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Application of the minimum entropy production
principle to shock reflection induced

by separation
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In this paper separation-induced shock reflection is studied theoretically and
experimentally. An analytical model is proposed to establish the connections among
upstream conditions, downstream conditions and shock configurations. Furthermore,
the minimum entropy production principle is employed to determine the incident
shock angles as well as the criterion for the transition from regular reflection to
Mach reflection, which agrees well with experimental results. Additionally, a solution
path for a reflected shock that fulfills the minimum entropy production principle is
found in the overall regular reflection domain, based on which the steadiest shock
configuration may be determined according to upstream and downstream conditions.
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1. Introduction
It is universally acknowledged that shock reflection is a fundamental phenomenon

in supersonic flow, which exists widely in the internal and external flow fields of
supersonic as well as hypersonic vehicles. Since Mach (1878) first studied two
different shock reflection configurations, known as regular reflection (RR) and Mach
reflection (MR), subsequent studies conducted by many researchers have never ceased.
One of the hottest topics on reflection configurations is RR–MR transition, of which
two classical criteria, the detachment criterion and the von Neumann criterion, were
first proposed by von Neumann (1943, 1945). The reflected shock solution is related
to flow deflection angle and pressure. Kawamura & Satto (1956) therefore introduced
shock polar lines, i.e. pressure–deflection polar lines, to helpfully illustrate and analyse
the shock configurations, based on which Ben-Dor (1991) summarized the reflection
phenomena in steady, pseudo-steady and unsteady flows.

Most researches have mainly been focused on flow structures containing a single
incident shock as well as double symmetrical incident shocks, while the flow field
generated by asymmetrical geometry and multiple incident shocks may be more
common in practical engineering applications. For a flow structure generated by
double opposite asymmetrical ramps in steady flow (see Ivanov et al. 2002), the
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FIGURE 1. Schematic illustrations of possible shock reflections in steady flow: (a) overall
RR, and (b) overall MR.

possible shock reflections are schematically illustrated in figure 1. The overall RR
configuration, as shown in figure 1(a), consists of double asymmetrical incident
shocks, denoted by I′1 on the top ramp and I1 on the bottom ramp, respectively, and
double asymmetrical reflected shocks, denoted by R′1 and R1, respectively. An overall
RR boundary condition requires that all the incident and reflected shocks meet at
a single node, and the accompanying flow defection angles across the shocks must
fulfill the equation

|α1 − α3| = |α2 − α4| = αr. (1.1)

The overall MR, as shown in figure 1(b), is more complicated than the overall RR,
of which a very strong curve shock, named Mach stem, is added to the configuration
(see Azevedo & Liu 1993; Tao et al. 2017). Accordingly, incident shocks and reflected
shocks cannot meet at a single node, which will be replaced by two endpoints of the
Mach stem. The boundary condition of an overall MR hence becomes

|α1 − α3| = αr1,

|α2 − α4| = αr2.

}
(1.2)

The solutions of asymmetrical shock reflection can be indicated by pressure–
deflection polar lines, which are illustrated in figure 2. There, I′1 and I1 are the
incident shock polar lines on the top and bottom ramps, respectively, along which the
pressure fulfills the oblique shock wave equations (see Ben-Dor 1991; Li, Chpoun
& Ben-Dor 1999). The solution of the reflected shock can be observed clearly by
the intersection (denoted by point a) of reflected shock polar lines, i.e. R′1 and R1.
Assuming that I′1 remains stable, i.e. the reflected shock polar line of I′1 resides in
R′1, while the ramp angle of I1 ranges from a small enough degree to a big enough
degree, then the admissible reflected shock polar lines of I1 can be represented by
R1–R5. Here R2 and R4 are two such typical lines: I′1 (or I1, depending on α1), R′1
and R2 meet at a single point b; R′1 and R4 are tangent at a single point d. According
to the study conducted by Li et al. (1999), b and d are the two criteria of overall
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FIGURE 2. Pressure–deflection polar lines illustrating various possible solutions of
asymmetric shock reflection in steady flows.

RR to overall MR transition, of which the ramp angles αvN and αD correspond to
the von Neumann condition and the detachment condition, respectively. Accordingly,
an overall RR solution resides in the domain where α2 <α

vN , such as R1; an overall
MR solution resides in the domain where α2 >α

D, such as R5; while more than one
analytic solution may reside in the domain where αvN < α2 < α

D, such as R3, which
is known as the dual-solution domain (see Hu et al. 2009).

