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Abstract

Wine grapes contribute significantly to the economy of California, with a gross production
value of more than $2 billion in 2010. Studies on economic issues in the industry require
measures of demand response to price, but despite the economic importance of this industry,
estimates of elasticities of demand for wine grapes have not been published. We use a flexible-
form inverse demand system model to estimate elasticities of demand for wine grapes
from three grape-growing regions in California, representing three different quality (price)
categories. The resulting estimates of own-price elasticities are high, ranging from −2.6
for grapes in the low-price region to −9.5 for grapes in the high-price region. Such
high elasticities are plausible given the role of international trade in wine, and they
are consistent with synthetic estimates that we computed based on a combination of
economic theory, data on market shares, estimates of some pertinent parameters in the
literature, and informed guesstimates of values for other parameters. (JEL Classification:
Q11, Q12, Q13)

I. Introduction

In California, grapes rank as the highest-value agricultural crop and the second-
highest-value agricultural product after milk and cream. Wine grapes alone
comprised roughly $2.1 billion, or 5.9 percent, of the total value of California’s
farm production in 2010 (California Department of Food and Agriculture, 2011),
with a further $0.9 billion from table grapes, raisin grapes, and grapes crushed for
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other uses. California produced 86 percent of the volume and value of U.S. wine
grapes in 2010 (National Agricultural Statistics Service, 2011). Measures of demand
response to economic factors, in particular price and income elasticities, are often
used in policy analysis. However, very few studies have estimated elasticities of
demand for wine produced in California and, to our knowledge, no one has
published estimates of elasticities of demand for California wine grapes. To address
this deficiency, this article reports the results from using two complementary
approaches to estimate elasticities of demand for three quality categories of
California wine grapes.

The article is organized as follows. Section 2 discusses some conceptual issues
and practical considerations. Section 3 discusses methods of obtaining “guessti-
mates” of elasticities using a combination of published estimates of related
parameters, data on market shares, economic theory, and assumptions about key
relationships. Section 4 reviews the theory on specification and estimation of inverse
demand system models. Section 5 gives an overview of the chosen model, which
nests several others that can be obtained by imposing restrictions on some of the
parameters. Section 6 presents econometric results using this flexible demand
system, discusses the challenges of that estimation process, and presents estimates of
flexibilities and elasticities derived from the preferred set of estimates. Section 7
compares these to the “synthetic” estimates and discusses both sets of results, and
Section 8 concludes the article.

II. Conceptual Issues and Practical Considerations

Several aspects of the demand for California wine grapes are pertinent when
deciding how to go about estimating elasticities that will be useful for policy analysis
and interpreting the results from estimation. These aspects influenced our primary
modeling decisions.

First, given the recursive structure of supply and demand in the industry, it is
appropriate to estimate an inverse demand model, in which price is a function of
quantity demanded.

Second, the demand for California wine grapes is not final consumer
demand but, rather, a derived demand for a factor of production used in
winemaking. Consequently, most of the available estimates of elasticities of demand
for wine cannot be compared directly to estimates of elasticities of demand for wine
grapes because factor demand and consumer demand differ in some important
ways.

Third, wine is a traded good and, consequently, the demand for wine made from
California wine grapes (and thus the demand for California wine grapes) is
effectively a residual demand, which is influenced by global supply and demand
conditions, making the relevant demands much more elastic than they would be
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otherwise. We explicitly address this aspect of the demand both in deriving synthetic
estimates of elasticities and in interpreting our econometric estimates.

Fourth, and finally, wine is a highly differentiated product, and California
produces correspondingly differentiated wine grapes across a diverse range of
agroecologies to supply a range of market outlets. Reflecting this diversity, the
California Department of Food and Agriculture (CDFA) collects detailed data at
the level of the crush district, of which California has 17. Both yield and price
(as well as varieties grown, which often influence yield and price) vary markedly
among California’s diverse production regions. In general, in the Napa and Sonoma
Valleys, vineyards produce a low number of tons per acre under carefully managed
conditions. In the Central Valley, especially in the southernmost part of that region,
production styles are different from Napa and Sonoma: yields are much higher,
prices per ton are much lower, and much more bulk production takes place.1 The
rest of the state, which includes the Central Coast, Mendocino and Lake Counties,
the Sierra Foothills, and southern California, produces a range of wine grapes that
fall between these two extremes in terms of price and yield.

In models of demand systems, the number of parameters to be estimated increases
quickly as the number of goods in the system increases, causing a loss of degrees of
freedom and a corresponding increase in the odds of finding statistically insignificant
or economically implausible estimates. For the purposes of this analysis, we
aggregated the 17 crush districts into three regions that we defined as High,
Medium, and Low based on their average wine grape prices. This is a small enough
system to be manageable econometrically while at the same time distinguishing
among the main distinct subcategories of wine grapes. The regions are defined
in Table 1, which also presents regional statistics on production, acreage, price, and
yield.

III. “Synthetic” Estimation of Elasticities of Demand

Elasticities of the derived, residual demand for wine grapes can be estimated using
economic theory together with published estimates of related parameters and some
educated guesswork. This type of approach is commonly used to define elasticities
used in calibrated simulation models and may be the only option if suitable data are
not available for econometric analysis. In this section, we calculate matrices of
compensated and uncompensated elasticities of demand for California wine grapes
using published estimates of elasticities of demand for wine combined with data on

1Some vineyards in Napa produce less than 2 tons per acre and some vineyards in the southern Central
Valley produce more than 20 tons per acre, and prices for grapes from the Central Valley are
correspondingly much lower (California Department of Food and Agriculture/National Agricultural
Statistics Service, 1985–2011).
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market shares and informed assumptions about other key parameters. Later, we
compare these estimates with those made using econometric methods.

