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Abstract

Directed energy and turbulence structure are shown to be crucial in understanding the growth of self-similar Rayleigh–
Taylor and incompressible Richtmyer–Meshkov turbulent mixing zones. Averaging over the mixing zone is used to
analyze the response of a modifiedk–« model and a turbulent two-fluid model. Three different transport regimes are then
identified by considering self-similar variable acceleration RT flows~SSVARTs!, which appear as promising reference
flows for model testing.
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1. INTRODUCTION

Mixing instabilities between two stratified fluids of differ-
ent densities induced by acceleration or gravitation are found
in many flows of basic and applied physics~astrophysics,
inertial confinement fusion, etc.!. The Rayleigh–Taylor~RT!
and Richtmyer–Meshkov~IRM ! instabilities, where accel-
eration is respectively constant and impulsive, are two im-
portant idealized plane cases commonly used to understand
and predict the main features of such flows~Sharp, 1984;
Kull, 1991; Inogamov, 1999!. In the final stage of such
instabilities, a fully developed turbulent regime appears in
the mixing layer, whose growth follows a more or less steep
power law, depending on the influence of dissipation and
molecular mixing. This late time behavior, of practical
importance in many applications, can be studied through
experiments and modeling, although it is analytically un-
tractable from first principles~Sharp, 1984; Kull, 1991;
Inogamov, 1999!. Qualitative analysis of other turbulent
layers~wakes, jets, etc.! have been available for many de-
cades~see, for instance, Tennekes & Lumley, 1972!, but do
not seem to have been given for RT and IRM situations. The
aim of the present work is to provide a similar insight on the
ensemble-averaged flow fields of gravitationally induced
mixing layers, in order to eventually suggest a new basis of

elementary modeling. The extensively investigated case of
the Kelvin–Helmoltz~KH ! turbulent mixing zones~TMZ !
will also be considered here as a reference.

The instabilities considered here will all be for initially
plane ideal interfaces, in the incompressible and fully de-
veloped turbulent limits, and between two fluids of vanish-
ingly small density difference~Ar 0, zeroAtwood number
limit !. Furthermore, since only broad qualitative features
will be discussed, all the relevant quantities will be averaged
over the width of the TMZ,L~t !. This is thebulk averaging
approximation, already used for the analysis of Atwood
number dependency~Dimonte, 2000!. Throughout the fol-
lowing discussion, all bulk averages will be given without
their explicit calculations, which are mostly straightforward
and can also be found in a previous work~Llor, 2001a!.

2. OBSERVED ENERGY BALANCE AND
INTEGRAL LENGTH SCALE

In theA r 0 limit, experiments and numerical simulations
show that the average volume fraction profiles of the fluids
in the TMZs are practicallylinear functions of the longitu-
dinal coordinate,x ~Read & Youngs, 1983; Burrowset al.
1984; Read, 1984; and the numerous collected references in
Dimonte & Schneider, 1997; Llor, 2001a!. Using the mass
conservation equations, the average longitudinal fluid ve-
locities in the TMZ are also found to be linear inx, and their
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difference is constant throughout the TMZ, given bydUx~t !5
~d0dt!L~t !02 ~Llor, 2001a!.

These volume fraction and velocity profiles, together with
a TMZ growth law, directly provide three important terms
of the overall energy balance:KI ~t !, the total input energy
~converted from gravitational energy~RT! or mean trans-
verse kinetic energy~KH !!, KM~t !, the mean kinetic energy,
andKD~t !, here called “directed” kinetic energy.KM is cal-
culated from the one-fluid~Favre! mean longitudinal veloc-
ity, andKD is the excess of mean kinetic energy introduced
when going from a one-fluid to a two-fluid average field
description:

KD 5 ^a1r1~Ux
1!2 1 a2r2~Ux

2!2 2 rUx
2 &02^r& ~1!