The RR–MR transition has been noticed for decades since some earlier research
conducted by Hornung, Oertel & Sandeman (1979) and Hornung & Robinson (1982).
However, it is still difficult to predict the reflected solution in the dual-solution
domain, in which both the RR and MR configurations are stable. The second law
of thermodynamics requires that a non-equilibrium state process will be in the
direction of increasing entropy. As a supplement, the a posteriori axiom postulated
by Glansdorff & Prigogine (1971) points out that the process must fulfill the
principle of minimum entropy production, based on which Li & Ben-Dor (1996a,b)
proposed new criteria of RR–MR transition in steady as well as unsteady flow,
which agreed well with the experimental results obtained by Chpoun et al. (1995).
Most of the theoretical models for reflection configuration analysis considered the
upstream flow condition and geometric configuration, while the downstream flow
condition should not be discarded in some practical engineering applications, which
widely exists in supersonic as well as hypersonic inlets, isolators and combustion
chambers (see Matsuo, Miyazato & Kim 1999). For an undisturbed flow, as shown
in figure 3(a), the shock reflection structure is distinct and steady (see Wang, Xue
& Tian 2017). However, due to the downstream flow disturbance, as shown in
figure 3(b), shock–boundary layer interaction is usually typically characterized by
local separation as well as massive separation (see Tao, Fan & Zhao 2014; Wang
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FIGURE 3. Schlieren images illustrating RR configurations at M∞ = 5: (a) induced by
ramps, and (b) induced by separations.

et al. 2015; Xue, Wang & Cheng 2018). Similar to the geometric configuration, the
separation region, the leading edge of which can be regarded as a virtual wedge, also
induces a separation shock, accompanied by shock reflection, including RR and MR
configurations, which was proved by Tao et al. (2014). Differently, however, it is
hard to predict the leading-edge angle of the separation region due to the uncertain
shape determined by the downstream disturbance, which leads to a relatively steady
or unsteady shock structure in a steady upstream flow.

Therefore, the connection among upstream flow, downstream flow and shock
structure should be established. Aiming to solve this problem, an analytical method
is proposed here based on previous contributions. In this method, an equivalent
back-pressure p is defined to measure the influence of downstream flow disturbance.
Furthermore, the principle of minimum entropy production is employed to predict
the separation shock angle as well as the criterion of RR–MR transition. Finally, a
solution path of the reflected shock that indicates the steadiest reflection configuration
is found in the overall RR domain, which agrees well with experimental results.

2. Analytical methods in current study

2.1. Equivalent back-pressure p
The initial shocks in steady flow, which are induced by symmetrical ramps, generate
symmetrical regular reflections, as shown in figure 3(a). Previous studies of this model
conducted by Wang et al. (2017) found that the effect of downstream pressure was
characterized by the upstream motion of the shock train, accompanied by asymmetric
flow structures. When the downstream influence is intensified strongly enough,
separation regions appear on the top and bottom ramps and induce asymmetric
regular reflection, as shown in figure 3(b). Compared with the initial shock reflection
without the downstream effect, the separation-induced reflection is more complicated,
with the shock angles of the leading edge on the top and bottom enlarging to different
degrees, and the flow structures can be relatively steady or unsteady.

The flow structures around ramps in figure 3 are simplified to sketches as depicted
in figure 4. The reflections induced by ramps (figure 3a) are easy to analyse via
pressure–deflection polar lines, which is shown in figure 5(a). Under the upstream
conditions of free-stream Mach number of 5 and two symmetrical ramps of 7◦, the
polar lines obviously demonstrate that the reflection solution of point a is much
lower than von Neumann criterion of point b; the structure is therefore a symmetrical
overall regular reflection. However, in separation flow, the reflection solution cannot
be obtained by ramp angles directly. It has been proved that the massive separation
can be considered as a virtual wedge for the flow field (see Chapman, Kuehn &
Larson 1958; Délery & Marvin 1986; Wang et al. 2015). Accordingly, the separation
regions on ramps, the flow pattern of which is schematically depicted in figure 4(b),
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FIGURE 4. Sketches of overall RR configurations: (a) induced by ramps, and (b) induced
by separations.
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FIGURE 5. Pressure–deflection polar lines at M∞ = 5: (a) symmetrical reflection induced
by ramp, and (b) asymmetrical reflection induced by separation.