Fogarty (2010) conducted a meta-analysis of the worldwide literature on demand
for alcohol. He reported estimates of the own-price elasticities of demand for beer,
wine, and spirits from 141 studies. These studies reported 177 estimates of own-price
elasticities of demand for wine, 31 of which refer to the United States.2 The
estimates of the uncompensated own-price elasticity range from −1.86 to −0.18.
However, Fogarty (2010) reported estimates of elasticities of demand for wine, a
finished product, which is different from wine grapes, an input. We use estimates
reported by Fogarty (2010) with other information to derive estimates of elasticities
of the demand for California wine grapes.

A. “Synthetic” Estimation of the Elasticity of Demand for Wine Grapes

This initial analysis treats wine as a homogeneous product and abstracts from
transport costs and trade barriers such that prices are equal everywhere (adjustments
for differentiated products and incomplete price transmission are introduced
subsequently). The (residual) demand for California wine (DC) is equal to the total
demand for wine (DW), less the supply from the rest of the world (SR).

DC = DW − SR. (1)

Table 1
California Wine Grape Growing Regions: Definitions and Sample Statistics

Quality (Price) Region

High Medium Low State total

2010 Values
Bearing area Thousands of acres 100 224 132 456
Yield Tons/acre 3 6 13 7
Total value Millions of 2010 $ 835 1,051 529 2,416
Total crush Thousands of tons 331 1,427 1,831 3,589
Average price 2010 $/ton 2,526 737 289 673

1985–2009 Sample Statistics for Annual Data

Total crush
(standard deviation)

Thousands of tons 262 787 1,416 2,465
(63) (383) (147) (541)

Average price
(standard deviation)

2010$/ton 2,118 866 290 674
(621) (180) (58) (141)

Note: The high-price region is made up of crush districts 3 and 4; the medium-price region is made up of crush districts 1, 2, 5–11, and, 15–17;
the low-price region is made up of crush districts 12–14.

2The studies reviewed by Fogarty (2010) reported a mixture of compensated, uncompensated, and Frisch
elasticities of demand. Some papers reported multiple estimates.
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Differentiating with respect to P, and then multiplying by P/DC gives the following.

∂DC

∂P
P
DC

= ∂DW

∂P
P
DC

− ∂SR

∂P
P
DC

. (2)

The left-hand-side term is equal to the own-price elasticity of demand for California
wine. Multiplying the first term on the right-hand side by DW/DW and the second
term by SR/SR and rewriting in terms of elasticities yields

ηC = ηW
1

WC

( )
− εR

1
1− wC

( )
. (3)

In Equation (3), the own-price elasticity of demand for California wine, ηC, is equal
to the elasticity of demand for wine from all sources, ηW, divided by the quantity
(or value) share of California wine, wC, less the elasticity of supply of wine from the
rest of the world, εR, divided by 1 minus the quantity (or value) share of California
wine (which, in turn, is equal to the quantity or value share of wine from the rest of
the world).

The average of all the uncompensated own-price elasticities of demand for wine
reported in Fogarty (2010) is −0.8, and we use this value as an estimate of ηW. The
quantity share of wine produced by California wineries as a proportion of total
world production, averaged over the previous four years for which data were
available, is 0.08 (Wine Institute, 2010a, 2010b). Useful estimates of the elasticity of
supply for the rest of the world were not available, so the calculation was made using
a range of values for this parameter that can be interpreted as encompassing a range
from very short- to relatively long-run supply response: 0.0, 0.5, and 1.0. The results
were not very sensitive to this parameter, so we report estimates in Table 2 using
only the intermediate value of 0.5. Table 2 gives the resulting estimate of ηC=−10.5

Table 2
Elasticities of Demand for California Wine (ηC) and California Wine Grapes (ηG) Implied by

Alternative Elasticities of Supply and Price Transmission

Elasticity of Wine Price
Transmission (EC)

Elasticity of Supply of Other
Winemaking Inputs (εO)

Implied Elasticity of
Demand for

1.00 Wine (ηC) −10.5
∞ Grapes (ηG) −4.3
1 −0.8

0.50 Wine (ηC) −5.3
∞ Grapes (ηG) −2.2
1 −0.5

0.25 Wine (ηC) −2.6
∞ Grapes (ηG) −1.1
1 −0.4

Notes: Entries were computed by the authors using Equation (6), which is equivalent to using Equation (5) under the assumption of fixed
proportions between wine grapes and other inputs in winemaking and the elasticity of supply of wine from the rest of the world is εR=0.5.
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in the first row, which is comparatively large, in part because it is based on an
extreme assumption of perfect price transmission.