~1 and 2: fluid indices, a6, r6, Ux
6: volume fractions,

densities and longitudinal velocities of fluids,r: Reynolds
average density,Ux: Favre average velocity, and̂.&: bulk
average!. For A r 0, KD is simply related to the TMZ
growth law byKD ' ~dUx!20125 ~dL0dt!2048 whereasKM

is vanishingly small as~4A205!KD ~Llor, 2001a! and will be
ignored here. The growth laws and the resultingKI and
KD0KI are given in Table 1~Llor, 2001a!.

The available data~Read & Youngs, 1983; Burrowset al.
1984; Read, 1984, and references in Dimonte & Schneider,
1997; Llor, 2001a! from experiments and numerical simu-
lations can be summarized by two basic bulk parameters, as

collected in Table 2: the coefficient inL~t !,Y0, n0, orX0 for
RT, IRM, or KH, respectively, and the turbulent kinetic
energy,K. Using the results of Table 1,KD is found to be
negligible compared toK in the IRM and KH cases, whereas
it is of similar order in the RT case. This reflects a striking
difference of the energy distribution that motivates the need,
already pointed out by various authors~Dimonte, 2000;
Read, 1984; Youngs, 1989!, of two-fluid modeling in the RT
case instead of one fluid for IRM and KH. In the RT case, it
also justifies distinguishing the~single-fluid! turbulent ki-
netic energy, as measured in experiments, from the two-
fluid turbulent kinetic energy, defined asKT 5 K 2 KD.
Furthermore, sinceKD is associated to purely longitudinal
velocity components, it has a major contribution to the over-
all Reynolds tensor anisotropy.

From the self-similar evolution ofKI 2 KD 2 KT, one can
determine the bulk-averaged turbulent energy transfer to
intermediate scales in the TMZs,E ~also called spectral
flux!, or the closely related nondimensional parameter:

kT 5 KT
3020~EL! ' L i 0L. ~2!

L i is an average integral length scale~the typical size of the
largest eddies! andkT thus stands as an effective Knudsen
number of the turbulent transport~Tennekes & Lumley,
1972!, previously called Von Kármán number in Llor, 2001b.
E is characteristic of large scales and, for unsteady flows as
considered here, it is close butnotequal to the~small scale!
energy dissipation rate. However, expression~2! assumes
the existence of an inertial range to relateL i andE, as is
indeed observed even for the RT case~Dalzielet al., 1999!.
The effective Knudsen numbers found for the three TMZs,
reported in Table 2, differ by a factor of up to 7 that reflects
striking structural differences: if, as commonly accepted,
the KH TMZ accommodates typically one large eddy in its
width, the IRM TMZ accommodates two and the RT seven.

3. TEST OF ELEMENTARY MODELS
ON BASIC BULK QUANTITIES

The energy balance is of utmost importance in testing the
physical relevance and accuracy of models. As examples,

Table 1. Basic self-similar TMZ growth laws

Instability

RT IRM KH

L~t ! Y0 3 Agt2 L0S t

t0
Dn0

X0 3 DUyt

KI ~t !
Y0

12
3 ~Agt!2 KI 0S t

t0
D2n0 1

12
3 ~DUy!2

KD0KI Y0
n0

2

48
3

L0
2

KI 0 t02
S t

t0
D~3n022! X0

2

4

Table 2. Bulk-averaged parameters of self-similar RT, IRM, and KH TMZs, as obtained from experiments
and numerical simulations (estimated to620% from various sources), the modified k–« model,
and Youngs’ two-fluid model

