? Kio| — — X (AU,)?
(1) 12 (Agt) |0<t0> 12 (AUy)
g L3 [t\Gro2 X3
Ko/Ki Yo Do (=) -
48  Kiptg \ to 4

difference is constant throughoutthe TMZ, giversti(t) =
(d/dt)L(t)/2 (Llor, 2001a).

These volume fraction and velocity profiles, together with
a TMZ growth law, directly provide three important terms
of the overall energy balanck; (t), the total input energy
(converted from gravitational enerdfRT) or mean trans-
verse kinetic energfkH)), Ky (t), the mean kinetic energy,
andKp(t), here called “directed” kinetic energiy, is cal-
culated from the one-fluidFavre mean longitudinal veloc-
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collected in Table 2: the coefficient l(t), Vo, N, Or X for

RT, IRM, or KH, respectively, and the turbulent kinetic
energy,K. Using the results of Table Xy is found to be
negligible compared ti in the IRM and KH cases, whereas

it is of similar order in the RT case. This reflects a striking
difference of the energy distribution that motivates the need,
already pointed out by various authaf®imonte, 2000;
Read, 1984; Youngs, 198%f two-fluid modeling in the RT
case instead of one fluid for IRM and KH. In the RT case, it
also justifies distinguishing thesingle-fluid) turbulent ki-
netic energy, as measured in experiments, from the two-
fluid turbulent kinetic energy, defined a6 = K — Kp.
Furthermore, sinc&p, is associated to purely longitudinal
velocity components, it has a major contribution to the over-
all Reynolds tensor anisotropy.

From the self-similar evolution &, — Kp — K+, one can
determine the bulk-averaged turbulent energy transfer to
intermediate scales in the TMZE (also called spectral
flux), or the closely related nondimensional parameter:

kr = K#?/(EL) =~ A; /L. (2
A is an average integral length scéllee typical size of the
largest eddiesand k¢ thus stands as an effective Knudsen

ity, andKp is the excess of mean kinetic energy introducednymber of the turbulent transpofTennekes & Lumley,

when going from a one-fluid to a two-fluid average field
description:
Ko = (a"p ™ (US)?+a p~(U7)? = pUZ)/2(p) (1)

(+ and —: fluid indices, a*, p*, U volume fractions,
densities and longitudinal velocities of fluids, Reynolds
average densityt),: Favre average velocity, and: bulk
average For A — 0, Kp is simply related to the TMZ
growth law byKp =~ (8Uy)%/12 = (dL/dt)%/48 wherea¥y,
is vanishingly small a&4.4%/5)Kp (Llor, 2001a) and will be
ignored here. The growth laws and the resultihgand
Kp/K; are given in Table 1Llor, 2001a).

The available datéRead & Youngs, 1983; Burrovet al.
1984; Read, 1984, and references in Dimonte & Schneide
1997; Llor, 2004A) from experiments and numerical simu-

1972, previously called Von Karman number in Llor, 2001

E is characteristic of large scales and, for unsteady flows as
considered here, itis close uwtequal to thegsmall scal¢
energy dissipation rate. However, expressf@hassumes
the existence of an inertial range to relateandE, as is
indeed observed even for the RT c&Balzielet al,, 1999.
The effective Knudsen numbers found for the three TMZs,
reported in Table 2, differ by a factor of up to 7 that reflects
striking structural differences: if, as commonly accepted,
the KH TMZ accommodates typically one large eddy in its
width, the IRM TMZ accommodates two and the RT seven.

3. TEST OF ELEMENTARY MODELS

; ON BASIC BULK QUANTITIES

The energy balance is of utmost importance in testing the

lations can be summarized by two basic bulk parameters, gshysical relevance and accuracy of models. As examples,

Table 2. Bulk-averaged parameters of self-similar RT, IRM, and KH TMZs, as obtained from experiments
and numerical simulations (estimated#20% from various sources), the modifieceknodel,