In reality price transmission is not complete between California and other
countries and regions, reflecting the effect of transport costs, trade barriers, or other
market realities, including the fact that wine is a highly differentiated product and
wines from elsewhere may be imperfect substitutes for California wine. Setting aside
product differentiation, certain countries might not participate in the international
market for wine at all, in which case their relevant elasticity of price transmission is
0. Other countries play an important role in the market, but price changes are still
not transmitted perfectly between those countries and California, so the elasticity of
price transmission would be positive, but less than 1.0.3

A generalization of Equation (3) to accommodate imperfect price transmission
would allow for each country-specific supply elasticity and each country-specific
demand elasticity to be weighted by its respective country-specific elasticity of price
transmission with California.4 A special case of that more-general equation applies
if the demand elasticities as well as the supply elasticities are equal across countries
and if the elasticities of price transmission with California are equal across all pairs
of countries. In this case, the effect of allowing for imperfect price transmission is
simply to scale down the elasticity of demand for California wine as follows, where
EC is the elasticity of price transmission for California wine (which can be estimated
as a share-weighted average of the country-specific elasticities of price transmission,
if the assumption of equal elasticities of price transmission is used as an
approximation).

ηC = EC ηW
1
sC

( )
− εR

1
1− wC

( )( )
. (4)

The elasticity of demand for California wine, computed using a value of 1.0 for the
elasticity of price transmission is shown in the first block of entries in Table 2 as
−10.5. The second and third blocks of entries refer to estimates using elasticities of
price transmission of 0.50 and 0.25. Comparing the first, fourth, and seventh rows
of Table 2, reducing the elasticity of price transmission scales down the elasticity of
demand in proportion, as implied by Equation (4).

The subject of this study is the demand for California wine grapes, which is
derived from the demand for California wine. The demand for California wine is
equal to the horizontal (algebraic) difference between the total global demand
for wine from all sources and supply from the rest of the world (ROW), as shown

3For instance, if transport costs are fixed in per-unit terms and represent an amount equal to the FOB
(free on board) value of the wine, such that landed CIF (cost, insurance, and freight) prices at the
destination are double FOB prices at the source, then the elasticity of price transmission would be 0.5.
4For example, see Alston and Scobie (1987).
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in Equation (1). The demand for California wine grapes is derived from the
demand for California wine in conjunction with technology of winemaking and
the supply of winemaking inputs. The demand for wine grapes can then be
further decomposed into interdependent demands for wine grapes by quality
category.

We can use estimates of the elasticity of demand for California wine in
the equation for elasticity of demand for a factor of production (see Muth [1964])
to derive the elasticity of demand for California wine grapes. In Equations (5) and
(6), ηG is the uncompensated own-price elasticity of demand for wine grapes used in
winemaking, wG is the cost share of wine grapes, εO is the elasticity of supply of
other (winemaking) inputs, and σ is the elasticity of substitution between wine
grapes and other inputs in winemaking (Muth [1964] provides a derivation of this
equation).

ηG = ηCσ − (wOσ − wGηC)εO
wGσ − wOηC + εO

. (5)

Assuming fixed proportions between wine grapes and all other inputs in wine-
making, that is, σ=0, Equation (5) simplifies to

ηG = wGηCεO
εO − wOηC

. (6)

The cost share of wine grapes in wholesale wine (wG) was calculated using
data on wine prices in the Gomberg-Fredrikson Report (1980–2011) and data
on wine grape prices from California Department of Food and Agriculture
Crush Reports (California Department of Food and Agriculture/National
Agricultural Statistics Service, 1985–2011), assuming that 67 cases of wine can
be produced per ton of grapes crushed (Smith, 2011). The average cost share for
the years examined is 0.41.5 This estimate of wG=0.41 was used in Equation (6),
along with the estimates of the elasticity of demand for California wine (ηC) in
Table 2 and alternative assumed values of the elasticity of supply of other
winemaking inputs εO=1.0 or ∞, to compute the corresponding elasticities of
demand for California wine grapes that are reported in Table 2. The consequent
estimates of the own-price elasticity of demand for California wine grapes range
from −0.4 (representing a very short-run elasticity with a fixed ROW supply,
25 percent price transmission, and an elasticity of supply of other winemaking
inputs of 1.0) to −4.5 (a relatively long-run elasticity based on a fairly elastic ROW
supply, 100 percent price transmission, and a perfectly elastic supply of other
winemaking inputs).

5The value of 0.41 is consistent with subjective estimates of the cost share of about 0.5 that were obtained
from experts (Franklin, 2007; Lapsley, 2011).
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B. Elasticity of Demand for Quality-Differentiated Wine Grapes

We can derive elasticities of demand for specific wine grape categories by using a
variant of the Slutsky equation, written to allow for imperfect substitution among
wine grapes from different regions—High, Medium, and Low quality, as defined in
Table 1—within the total market for California wine grapes. Equations (7) and (8)
represent the Marshallian (or uncompensated) measures of the own-price elasticity
of demand for grapes from region i (ηii) and the cross-price elasticity of demand for
grapes from region i with respect to price of grapes from region j (ηij). Equations (9)
and (10) represent their Hicksian (or compensated) counterparts.6

ηii = −(1− wi)σij + wiηG (7)

ηij = wj(σij + ηG) for j = I (8)

η∗ii = −(1− wi)σij (9)

η∗ij = wjσij for j = i (10)

Here σij is the elasticity of substitution in winemaking between grapes from different
regions-cum-quality categories, which is assumed to be constant across all pairs, for
which three alternative values are tried: 3, 5, and 10.7 The expenditure share from
region i (wi) was calculated by computing the five-year average (2006–2010) of the
total wine grape revenue of the region and then dividing by the five-year average of
the revenue summed across regions.