Source

Experiments & simulations Modifiedk–« model Youngs’ two-fluid model

RT IRM KH RT IRM KH RT IRM KH

Y0, n0, X0 0.12 0.3 0.1 0.054 0.3 0.077 0.106 0.44 0.105
KT0KD 3 58 116 4.9 117 106 6.2 26 93
kT 0.09 0.3 0.63 1.4 0.42 0.53 0.58 0.58 0.76
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two elementary Reynolds-Averaged Navier–Stokes~RANS!-
based statistical turbulent mixing models have been exam-
ined: a modifiedk–« model~Andronovet al., 1979; Gauthier
& Bonnet, 1990; Bonnetet al., 1992!, and a two-fluid tur-
bulent model introduced by Youngs~1989!. Here again,
bulk averaging has been applied to simplify the model PDEs
into ODEs~Llor, 2001a!, as listed in Table 3, to reveal the
basic phenomena that are captured. Self-similar solutions to
the ODEs are then given by algebraic equations, in analyti-
cal form for the two models considered here~Llor, 2001a!.
With the recommended values of the coefficients, the mod-
eled bulk-averaged quantities were obtained as listed in
Table 2~Llor, 2001a!. The corresponding initial conditions,
which must be compatible with the self-similarity con-
straint, are thus given by the listed solutions taken at a given
finite time.

Most deviations between modeled and measured results
fall in a 630% range and can be attributed to experimental
and numerical errors~for instance,K in the IRM case is
estimated from a single numerical study!, bulk-averaging
bias~these are not expected to exceed610%; Llor, 2001a!,
and limited “universality” of the models~k–« is typically
optimized to capture boundary layers!. Within this margin,
reasonable estimates of all the basic quantities in the IRM
and KH cases are obtained from both models, but significant
discrepancies are observed in the RT case:Y0 is twice too
low in the modifiedk–«, andkT is overestimated by 15- and
7-fold factors, respectively, with thek–« and two-fluid mod-
els. Particularly striking is thekT value for thek–« that
would indicate typical eddies’ sizes over twice larger that
the TMZ width!

For the modifiedk–«, these inconsistencies result from
the purely diffusive modeling of the TMZ growth as visible
on theL~t ! equation in Table 3. The IRM and KH cases are

therefore properly captured, but for the RT case, the directed
transport is replaced by an unphysically enhanced turbulent
diffusion, obtained by increasingL i ~or kT!: After substitu-
tion with the measured RT quantities in Table 2, theL~t !
equation is incompatible with any reasonable values of the
standardk–« model constantsCm and sc. The analytical
results also show that no combination ofsr andC«0 values
can make the model to capture at onceY0, kT, andK0KI

~Llor, 2001a!.
As in any two-fluid approach, the TMZ growth inYoungs’

model is simply driven by directed transport as shown by
the L~t ! equation in Table 3. The model specificity stands
in the two evolution equations for quantitieskT andl ~be-
sides the usual four equations for mass and momentum, with
~dU !2 drag force, turbulent diffusion, and added-mass ef-
fects!. l is used to provide a closure of the characteristic
length scales for both turbulence and drag between the fluids:
l i 5 Ci l0Cm andld 5 l0Cd, respectively~notationskT, l,
Cd, andCi , respectively, stand here fork, L, c1, andc2 in
Youngs publications!. The production term in thel equation
dominates the other terms and is proportional todUx in the
RT and IRM cases. This means thatl, asdUx, is almost
uniform across the TMZ and its bulk average,L 5 ^l&,
behaves asL. Simple calculations~Llor, 2001a! show that,
in any gravitationally induced instabilitysuch as RT and
IRM, L 5 L02, hence,kT 5 Ci 0~2Cm! ' 0.58, and in the KH
case, this value is corrected by a factor close to 1 which
depends only onCd. Here again, the sevenfold span of ex-
perimentalkT values observed between the RT and KH
cases cannot be captured.

The strong overestimation ofkT can generate major mod-
eling errors whenever changes in turbulent structure or vis-
cosity become essential, as in the case of combined RT and
KH. However, in the RT case, thekT distortions of thek–«

Table 3. Bulk-averaged equations of the modified k–« and Youngs’ two-fluid models for RT type mixing in the
incompressible, A r 0 limits ~z ' 3

2
_: bulk correction factor!. In the KH case, not explicitly given here, P becomes

the Reynolds stress production, C«0 is replaced by C«1, and an equation inL must also be added to Youngs’
model~Llor, 2001a!