are regarded as new ramps with enlarged angles (α1, α2). Then the shock polar
theory can be employed to analyse the separation-induced shock reflection, and the
accompanying pressure–deflection polar line is depicted in figure 5(b). Herein the
asymmetric reflection solution of point a is also within the von Neumann criterion
of point b; however, it is hard to say that the shock configuration could always be a
regular reflection under a steady upstream flow condition. The most distinct difference
between ramp-induced reflection and separation-induced reflection is that the former
is mainly determined by the upstream flow condition while the latter depends on the
downstream flow condition. This means that the solution point a can be anywhere,
including the overall RR solution, overall MR solution or dual-solution domains at
different compression wedge angles, which will be analysed in the following sections.
Furthermore, different from the upstream flow, the downstream flow is not uniform;
hence it is difficult to the describe downstream flow condition with common physical
parameters. Therefore, it is necessary to introduce a novel measurement for the
downstream flow condition before discussing the results.

To measure the effect of downstream flow disturbance, an equivalent back-pressure,
represented by p, is proposed in the present study. As shown in figure 6(a), L (solid
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FIGURE 6. Schematic illustrations of shock wave: (a) a curved shock, and (b) a simplified
incident shock for current study.

line) is assumed as a two-dimensional curved shock wave with uniform upstream flow
and non-uniform downstream flow. The upstream flow is in the x direction, and the
parameters v, p and ρ are assumed as constants ahead of L, while they are related to
(x, y) coordinates after L. Also, L′ (dashed line) is assumed as a curved line, which
is very close to L. The parameters, which can be determined by M∞ and local shock
angle β(y) via oblique shock wave equations, are limited in the local region between
L and L′. Then, p is defined as follows:

p=

∫
ρvp dL∫
ρv dL

,

ρ = fρ(M∞, β),

p= fp(M∞, β),

v = fv(M∞, β).


(2.1)

Back-pressure p is defined to measure the background integral pressure level that
the downstream pressure disturbance exerts in the local region close to the leading
shock wave. The equations above demonstrate that p is determined by the upstream
Mach number, the local shock angle and the local mass flow rate. For the current
study, the leading shock wave of the separation-induced flow structure is simplified
as in figure 6(b), and hence (2.1) becomes

p=

∫
ρ1v1p1 dl1 +

∫
ρ2v2p2 dl2∫

ρ1v1 dl1 +

∫
ρ2v2 dl2

. (2.2)
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FIGURE 7. Diagram illustrating the relation among β1, β2 and p.

2.2. Relation between regular reflection and p
For the separation-induced reflection, the current study focuses on the local flow field
ahead of and behind the shock wave, and hence the heat exchange of the fluid may
be neglected in the analysis. Therefore, equation (2.2) can be simplified to

p=
p1ρ1M1

√
T1k1 + p2ρ2M2

√
T2k2

ρ∞M∞
√

T∞
. (2.3)

Herein, the coefficients k1 and k2 are

k1 =
cos β2 sin(β1 − α1)

sin(β1 + β2)
,

k2 =
cos β1 sin(β2 − α2)

sin(β1 + β2)
,

 (2.4)

where β1 and β2 are the shock angles on the top and bottom ramps, respectively, and
α1 and α2, which are treated as virtual wedge angles, can be obtained by

α1 = arctan

(
M2
∞

sin2 β1 − 1
[1+M2

∞
( 1

2(γ + 1)− sin2 β1)] tan β1

)
,

α2 = arctan

(
M2
∞

sin2 β2 − 1
[1+M2

∞
( 1

2(γ + 1)− sin2 β2)] tan β2

)
.

 (2.5)

Equations (2.3)–(2.5) indicate that all the parameters are related to the upstream
Mach number and shock angles, hence any one of β1, β2 and p can be obtained from
the other two. The relation diagram among β1, β2 and p is illustrated in figure 7. It
is confirmed that the solutions of β1 and β2 are in a same curve under the condition
of the same p. Therefore, the solutions tend to be stable where there needs to be a
criterion, which will be analysed in the following.
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2.3. Relation between entropy production and p in regular reflection
The minimum entropy production principle is employed for the current study.
According to Li & Ben-Dor (1996a,b), for a simplified shock wave passing through
a uniform supersonic flow, as shown in figure 6(a), the entropy production Ṡ can be
obtained as