Table 3 reports the calculated elasticities of demand for wine grapes by
quality-region using the formulas in Equation (7) (the Marshallian own-price
elasticity of demand for wine grapes from region i) and Equation (8) (the
Marshallian cross-price elasticity of demand for wine grapes from region j
with respect to the price of wine grapes from region i). Using an elasticity of
substitution between wine grape categories (σij) of 5.0 and an elasticity of demand
for aggregated wine grapes (ηG) of −2.2 (consistent with EC= εR=0.5), the

6The Marshallian elasticities reflect responses to input price changes holding the output price constant
while the Hicksian elasticities reflect responses to input price changes holding the output quantity
constant. In this case the concept of output is total wine grapes and the relevant inputs are wine grapes
from different quality categories.
7These values were chosen based on an informal review of studies using “Armington”models of markets
for farm commodities differentiated by place of origin, many of which used elasticities of substitution in
the range between 3 and 10 (e.g., see Alston et al. [1990]; Johnson [1971]). Studies of wine demand have
assumed values for elasticities of substitution in a similar range. For example, Wittwer and Anderson
(2002) used “Armington” elasticities of substitution between domestic and imported wines of 4.0 in
Australia, and used an elasticity of substitution between different categories of wine imports to Australia
of 8.0. Fogarty and Jakeman (2011) made similar assumptions but allowed for a range of elasticities of
substitution differing among qualities of wine, ranging from 1.5 for the most expensive wines, up to 6.0 for
the lowest quality segments.
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own-price elasticities of demand for Low-, Medium-, and High-price wine grapes
are −4.5, −3.8, and −3.9, respectively. The results, as would be expected, are fairly
sensitive to the value of σij, as can be seen by comparing estimates across columns
in Table 3. The results are less sensitive to changes in the estimated elasticity of
demand for wine grapes, ηG, as can be seen by comparing estimates within a column
of Table 3.

IV. Theory and Structural Models

We chose to estimate an inverse demand system, for reasons discussed at the
beginning of the article. Many commonly used direct demand models, such as the
Almost Ideal Demand System (AIDS), Rotterdam, Rotterdam-AIDS (RAIDS),
and (Netherlands) Central Bureau of Statistics (CBS), have been reworked as
inverse models, with varying degrees of success. In developing our model, we drew
on several papers published in the late 1970s and early 1980s that address the
estimation of inverse demand systems, especially Anderson (1980) and Deaton
(1979).

To arrive at a reduced-form model, we follow Brown, Lee, and Seale (1995) by
first assuming weak separability and then using a primal approach and consumer
utility theory to derive an inverse system of Marshallian demands. Wine grapes are
rarely purchased directly by consumers, but, while interpretations of consumer and
producer theory differ, the theory for deriving and estimating demand systems for

Table 3
“Synthetic” Uncompensated Elasticities of Demand for Low-, Medium-, and High-Price
Wine Grapes based on Alternative Values of the Aggregate Elasticity of Demand (ηG)

Elasticity of Substitution Between Categories of Wine Grapes

σij=3 σij=5 σij=10

Low Medium High Low Medium High Low Medium High

ηG=−4.5
Low −3.3 −0.7 −0.6 −4.9 0.2 0.2 − 9.1 2.4 2.1
Medium −0.3 −3.7 −0.6 0.1 −4.8 0.2 0.9 −7.6 2.1
High −0.3 −0.7 −3.6 0.1 0.2 −4.8 0.9 2.4 −7.9

ηG=−2.2
Low −2.9 0.4 0.3 −4.5 1.2 1.1 −8.7 3.4 3.0
Medium 0.1 −2.6 0.3 0.5 −3.8 1.1 1.3 −6.6 3.0
High 0.1 0.4 −2.7 0.5 1.2 −3.9 1.3 3.4 −7.0

ηG=−1.0
Low −2.7 0.9 0.8 −4.3 1.8 1.6 −8.5 4.0 3.5
Medium 0.3 −2.1 0.8 0.7 −3.2 1.6 1.5 −6.0 3.5
High 0.3 0.9 −2.2 0.7 1.8 −3.4 1.5 4.0 −6.5

Notes: This table reports uncompensated elasticities of demand for good i (in row) with respect to good j (in column), computed using
Equations (8) and (9). Estimates in the box within the table are preferred.
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both inputs and final products is the same (Brown et al., 1995; Theil, 1980). Thus we
can usefully begin by discussing the derivation of an inverse demand system for
consumer demand, which has been developed elsewhere and is more familiar than
the producer demand for factors of production.

A. Consumer Theory

If pi and qi represent, respectively, the price and quantity for good i, and x represents
the budget, the consumer’s utility maximization problem can be written as follows.

max u(q1, q2, . . . , qN), subject to
∑N
i=1

piqi = x. (11)

The first-order conditions for this maximization problem are the budget
constraint and

∂u
∂qi

= λpi, (12)

where λ is the marginal utility of income, ∂u/∂x. The uncompensated inverse demand
equations can then be derived using the Hotelling-Wold identity.

πi = ∂u
∂qi

/∑
j

∂u
∂qj

( )
qj, (13)

where πi is price normalized by total expenditure, x.

A distance function can be used to obtain compensated demands. This function,
D(u,q), defined for utility u, and quantity vector q, is presented in Deaton (1979)
and defines the amount by which q must be scaled to bring it to the u indifference
curve. Therefore, by differentiating this function, the (price-dependent) demand
equation can be defined with price as a function of quantity and utility (Deaton,
1979; Eales and Unnevehr, 1994).