Model

Modified k–« Youngs’ two-fluid

Bulk
equations

d

dt
L 5

8zCm

sc

K 2

EL

d

dt
L 5 4!3KD

d

dt
K 5 2

dL

L dt
K 1 P 2 E

d

dt
KD 5 2

dL

L dt
KD 2 P 1

2

3
Ag!3KD

d

dt
E 5 2

dL

L dt
E 1 C«0

E

K
P 2 C«2

E2

K

d

dt
KT 5 2

dL

L dt
KT 1 P 2

2Cm

Ci

!z
KT

302

L

P
~RT type!

2Cm

sr

K 2

EL
Ag FCd

2L
~2!3KD 2 4Ci!zKT !2 1

d

dt

!3KD

4
1

3KD

2L
G 2!3KD

z

Constants Cm ' 0.09,sc ' 0.7, C«2 ' 1.92; Cm ' 0.09;
specific:sr ' 2, C«0 ' 0.85 specific:Cd ' 20,Ci ' 0.105
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and two-fluid models play different roles in connection with
the modeled TMZ growth processes: In the former, trans-
port proceeds by enhanced turbulent diffusion, thus forcing
large kT values, whereas in the latter, directed transport
dominates, and thekT value is incidental.

4. VARIABLE ACCELERATION TO EXPLORE
DIRECTED VERSUS TURBULENT EFFECTS

Regardless of turbulence structure, that is, ofkT, the com-
petition between the two transport processes becomes more
visible in self-similarvariable accelerationRT ~SSVARTs!
flows, although experimental or numerical data are not yet
available. They are defined by

g@ t n for t . 0, if n . 22,

g@ ~2t !n for t , 0, if n , 22 ~3!

~n5 0 is standard RT!. Such flows were previously consid-
ered forn . 21 only by Neuvazhaev~1983! who gave their
TMZ growth rates as captured by his specific model. The
extension forn values below22 is dictated by the unsuit-
able decreasing behavior ofL~t ! ast n12 for n , 22 if g @
t n. The TMZ would then experience an unphysical complete
demixing down toL50 under a positive,instability-inducing
gravity field. Although experimentally very demanding or
even out of reach, SSVARTs at nonnegligible values ofncan
be investigated through numerical simulations. It will only
be assumed here that SSVARTs do exist a priori as Reynolds
~ensemble! averages, yieldingL~t ! 5 YnAg~t !t 2 in the in-
compressible,A r 0 limits, whereYn is positive.

For a SSVART to be stable, it must eventually “forget,”
for latet, any added perturbation on its initial state at timet0
taken as origin. A necessary condition is provided byKI ~t !,
which behaves asa~6 t !2n12 1 b~6 t !2~n12! : The first term
is the expected self-similar law produced by the time inte-

gration ofgdU, whereas the second is due to the dilution as
10L of any initial deviation ofKI ~t0!. a andb being positive,
the contribution ofKI ~t0! is thus forgotten whent r ` or
2t r 0 unless22 , n , 2 4

3
_. This result does not take into

account the spectral transfer and dissipation ofKI ~t0!. There-
fore, a critical valuenc exists between22 and2 4

3
_ such that,

for 22 , n , nc, the behavior of SSVARTs is dominated by
KI ~t0!, and L~t ! grows necessarily ast nc12 at late times.
This is exactly the situation of IRM mixing; hence the result
nc 5 n0 2 2.

The bulk-averagedk–« and two-fluid models in Table 3
estimateYn as listed in Table 4~Llor, 2001a!. Also given are
the results from scaled free fall and Read’s formula~Read &
Youngs, 1983; Burrowset al.1984; Read, 1984!, which are
the simplest approximations ofany two-fluid description
such as Youngs’ in Table 3: the former by assumingP 5 0
and scalingg into Y0g ~thus KD 5 Y0KI !, and the latter
~explicitly solved asL 5Y0~*!Ag!2! by assuming that the
directed transport dominates diffusion, the production and
destruction ofKD are balanced, and the ratioLD0L is inde-
pendent ofg~t ! ~Llor, 2001a!. Unscaledfree fall ~if Y0 51!
provides an upper bound to TMZ growth, and Read’s for-
mula has been found to retrieve the TMZ growth to within
2% on the presently available variable acceleration experi-
ments~Burrowset al., 1984; Dimonte, 2000!.