Ṡ=
∫

L
ρv1s dy, (2.6)

where 1s is the entropy change across the shock wave L. Since the total entropy
production due to successive shocks would be negligible compared with that of a
normal shock (see Crocco 1958; Matsuo et al. 1999), only the entropy production
generated by incident and reflected shock waves is considered in an RR flow field.
The total entropy production of the shock configuration shown in figure 4(b) can be
written as

Ṡ=
∫

l1

ρ1v11s1 dy+
∫

l2

ρ2v21s2 dy+
∫

l3

ρ3v31s3 dy+
∫

l4

ρ4v41s4 dy. (2.7)

The flows, which are limited to local regions ahead of and behind shocks, can be
assumed as uniform, and the parameters are determined by the incident and reflected
shocks. Then (2.7) can be reduced to

Ṡ= ρ1v11s1k1l+ ρ2v21s2k2l+ ρ3v31s3k3l+ ρ4v41s4k4l, (2.8)

where l is the entrance height, k1 and k2 have been given by (2.4), and k3 and k4 are

k3 = k1 sin(β3 − αr),

k4 = k2 sin(β4 − αr),

}
(2.9)

where αr is the solution of the RR, i.e. the flow deflection angle across the incident
and reflected shocks, and β3 and β4 are the reflected shock angles of the incident
shocks on the top and bottom, respectively. Since heat exchange has been neglected,
i.e. the total temperature is constant, the entropy change across one shock wave can
be written via the total pressure as

1s=−Cv(γ − 1) ln
(

p02

p01

)
, (2.10)

where p01 and p02 are the total pressures ahead of and behind the shock, respectively.
For computational convenience, S̈ is defined as follows:

S̈=
Ṡ

Cv(γ − 1)ρ∞M∞l
√
γRT∞

. (2.11)

The upstream flow is assumed to be a uniform and steady flow; hence the definition
of S̈ is a factor of Ṡ, which can reflect the total entropy production absolutely.
Inserting (2.8) and (2.10) into (2.11) results in

S̈RR = −
ρ1

ρ∞

M1

M∞

√
T1

T∞
ln
(

p01

p0∞

)
k1 −

ρ2

ρ∞

M2

M∞

√
T2

T∞
ln
(

p02

p0∞

)
k2

−
ρ3

ρ1

ρ1

ρ∞

M3

M1

M1

M∞

√
T3

T1

√
T1

T∞
ln
(

p03

p01

)
k3

−
ρ4

ρ2

ρ2

ρ∞

M4

M2

M2

M∞

√
T4

T2

√
T2

T∞
ln
(

p04

p02

)
k4, (2.12)
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where the coefficients k1, k2, k3 and k4 have been given by (2.4) and (2.9), respectively.
Equation (2.12) indicates that all the fractions can be obtained by all the incident
and reflected shock angles and the Mach numbers ahead of the shocks. Since the
reflected shocks are determined by the incident shocks, and the upstream parameters
are constant, S̈ is related only to the incident shock angles, i.e. β1 and β2. It has been
proved above that any one of β1, β2 and p can be obtained from the other two; hence
S̈RR can be written as

S̈RR = fSRR(M∞, β1, p), (2.13)

where M∞ is the upstream flow condition, p is the downstream flow condition, and β1
represents the shock configuration. The connection between total entropy production
and the regular reflection induced by separation is therefore established.

2.4. Application of the minimum entropy production principle to regular reflection

Equation (2.13) indicates that S̈RR can be obtained from M∞, β1 and p, and the relation
diagram is illustrated in figure 8 under the upstream and downstream conditions of
M∞= 5 and p/p∞= 10, respectively. There, points A and C fulfill the conditions that

∂fSRR

∂β1
= 0,

∂2fSRR

∂2β1
> 0.

 (2.14)

This results in β1= 19.05◦, β2= 41.69◦, or β1= 41.69◦, β2= 19.05◦, which correspond
to two asymmetrical RR configurations that fulfill the minimum entropy production. In
figure 8 point B fulfills the conditions that

∂fSRR

∂β1
= 0,

∂2fSRR

∂2β1
6 0.