∂D(u, q)
∂qi

= πi(u, q). (14)

Anderson (1980) shows several results that must hold for inverse demands, in which
fij and fij* are the uncompensated (or Marshallian) and compensated (or Hicksian)
flexibilities, respectively, and fij

Q is the scale flexibility. First, compensated
flexibilities must sum to 0 within an equation.

∑
j

f ∗ij = 0. (15)
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Second, the matrix of compensated flexibilities (also known as the Antonelli matrix,
the analog to the Slutsky matrix of a direct demand system) must be negative
semidefinite.8 Third, the scale flexibility for each good must be equal to the
sum of the uncompensated flexibilities in its equation (this is the homogeneity
condition).

∑
j

fij = f Qi . (16)

Fourth, the sum of the uncompensated cross-quantity flexibilities for good i with
respect to good j multiplied by the corresponding shares should be equal to the
negative of the share of good j (this is the analog to Cournot aggregation of direct
demand).

∑
i

fijwi = −wj . (17)

We also add to Anderson’s list the restriction that the share-weighted scale
flexibilities must sum to 1, which is derived as a linear combination of the third and
fourth conditions, above.

∑
i

wif
Q
i = 1. (18)

V. Functional Form of the Econometric Model

The model we have chosen for econometric application follows that of
Barten (1993), who designed a flexible demand system that nests (by alternative
sets of parametric restrictions) the Inverse Almost Ideal Demand System (IAIDS),
the Inverse Rotterdam, and systems with elements of both the Inverse Rotterdam
and the IAIDS; these two hybrid systems are known as the Inverse RAIDS or
IRAIDS (attributed to Neves [1987] and also known as the Inverse NBER where
NBER stands for National Bureau of Economic Research), and the Inverse
CBS (attributed to Keller and Van Driel [1985] and also known as the Laitenen-
Theil). The unrestricted form of the model includes all of the above as special cases
and thus contains elements of all of them. Of note is the differential form of this
model, which addresses many issues inherent in time-series data analysis, such as
nonstationarity.

8Anderson refers to the requirement that the Antonelli matrix must be negative semidefinite as the “Law
of Inverse Demand.”
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Brown, Lee, and Seale (1995) and Eales, Wessells, and Durham (1997) presented
versions of flexible models of inverse demand and the associated theory and used
these models to estimate systems of demand for wholesale oranges and fish,
respectively. We will not go into the detail that is provided in these papers, showing
how the models are built and how the restrictions function. Instead, what follows is
a brief overview, starting with the typical equation to be estimated (see Appendix B
for technical notes). For the purposes of this article, we use notation from Brown,
Lee, and Seale (1995), but note that Eales, Wessells, and Durham (1997) used an
equivalent (transformed) specification.9 Following Brown, Lee, and Seale (1995), we
refer to this model as the BLS model.

The typical equation of the model estimated is:

wid ln πi = (ei − r1wi)d lnQ+
∑
j

(eij − r2wi(δij − wj))d ln qj, (19)

where wi is the budget share of good i, wi = piqi/
∑
i
pjqj, Q is Stone’s quantity

index, Q = ∑
j
wj ln qj, δij is the Kronecker delta (if i= j, δij=1, and if i ≠ j, δij=0) and

r1 and r2 are parameters that can be restricted to define the nested special cases.
Specifically: r1= r2=0 yields the Inverse Rotterdam model; r1= r2=1 yields the
IAIDS model; r1=1, r2=0 yields the Inverse CBS model; r1=0, r2=1 yields the
Inverse NBER model.10 Note that the “unrestricted” model in fact restricts r1 and
r2, respectively, to be equal across equations, but they can take any value so long as
that condition is met.

Within models the following restrictions implied by economic theory can be
imposed or tested (Brown et al., 1995).

. Adding-up requires that
∑
i
ei = −1+ r1 and

∑
i
eij = 0.

. Homogeneity requires that
∑
j
eij = 0,

. Symmetry implies that eij = e ji.

Scale flexibilities, introduced explicitly by Anderson and Wilkinson (1979) but
used implicitly by Laitenen and Theil (1979) and Salvas-Bronsard, Leblanc, and
Bronsard (1977), measure how prices change in response to changes in total quantity
consumed, represented as a (geometric) share-weighted average of quantities of
individual goods involved in the model (we use Stone’s quantity index here).
Equation (20) can be used to compute the scale flexibilities while Equation (21) can

9In estimating the systems, we used the model of Eales et al. (1997) as a check on the econometrics. The
two models provide the same results.
10For a complete derivation of how these restrictions yield the respective models, see Brown et al. (1995).
Eales et al. (1997) present a similar treatment of a transformed model, although, since their model is a
transformation, the restrictions are not identical.
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be used to compute the compensated price flexibilities corresponding to the model in
Equation (19).

∂ ln πi
∂ lnQ

= f Qi = ei
wi

− r1 (20)

∂ ln πi
∂ ln qj

= f ∗ij =
eij
wi

− r2(δij − wj) (21)

Uncompensated price flexibilities can be computed using Equation (22), which is
attributed to Anderson (1980), as a linear combination of the corresponding scale
and compensated price flexibilities.

fij = f ∗ij + wjf
Q
i . (22)

VI. Econometric Estimation

In moving from the theoretical model to empirical estimation, we incorporate an
error term, u, in the typical equation, and we assume that its distribution has the
usual desired statistical properties. In addition, because our data are discrete annual
observations, we replace the continuous differentials in Equation (19) with their
discrete counterparts.

w̄iΔ ln πi = (ei − r1w̄i)Δ lnQ+
∑
j

eij − r2w̄i δij − w̄j
( )( )

Δ ln qj + u, (23)

where Δ is the first-difference operator. Note also that the shares, wi, are replaced
with the moving average of the shares in the current and previous year.