and Youngs’ two-fluid model

Source

Experiments & simulations

Modifiek—e model

Youngs’ two-fluid model

RT IRM KH RT IRM KH RT IRM KH
Vo, No, Xo 0.12 0.3 0.1 0.054 0.3 0.077 0.106 0.44 0.105
Kt /Kp 3 58 116 4.9 117 106 6.2 26 93
KT 0.09 0.3 0.63 1.4 0.42 0.53 0.58 0.58 0.76
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two elementary Reynolds-Averaged Navier—-Stdik&NS)-  therefore properly captured, but for the RT case, the directed
based statistical turbulent mixing models have been exantransportis replaced by an unphysically enhanced turbulent
ined: a modifiedk—s model(Andronovet al,, 1979; Gauthier diffusion, obtained by increasing; (or x1): After substitu-
& Bonnet, 1990; Bonnett al, 1992, and a two-fluid tur-  tion with the measured RT quantities in Table 2, thg¢)
bulent model introduced by Young4989. Here again, equation is incompatible with any reasonable values of the
bulk averaging has been applied to simplify the model PDEstandardk—= model constant€, and 0. The analytical
into ODEs(Llor, 2001a), as listed in Table 3, to reveal the results also show that no combinationagfandC,, values
basic phenomena that are captured. Self-similar solutions toan make the model to capture at onédg v, andK/K,
the ODEs are then given by algebraic equations, in analytitLlor, 2001a).
cal form for the two models considered hé¢kdor, 2001a). As in any two-fluid approach, the TMZ growth in Youngs'
With the recommended values of the coefficients, the modmodel is simply driven by directed transport as shown by
eled bulk-averaged quantities were obtained as listed ithe L(t) equation in Table 3. The model specificity stands
Table 2(Llor, 2001a). The corresponding initial conditions, in the two evolution equations for quantitiks and A (be-
which must be compatible with the self-similarity con- sides the usual four equations for mass and momentum, with
straint, are thus given by the listed solutions taken at a givendU )? drag force, turbulent diffusion, and added-mass ef-
finite time. fects. A is used to provide a closure of the characteristic
Most deviations between modeled and measured resultength scales for both turbulence and drag between the fluids:
fall in a =30% range and can be attributed to experimentah; = C;A/C,, andA4 = A/Cy, respectivelynotationskr, A,
and numerical errorgfor instance,K in the IRM case is Cg4, andC;, respectively, stand here far L, c;, andc, in
estimated from a single numerical studipulk-averaging Youngs publications The production term in th&equation
bias(these are not expected to exceetl0%; Llor, 2005),  dominates the other terms and is proportionady in the
and limited “universality” of the modelgék—¢ is typically =~ RT and IRM cases. This means thgtaséU,, is almost
optimized to capture boundary laygrsVithin this margin,  uniform across the TMZ and its bulk average,= (),
reasonable estimates of all the basic quantities in the IRMbehaves ak. Simple calculationsLlor, 2001a) show that,
and KH cases are obtained from both models, but significanih any gravitationally induced instabilitguch as RT and
discrepancies are observed in the RT ca4gis twice too  IRM, A=L/2, hencexr =C;/(2C,) ~0.58, and in the KH
low in the modifiedk—e, andk is overestimated by 15- and case, this value is corrected by a factor close to 1 which
7-fold factors, respectively, with the-e and two-fluid mod-  depends only oi€4. Here again, the sevenfold span of ex-
els. Particularly striking is thet value for thek—¢ that  perimentalk; values observed between the RT and KH
would indicate typical eddies’ sizes over twice larger thatcases cannot be captured.
the TMZ width! The strong overestimation &f: can generate major mod-
For the modifiedk—e, these inconsistencies result from eling errors whenever changes in turbulent structure or vis-
the purely diffusive modeling of the TMZ growth as visible cosity become essential, as in the case of combined RT and
on theL(t) equation in Table 3. The IRM and KH cases areKH. However, in the RT case, the: distortions of thek—

Table 3. Bulk-averaged equations of the modifiee:kand Youngstwo-fluid models for RT type mixing in the
incompressibleA — 0 limits (£ ~ 3: bulk correction factoy. In the KH casenot explicitly gben here Il becomes
the Reynolds stress productid@y, is replaced by ¢, and an equation im\ must also be added to Youngs
model(Llor, 2001a)

Model
Modified k—e Youngs’ two-fluid
Bulk d  8(C, K? q L me
equations att o, EL TR
d dL d dL 2
—K=—-———K+II—-E —Kp=——Kp—IT+ = Agy3K
dt L dt dt ° Ldt " 3 A9V3Ke
d dL E E2 d dL 2C K2
—E=-—E+Cyu—I1—Cyp— —Ky=—— Ky + 11— —*
dt Ldt 0K 2 K dt " Ldt " G \ L
I 2C, K2 C d V3Ko 3K, | 24/3Kp
— — A 9 oa[BKe — ACA[7KD)2 + — b
(RT type) o, EL g 2L (2/3Kp — 4C Ky + a4 2 7
Constants ¢~0.09,00~0.7, G2, ~1.92; C,.~0.09;
specificio, ~ 2, C,0~ 0.85 specificCqy =~ 20, C; =~ 0.105
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and two-fluid models play different roles in connection with gration ofgéU, whereas the second is due to the dilution as
the modeled TMZ growth processes: In the former, trans4/L of any initial deviation oK, (t5). aandb being positive,
port proceeds by enhanced turbulent diffusion, thus forcinghe contribution oK, (ty) is thus forgotten wheh— oo or
large 1 values, whereas in the latter, directed transport—t — 0 unless—2 < n < — 3. This result does not take into

dominates, and the; value is incidental.