 (2.15)
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This results in β1=β2= 36.19◦, which corresponds to a symmetrical RR that fulfills
the local maximum entropy production. It is obvious that the entropy production of
asymmetrical RR is much less than that of a symmetrical RR at the conditions of
M∞ = 5 and p/p∞ = 10. For further work, the solutions under the conditions of
(2.14) with a steady M∞ = 5 and an increasing p are calculated and illustrated in
figure 9. There, 1 < p/p∞ 6 22.49 are the boundary conditions for the existence of
solutions. The diagrams demonstrate that a symmetrical shock configuration will fulfill
the minimum entropy production at a small downstream condition (p/p∞ 6 4.46).
Furthermore, there is no solution when p/p∞ > 22.49 due to the reflected shocks
approaching the detachment condition, and the shock configuration will be replaced
by Mach reflection, which will be analysed below.

2.5. Relation between Mach reflection and p
A flow field of separation-induced MR is depicted schematically in figure 10. Since a
Mach stem takes part in the shock configuration which contributes to the total mass
flow rate, the function of p should become

p=

∫
ρ1v1p1 dl1 +

∫
ρ2v2p2 dl2 +

∫
ρ5v5p5 dl0∫

ρ1v1 dl1 +

∫
ρ2v2 dl2 +

∫
ρ5v5 dl0

, (2.16)

where l0 is the ratio of Mach stem length to entrance height. The Mach stem is a
strongly curved shock (see Gao & Wu 2010; Bai & Wu 2017; Tao et al. 2017), the
pressure change of which is close to that of a normal shock, hence it may be treated
as a section of a normal shock in the current study. Then (2.16) can be written as

p=
1

ρ∞M∞
√

T∞
(p1ρ1M1

√
T1k′1 + p2ρ2M2

√
T2k′2 + p5ρ5M5

√
T5l0), (2.17)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.762


794 C. P. Wang, L. S. Xue and K. M. Cheng

Top

Mach
stem

Bottom

å1

å2

ı1

ı2

M1

M∞
T∞
p∞
®∞
p0∞

M2

M3 T3 p3

T1
l1

l2

T2

p1

p2

®1

®2

®3
l0 M5 T5 p5

M4 T4 p4

p03

®5 p05

®4 p04

p01

p02

Separation region

Separation region

FIGURE 10. Sketch of overall MR induced by separation.

where the coefficients k′1 and k′2 are obtained by

k′1 =
cos β2 sin(β1 − α1)(1− l0)

sin(β1 + β2)
,

k′2 =
cos β1 sin(β2 − α2)(1− l0)

sin(β1 + β2)
.

 (2.18)

2.6. Relation between entropy production and p in Mach reflection
Equations (2.16)–(2.18) indicate that there is an additional variable l0 in the function
of p. Hence the factor S̈ of total entropy production should add to the contribution of
l0 and results in

S̈MR = −
ρ1

ρ∞

M1

M∞

√
T1

T∞
ln
(

p01

p0∞

)
k′1 −

ρ2

ρ∞

M2

M∞

√
T2

T∞
ln
(

p02

p0∞

)
k′2

−
ρ3

ρ1

ρ1

ρ∞

M3

M1

M1

M∞

√
T3

T1

√
T1

T∞
ln
(

p03

p01

)
k′3

−
ρ4

ρ2

ρ2

ρ∞

M4

M2

M2

M∞

√
T4

T2

√
T2

T∞
ln
(

p04

p02

)
k′4

−
ρ5

ρ∞

M5

M∞

√
T5

T∞
ln
(

p05

p0∞

)
l0, (2.19)

where k′1 and k′2 have been given by (2.18), and k′3 and k′4 are

k′3 = k′1 sin(β3 − αr1),

k′4 = k′2 sin(β4 − αr2).

}
(2.20)

Here αr1 and αr2 are the solutions of MR, i.e. the flow deflection angles across
incident and reflected shocks on the top and bottom, respectively; and β3 and β4
are the reflected shock angles of incident shocks on the top and bottom, respectively.
Because p cannot be obtained from β1 and β2, S̈MR is related to four variables and
can be written as

S̈MR = fSRR(M∞, β1, β2, p). (2.21)
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FIGURE 11. (Colour online) Contour lines of entropy production factor illustrating the
relation among β1, β2 and S̈MR.

2.7. Application of the minimum entropy production principle to Mach reflection
According to (2.21), figure 11 illustrates the relation contour lines among β1, β2 and
S̈MR under the upstream and downstream conditions of M∞=5 and p=10, respectively.
The boundary 1 is the lower limit that fulfills the von Neumann criterion, i.e. the
existence of MR solution; boundary 2 is the upper limit that keeps 0< l0 < 1, which
means that it is impossible that the length of the Mach stem will be negative or longer
than the height of the entrance. The possible solutions of MR reside in the region
between boundary 1 and boundary 2. Point A fulfills the conditions that

∂2fMR

∂β1∂β2
= 0,

∂2fMR

∂2β1
> 0,

∂2fMR

∂2β2
> 0.