Inverse demand system models of the form of Equation (23) were estimated for
three quality-cum-regional categories of wine grapes defined in Table 1. The models
were estimated using annual data on prices and quantities of California wine grapes
taken from the annual NASS/CDFA Crush Reports (National Agricultural
Statistics Service/California Department of Food and Agriculture) for the
years 1985–2009. Table 1 shows summary statistics (see Appendix A for the full
data set).

The unrestricted model was estimated using iterated seemingly unrelated
regressions (ITSUR) in STATA, first dropping the “Medium” equation and then
the “Low” equation, both as a check on the results and also as an easier way to
obtain estimates of standard errors.11 Homogeneity of degree zero in individual

11The results were invariant to which equation was dropped.
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quantities was imposed in each equation, and Slutsky symmetry was imposed across
equations. The Wald test failed to reject the restrictions for the Inverse AIDS and
Inverse CBS/Laitenen-Theil models. However, the unrestricted model provides the
most sensible estimates of elasticities (some of the restricted model forms implied
positive own-price elasticities) so the results from the unrestricted model are
preferred and are emphasized in the discussion that follows.

Results

Table 4 shows the regression results for the unrestricted model. In such a model, the
point estimates of the individual coefficients are not straightforward to interpret.
Table 5 shows uncompensated flexibilities, computed using the sample means of
shares, wi, along with estimated coefficients from the fully synthetic (unrestricted)
model. Table 5 also presents the corresponding standard errors, computed using
linear combinations of elements of the covariance matrix of the estimated
parameters. We also computed standard errors by bootstrapping, using 1,000
replications. Both sets of standard errors are included in Table 5.

The uncompensated flexibilities implied by this preferred model are all
substantially less than one, suggesting that demand for wine grapes is generally
fairly inflexible. For example, the estimates indicate that a 1 percent increase in the
quantity of “high-price” wine grapes would bring about a 0.36 percent decrease
in the price of the same category of wine grapes. The own-quantity flexibilities

Table 4
Regression Results for Unrestricted Model, Annual Data, 1985–2009

High Med Low

wdlnQ 0.22 0.25 0.08
(0.15) (0.20) (0.11)

dlnqhigh 0.25 −0.17 −0.09
(0.19) (0.11) (0.09)

dlnqmed −0.17 0.24 −0.08
(0.11) (0.20) (0.09)

dlnqlow −0.09 −0.08 0.17
(0.09) (0.09) (0.17)

r1 1.57*** 1.57*** 1.57***
(0.46) (0.46) (0.46)

r2 1.22 1.22 1.22
(0.85) (0.85) (0.85)

Constant 0.00 0.00 0.00
(0.00) (0.00) (0.00)

Observations 24 24 24
R2 0.78 0.95 0.76

Notes: ***, **, * Significant at the 1%, 5%, and 10% levels. Standard errors in parentheses.
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of demand for medium- and low-price wine grapes are both greater in magnitude
than those of the high-price grapes, at −0.51 and −0.57, respectively. These
results imply that the demands are all fairly elastic, but that the demand for
high-price grapes is more elastic than the demands for Medium- and Low-price
grapes.12

The scale flexibilities are all near −1, being of greater magnitude for the “Low”
category than the other categories, suggesting that demand for low-price wine
grapes is less responsive (i.e., prices are more flexible), in response to the scale of
consumption compared with high- and medium-price wine grapes. For example, the
estimates imply that a 1 percent increase in the total quantity of wine grapes would
bring about decreases in price of 0.90 percent for High-quality wine grapes and 1.24
percent for Low-quality wine grapes. The corresponding compensated flexibilities
are small and, in all cases, statistically insignificant using either standard errors
computed by linear combination or bootstrapped estimates.

Anderson (1980) shows that the matrix of uncompensated flexibilities can
be inverted to provide estimates of uncompensated elasticities. Table 6 shows the
uncompensated elasticities estimated using this method. The demands for all three
categories are fairly elastic. The own-price elasticity of demand for High-quality
wine grapes (i.e., grapes from Napa and Sonoma) is fairly high, at −9.5.

Table 5
Econometrically Estimated Marshallian Quantity and Scale Flexibilities from Unrestricted

Model, Annual Data, 1985–2009

Low Medium High Scale

Low −0.57*** −0.32* −0.35** −1.24***
(0.17) (0.12) (0.12) (0.15)
[0.22] [0.17] [0.15] [0.22]

Medium −0.12 −0.51*** −0.31** −0.93***
(0.09) (0.12) (0.10) (0.08)
[0.14] [0.15] [0.14] [0.13]

High −0.18 −0.36*** −0.36** −0.90***
(0.12) (0.12) (0.13) (0.12)
[0.14] [0.13] [0.17] [0.15]

Notes: This table reports flexibilities of demand for wine grapes from region i (in row) with respect to price of wine grapes from region j or the
total quantity of wine grapes (in column). ***, **, * Significant at the 1%, 5%, and 10% levels, respectively, using bootstrapped standard
errors. Standard errors computed using linear combinations of estimates are in parentheses. Standard errors computed by bootstrap using
1,000 replications are in square brackets.