4. VARIABLE ACCELERATION TO EXPLORE
DIRECTED VERSUS TURBULENT EFFECTS

Regardless of turbulence structure, that isgpfthe com-

accountthe spectral transfer and dissipatiag,¢f,). There-
fore, a critical valuen, exists between-2 and— £ such that,
for —2 < n < n, the behavior of SSVARTSs is dominated by
K,(tp), andL(t) grows necessarily as-*2 at late times.
This is exactly the situation of IRM mixing; hence the result
ne.=nNg— 2.

petition between the two transport processes becomes moreThe bulk-average#i-¢ and two-fluid models in Table 3

visible in self-similarvariable acceleratiorRT (SSVARTS

estimate), as listed in Table 4Llor, 2001a). Also given are

flows, although experimental or numerical data are not yethe results from scaled free fall and Read’s formiRead &

available. They are defined by

goct” fort>0, ifn> -2,

goc (—t)" fort<O0, ifn< -2

Youngs, 1983; Burrowst al. 1984; Read, 1984which are
the simplest approximations @ny two-fluid description
such as Youngs'in Table 3: the former by assuniihg 0
and scalingg into ),g (thusKp = )pK,), and the latter
(explicitly solved ag. = Yo (fV.Ag)?) by assuming that the

(n= 0is standard RY. Such flows were previously consid- directed transport dominates diffusion, the production and

ered forn > —1 only by Neuvazhae{1983 who gave their

destruction oKp are balanced, and the ratig, /L is inde-

TMZ growth rates as captured by his specific model. Thependent ofy(t) (Llor, 2001a). Unscaledtree fall (if Yy =1)

extension fom values below-2 is dictated by the unsuit-
able decreasing behavior bft) ast"*? forn < —2if g

provides an upper bound to TMZ growth, and Read’s for-
mula has been found to retrieve the TMZ growth to within

t". The TMZ would then experience an unphysical complete2% on the presently available variable acceleration experi-

demixing down td. = 0 under a positivenstability-inducing
gravity field. Although experimentally very demanding or
even out of reach, SSVARTs at nonnegligible valuesadn

ments(Burrowset al., 1984; Dimonte, 2000
Thek—e modeledy® displays two poles at; = nfF — 2=
_(4C£2 - 3)/(3C52 - 3) ~ —1.7 anan = _(4C£o - 3)/

be investigated through numerical simulations. It will only (3C,o — 3) ~ 0.89.))¢ is thus negative outside thel.7 to
be assumed here that SSVARTSs do exist a priori as Reynold3.89 interval, but the range of physically acceptahle

(ensemblgaverages, yielding (t) = V,.Ag(t)t? in the in-

compressibleA — 0 limits, where)), is positive.

values is certainly much wider. Again, the model is un-
able to capture the directed transport effects that are en-

For a SSVART to be stable, it must eventually “forget,” hanced when increasing JX* can be made positive for
for latet, any added perturbation on its initial state at tigme all n < —2 andn > n, by settingC,, = 3, a value reas-

taken as origin. A necessary condition is providedbit),
which behaves as(+ t)2""2 + b(+ t)~("*2: The first term

suringly close taC,, that causes turbulence to be produced
at the integral length scale. However, it is then found that

is the expected self-similar law produced by the time inte-V§* ~ 10~2 for the recommended value of, = 2, or that

Table 4. Analytical expressions @f,,, as obtained from the bulaweraged models

(Table3) and their approximations

Model

SSVART growth coefficieny,

Modified k-

Youngs' 2-fluid?

Scaled free fall

Read’s formula

2C,(C.2— C,)?(4C,, —3) H(4Cp—3) 7t
3C,,—3 3C,o—3
o,[1+ nj{1+ n
4C,,— 3 4C,o—3
(1+n/2)7t
Ca(1— N2C U)2(1 + n/2) + 3(1 + 3n/4)/2

Yo(1+n/2)71(1+ 3n/4)7t
Vo(1+n/2)72

Uy = \/ K+ /Kp is given by the largest real root of

4+3

n
3_ 4\2C, | 2c2Ccy — ————
C,. US \/—C,[C. Cq 227
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V&e = Yo = 0.12 for o, ~ 0.017, both extremes being such as),, «r, and Kp/K, should then significantly

physically unacceptable. strengthen constraints for model testing. Yet, with the lim-
The two-fluid modeled), also displays two simple ited present knowledge on two special ca@es —2 + ng
poles, any = ny — 2 andny = —2, being positive outside andn = 0) and on free fall, SSVARTs clearly show the

the poles, over the widest range of physically acceptable importance of directed transport and turbulence structure

values. Scaled free fall and Read’s approximation agaitfior elementary modeling. This is most naturally performed

display two simple poles), is always preserved at2, but  within a two-fluid approach. A two-fluid model consistent

n, is respectively increased te3 and decreased te 2. with the experimental results in Table(2nd most notice-
The plot ofY, in Figure 1, as scaled kit — n/ny) *(1—  ablyxy) was recently proposed®@ailly & Llor, 2002; Llor &

n/ny )", shows the existence of three continuously con-Bailly, this issug.

nected growth regimes, loosely defined by:
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