Thek–« modeledYn
k« displays two poles atn15n0

k« 225
2~4C«2 2 3!0~3C«2 2 3! ' 21.7 andn2 5 2~4C«0 2 3!0
~3C«0 2 3! ' 0.89.Yn

k« is thus negative outside the21.7 to
0.89 interval, but the range of physically acceptablen
values is certainly much wider. Again, the model is un-
able to capture the directed transport effects that are en-
hanced when increasingn. Yn

k« can be made positive for
all n , 22 andn . n1 by settingC«0 5 3

2
_, a value reas-

suringly close toC«1 that causes turbulence to be produced
at the integral length scale. However, it is then found that
Y0

k« ' 1023 for the recommended value ofsr 5 2, or that

Table 4. Analytical expressions ofYn, as obtained from the bulk-averaged models
~Table3! and their approximations

Model SSVART growth coefficientYn

Modified k–« 2Cm~C«2 2 C«0!2~4C«2 2 3!21~4C«0 2 3!21

srS11
3C«2 2 3

4C«2 2 3
nDS11

3C«0 2 3

4C«0 2 3
nD

Youngs’ 2-f luida ~11 n02!21

Cd~12!2Ci Un!2~11 n02! 1 3~11 3n04!02

Scaled free fall Y0~11 n02!21~11 3n04!21

Read’s formula Y0~11 n02!22

aUn 5!KT 0KD is given by the largest real root of

Cm Un
3 2 4M2CiF2Ci

2Cd 2
4 1 3n

2~2 1 n!
GUn

2 1 16Ci
2Cd Un 2 2M2CiFCd 1

4 1 3n

2~2 1 n!
G 5 0
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Y0
k« 5 Y0 5 0.12 for sr ' 0.017, both extremes being

physically unacceptable.
The two-fluid modeledYn

Y also displays two simple
poles, atn1

Y 5 n0
Y 2 2 andn2

Y 5 22, being positive outside
the poles, over the widest range of physically acceptablen
values. Scaled free fall and Read’s approximation again
display two simple poles:n2 is always preserved at22, but
n1 is respectively increased to2 4

3
_ and decreased to22.

The plot ofYn in Figure 1, as scaled by~12 n0n1
Y !21~12

n0n2
Y !21, shows the existence of three continuously con-

nected growth regimes, loosely defined by:

1. n0 2 2 , n & 2 1; directed transport is dominated by
turbulent diffusion~minimal for IRM atn 5 n0!,

2. 21 & n , 1` and2`, n & 2 5
2
_; directed transport

is controlled by turbulent viscosity,
3. 2 5

2
_ & n , 22; directed transport is limited by free

fall.

Single-fluid models, such as the modifiedk–«, appear un-
natural to describe directed transport and are limited to the
first regime. In the second regime, the widest, both scaled
free fall and Read’s approximations provide surprisingly
good accuracies of about630% compared to a full two-
fluid model, but fail in the first and third, where they either
diverge or vanish. They limit the range of acceptable re-
sponses because their RM poles take the extreme values22
and2 4

3
_. Only a full two-fluid model, such as Youngs’, is

able to capture all three regimes at once in a physically
acceptable manner, even though it misses some important
features such as dissipation of density fluctuations~Linden
& Redondo, 1991; Youngs, 1995; Dalzielet al. 1999!, ef-
fective Knudsen number~present work!.

5. CONCLUSION

SSVARTs are currently being investigated by numerical
means~Youngs & Llor, 2002!. Values of bulk parameters

such asYn, kT , and KD0KI should then significantly
strengthen constraints for model testing. Yet, with the lim-
ited present knowledge on two special cases~n 5 22 1 n0

and n 5 0! and on free fall, SSVARTs clearly show the
importance of directed transport and turbulence structure
for elementary modeling. This is most naturally performed
within a two-fluid approach. A two-fluid model consistent
with the experimental results in Table 2~and most notice-
ablykT! was recently proposed~Bailly & Llor, 2002; Llor &
Bailly, this issue!.
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