(2.22)

This results in β1 = β2 = 33.82◦, which corresponds to a structure that fulfills the
minimum entropy production. Hence the total entropy production of a symmetrical
MR induced by separation is less than that of asymmetrical ones, which is different
from that of RR under the same conditions. For further work, the solutions that fulfill
the conditions of (2.22) with a steady M∞ = 5 and an increasing p are calculated
and illustrated in figure 12. There, p/p∞= 7.58 and p/p∞= 29 are the minimum and
maximum downstream conditions for the existence of Mach reflection, respectively. As
can be seen, the structure under different values of p/p∞ that fulfills the minimum
entropy production always keeps the shock angles at β1 = β2 = 33.82◦, and it is only
characterized by an increasing Mach stem.

Since the solutions that fulfill the minimum entropy production both exist in RR
and MR, there needs to be a comprehensive analysis.
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FIGURE 12. Diagram illustrating the relation between p and incident shock angles as
well as Mach stem that fulfill the minimum entropy production.

2.8. Comprehensive analysis in RR and MR induced by separation
The methods mentioned above establish the connection among upstream flow, shock
configurations and downstream flow in separation-induced RR and MR, respectively.
To compare the characteristics of minimum entropy production between RR and
MR, the entropy production factors as well as flow deflection angles that fulfill
the minimum entropy production are calculated and illustrated together in figure 13.
There, S̈RR and S̈MR are the minimum entropy production factors of RR and MR,
respectively; αRR1 and αRR2 are the flow deflection angles of RR on the top and
bottom, respectively; αMR is the flow deflection angle of MR on the top or bottom
(they are a same angle); and αvN and αD are the von Neumann condition and
detachment condition, respectively. As indicated in figure 13, seven typical positions
are marked from (i) to (vii) and explained as follows:

(i) p/p∞ = 1 is the minimum downstream condition for the existence of shock
reflection solutions;

(ii) p/p∞ = 4.46 is the minimum downstream condition for the existence of
asymmetrical RR solutions;

(iii) p/p∞ = 7.58 is the minimum downstream condition for the existence of MR
solutions;

(iv) p/p∞ = 13.05 is a critical downstream condition for the possibility of RR–MR
transition;

(v) p/p∞= 18.39 is another critical downstream condition for the possibility of RR–
MR transition;

(vi) p/p∞ = 22.49 is the maximum downstream condition for the existence of RR
solutions;

(vii) p/p∞ = 29 is the maximum downstream condition for the existence of MR
solutions.
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FIGURE 13. Diagrams illustrating the relations between p and entropy production factors
as well as flow deflection angles in RR and MR that fulfill the minimum entropy
production: (a) whole diagram, and (b) detailed diagram for 12 6 p/p∞ 6 23.

It can be seen from the typical positions that the entropy production factor of
MR is lower than that of RR during the overlapping stage, i.e. S̈MR < S̈RR when
7.58< p/p∞ < 22.49. However, RR cannot transfer to MR until αRR2 reaches the von
Neumann condition, i.e. αRR2 > αvN when 13.05 6 p/p∞ 6 18.39 (figure 13b), which
means p/p∞= 13.05 is a criterion of downstream condition for RR–MR transition. It
is more complicated during 18.39 6 p/p∞ 6 22.49, as shown in figure 13(b). There,
the solutions that fulfill the minimum entropy production can reside in overall RR
as well as overall MR, depending on the former structure: if the former structure
reaches von Neumann condition, then the current structure will be MR; if not, it will
be RR, which means the structure is unsteady during this condition stage.

Base on the comprehensive analysis above, the relation between p and shock
reflection configurations induced by separation is illustrated in figure 14. There, RRS
and RRAS denote symmetrical and asymmetrical RR, respectively; MRS is symmetrical
MR; β1 and β2 are the incident shock angles of RR induced by separation on the
top and bottom, respectively (β1 and β2 are interchangeable); β0 is the shock angle
of MR induced by separation (the angles on the top and bottom are the same); and
l0 is the ratio of the Mach stem length to the entrance height. The critical solution
of RR–MR transition is β1 = 19◦, β2 = 48◦ (or β1 = 48◦, β2 = 19◦), which will be
verified by experimental results in the following sections.