12Directly comparable estimates are not available from other studies. Using a similar model, Clements
and Maesepp (2011) found the own-quantity flexibility for table grapes to be –0.37, approximately the
same magnitude as the own-quantity flexibility for the high-price wine grape category presented here.
Clements and Maesepp (2011) also report own-quantity flexibilities for other fruits that range from –0.26
to –0.40.
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The demands for medium- or low-quality wine grapes are less elastic, with own-
price elasticities of −5.2 percent and −2.6, respectively.13

“Expenditure” elasticities (i.e., elasticities of demand for wine grapes from a
particular region with respect to total expenditure on California wine grapes) were
computed using Wold and Juréen’s (1955) result: the sum of the own- and cross-
price elasticities for a given category must be equal to the negative of the expenditure
elasticity. These elasticities are included along with the uncompensated price
elasticities in Table 6. The expenditure elasticity is much greater for high-quality
than for low-quality wine grapes. For example, the estimates imply that a 1 percent
<or one-percentage-point?> increase in expenditure on California wine grapes
would yield a 2.0 percent <or two-percentage-point?> increase in the quantity of
high-quality wine grapes purchased. For that same 1 percent <or one-percentage-
point?> increase, the estimates imply increases of 0.7 percent<age-point?> in the
quantity of medium-quality wine grapes and 0.1 percent<age-point?> in the
quantity of low-quality wine grapes.

Compensated elasticities and elasticities of substitution can also be derived from
the econometric results, using the elasticity form of the Slutsky equation.

η∗ij = ηij + wjηiX , (24)

where ηij is the uncompensated price elasticity of demand, ηij* is the compensated
price elasticity of demand, wj is the expenditure share for good j averaged annually
over 1985–2009, and ηiX is the elasticity of demand for wine grapes of type i with
respect to total expenditure on wine grapes. Likewise, elasticities of substitution can
be computed using

σij = η∗ij/wj. (25)

Table 6
Econometrically Estimated Marshallian Price and Expenditure Elasticities from Unrestricted

Model, Annual Data, 1985–2009

Low Medium High Expenditure

Low −2.60 −0.57 3.07 0.10
Medium −0.52 −5.24 5.02 0.74
High 1.85 5.61 −9.47 2.01

Notes: This table reports elasticities of demand for wine grapes from region i (in row) with respect to price of wine grapes from region j or the
total quantity of wine grapes (in column). Uncompensated elasticity estimates were computed by inverting uncompensated flexibility
estimates given in Table 5.

13Previous studies of the quality differentiated elasticity of demand for wine have either assumed or found
that the own-price elasticity increases with wine quality—e.g., see Fogarty and Jakeman (2011) and
Wittwer and Anderson (2002).
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VII. Comparisons to “Synthetic” Estimation Approach

Table 7 compares the synthetic and econometric estimates of the uncompensated
price elasticities, the compensated price elasticities, and the elasticities of
substitution. Columns (1), (2), and (3) present the synthetic estimates of the
Marshallian elasticities computed using elasticities of substitution of σij=3, 5, or 10
and an elasticity of aggregate demand for California wine grapes of ηG=–2.2, taken
from Table 3.14 Column (4) presents the econometric estimates of the Marshallian
elasticities, taken from Table 6, and the corresponding elasticities of substitution
computed using Equation (25) are presented in column (5).

Several points are clear from the comparison. First, reflecting our assumptions,
the synthetic estimates of cross-price elasticities are all positive numbers whereas
some of the econometric estimates are negative numbers, indicating complementary
relationships—though small values relative to the negative own-price and positive
cross-price effects. Although cross-price elasticities are of some interest, analysts are
typically more concerned with own-price elasticities, and for this comparison we

Table 7
Econometric and “Synthetic” Estimates of Elasticities of Demand for Wine Grapes

i,j

Marshallian Price Elasticities (ηij) Elasticities of
Substitution

(σij),
Econometric
Estimates

Synthetic Estimate

Econometric
Estimatesσij=3 σij=5 σij=10

(1) (2) (3) (4) (5)

L,L −2.9 −4.5 −8.7 −2.6 −10.1
L,M 0.4 1.2 3.4 −0.6 −1.3
L,H 0.3 1.1 3.0 3.1 9.3

M,L 0.1 0.5 1.3 −0.5 −1.3
M,M −2.6 −3.8 −6.6 −5.2 −12.1
M,H 0.3 1.1 3.0 5.0 15.7

H,L 0.1 0.5 1.3 1.9 9.3
H,M 0.4 1.2 3.4 5.6 15.7
H,H −2.7 −3.9 −7.0 −9.5 −26.2

Notes: L=low-price wine grapes; M=medium-price wine grapes; and H=high-price wine grapes. Expenditure shares, wi, are averaged over
all years in the sample, 1985–2009, and are approximately 0.3, 0.4, and 0.3 for Low, Medium, and High, respectively. Synthetic estimates
were computed using ηG=−2.2.

14The value of –2.2 is our best “guesstimate” for ηG reflecting our use of the average of the Marshallian
elasticities of global demand for wine in Fogarty (2010), –0.80, combined with intermediate values of the
elasticity of price transmission, the elasticities of supply of other winemaking inputs, and the elasticity of
supply of wine from the rest of the world.
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place greater weight on own-price elasticities while giving some weight to cross-price
elasticities. Second, and somewhat related, the econometric estimates imply unequal
elasticities of substitution between wine grapes from different regions, in contrast
to the assumptions underpinning the synthetic estimates. Consequently, the
correspondence between the econometrically estimated demand elasticities and
their synthetic counterparts varies among wine grape categories, depending on the
assumed value of the elasticity of substitution. Although it is not surprising that
estimates of the own-price elasticity of demand for a given product vary across
estimation methods, it is reassuring that the estimates are reasonably comparable
across a wide range of assumed values of the elasticity of substitution and quite close
for each category for particular values of the elasticity of substitution within that
range.

VIII. Conclusion

This article presents estimates of the elasticities of demand for wine grapes
from different regions in California, differentiated on the basis of average prices as
an indicator of quality. It adds to the wine economics literature by estimating the
demand for the most important input in winemaking: wine grapes.

“Synthetic” estimates of elasticities of demand for wine and wine grapes were
calculated using readily available information along with careful guesswork and
sensitivity analyses where data were not available. These calculations show that
basic estimates of demand elasticities can be made without econometric estimation
but that the results can be sensitive to assumptions and thus are conditional and
uncertain.

The econometric estimates, based on 25 years of data, are plausible and
suggest that the demand for every category of California wine grapes is very
elastic. The demand for high-price wine grapes, such as those being produced in
Napa and Sonoma counties in California, is the most elastic (with an own-price
elasticity of −9.5), the demand for low-price wine grapes, mostly from areas in
the southern San Joaquin Valley, is the least elastic (with an own-price elasticity
of −2.6).

The preferred synthetic estimates, displayed in the boxed area of Table 3, fall in
between the high and low econometric estimates. These estimates are preferred
both because of the corroboration from the econometric analysis and because they
are based on parameter choices that we found the most reasonable. Thus the two
approaches are complementary, each providing reinforcement to the other and
strengthening our confidence in the results. The main difference between the two sets
of estimates relates to the elasticity of substitution between pairs of wine grape
categories. The econometric results are not consistent with assumption of a constant
elasticity of substitution across all pairs, on which the synthetic estimates were
based.
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Appendix A: Data Used for Econometric Estimation

Quantity nominal (Tons crushed) Price (nominal $/ton)

Year High Medium Low High Medium Low

1985 201,787 465,751 1,395,801 674 279 111
1986 220,371 448,426 1,380,966 672 294 132
1987 205,719 427,733 1,251,530 721 370 150
1988 203,516 457,660 1,449,964 889 546 169
1989 262,102 530,830 1,345,740 1,051 573 185
1990 226,034 469,615 1,441,781 1,117 529 164
1991 283,524 539,658 1,302,534 1,135 556 170
1992 282,878 574,187 1,235,969 1,117 604 225
1993 288,685 690,495 1,471,322 1,040 595 210
1994 273,531 614,825 1,280,867 1,091 594 198
1995 249,248 644,744 1,324,179 1,213 666 244
1996 227,392 650,764 1,291,356 1,434 881 309
1997 331,791 964,244 1,589,919 1,646 902 313
1998 235,482 822,252 1,462,871 1,814 906 311
1999 245,820 855,427 1,512,576 1,997 876 295
2000 327,504 1,203,473 1,783,413 2,222 834 222
2001 299,844 1,128,242 1,571,920 2,438 844 204
2002 313,049 1,136,993 1,647,523 2,419 721 186
2003 289,457 1,135,691 1,433,115 2,423 700 198
2004 285,461 1,176,379 1,306,664 2,322 713 251
2005 411,452 1,690,300 1,646,465 2,376 702 261
2006 368,959 1,292,666 1,469,848 2,445 748 232
2007 343,498 1,318,968 1,578,891 2,585 709 234
2008 280,412 1,093,167 1,461,225 2,751 811 293
2009 329,685 1,425,642 1,306,538 2,667 750 306
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Appendix B: Technical Notes

1. The uncompensated own-price elasticity can also be calculated from the fact
that sum of the cross- and own-price elasticities of demand for each region, j, is
equal to the elasticity of demand for California wine grapes (if σij is constant
across pairs):

∑
j

ηij = ηG.

This can be shown by summing the cross-price elasticities and the own-price
elasticity of demand for wine grapes:

∑
J

ηij =
∑
j=i

wj(σij + ηG)
︸							︷︷							︸∑

i=j

ηij

+(−(1− wi)σij + wiηG)︸											︷︷											︸
ηii

= (1− wi)(ηG + σij) − (1− wi)σij + wiηG = ηG.

We use this as a check on the results. It then follows that in these calculations
for which σij is constant over all pairs, ηG is the same as the negative of the
expenditure elasticity of demand for wine grapes since by homogeneity of
degree zero,

∑
j
ηij = −ηiX and

∑
j
ηij = ηG, as shown above.

2. Estimates of Hicksian elasticities of demand can be calculated using
Equations (9) and (10) with the alternative values for σij. Another positive
check on the results can be applied using the fact that

∑
i=j

η∗ij = −η∗ii, since∑
j=i

η∗ij = (1− wi)σij.

3. Equation (18) can be derived shown by summing both sides of (17) over j,
substituting (16) into the left-hand side and noting that right-hand side is equal
to 1 because the shares sum to 1:

∑
j
wj = 1.
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