3. Experimental results and discussions
3.1. Experimental apparatus and test model

The experiment was conducted in a hypersonic wind tunnel; previous research in
this facility has been described in detail by Wang et al. (2017). There are some
improved parts in the current test, as shown in figure 15. Firstly, a plug device driven
by a stepper motor, which can generate a linearly increasing throttling (see Xue
et al. 2018), was employed to guide the downstream pressure disturbance. Secondly,
16 Kulite XTEL-190M fast-response transducers, which were operated at a rate of
10 kHz using data acquisition cards and a 10 s sampling time, were mounted along
the central lines of ramps on the top and bottom, respectively. Lastly, a NAC (NAC
Image Technology) Hotshot High Speed Camera, which operated at a frame rate of
5 kHz with a 6 s sampling time and a resolution of 608 × 436 pixels, was used
to capture the evolution of the shock reflection configuration. Table 1 shows the
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FIGURE 14. Diagram illustrating the relation between p and shock reflection
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FIGURE 15. Schematic of the test model and downstream throttling device (Wang et al.
2017; Xue et al. 2018).

test conditions. A non-dimensional variable ∆ is defined to measure the downstream
throttling:

∆=

(
1−

Atx

A0

)
× 100 %,

Atx = 2bx sin 20◦,

 (3.1)

where Atx denotes the area size that can flow across the outlet effectively, and A0 is
the total area of the outlet.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

76
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.762


Application of minimum entropy production to shock reflection 799

Nominal Mach number 5
Calibrated Mach number 4.93
Total temperature (K) 480
Total pressure (kPa) 637
Run time (s) >7

TABLE 1. Test conditions.
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FIGURE 16. Time histories of incident shock angles (β1, β2), dynamic wall pressures
(p1, p2), and downstream throttling degree (∆).

3.2. Time history characteristics of incident shock angles and wall pressures
A quantization method of schlieren images based on a grey-level matrix (see Xue
et al. 2018) was employed to analyse the dynamic characteristics of the shock
configuration, and the time history of shock angles was detected. The experimental
results are illustrated in figure 16. In figure 16, β1 and β2 are the incident shock
angles induced by separation on the top and bottom, respectively; p1 and p2 are the
dynamic wall pressures obtained by transducers T1 and B1 (locations in figure 15),
which are the most upstream transducers behind incident shocks on the top and
bottom, respectively; and ∆ is the downstream throttling degree. Figure 17 shows the
standard deviation analysis for illustrating the fluctuation amplitude of p1, p2 and p,
in which p is produced by using β1, β2, p1 and p2 according to the definition of p.
Figure 18 shows details of upstream and downstream dynamic pressures as well as p
covering the transition process. Figure 19 shows wall pressure distributions and the
accompanying schlieren images during the transition process. As can be indicated,
the wall pressures and shock angles were steady with ∆ increasing linearly before
the appearance of a separation region (figure 16, t= 2.55 s, ∆= 63.05 %); the shock
configuration can be regarded as a relatively steady flow before the RR–MR transition,
while it is unsteady after the transition (figure 16, t = 3.76 s, ∆= 78.15 %). During
the RR–MR transition process, downstream pressures turned out to be more stable
and symmetrical than upstream ones (figure 19). Although p1 and p2 experienced a
sharp change in amplitude, p was more stable (figure 17, t = 3.76 s, ∆ = 78.15 %),
which was similar to downstream pressures (figure 18, T8 and B8).
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FIGURE 18. Dynamic wall pressures for illustrating shock reflection transition.

The separation-induced shock reflection is mainly generated by downstream pressure
disturbance, while the asymmetrical flow configurations as well as transition only exist
in the upstream flow field. According to current theory, the estimation of downstream
high back-pressure plays an important role in the minimum entropy production
principle. However, downstream pressures are hardly connected to upstream flow
structures due to the long flow path. Comparing figures 16–19, it is clear that p
is suitable to measure the effect of downstream pressure disturbance. On the one
hand, the transition of flow configuration is characterized by the sharp change of
upstream wall pressures, while it exerts less influence on downstream wall pressures,
which is the same as p (figures 18 and 19). On the other hand, the original flow
disturbance is generated by downstream flow choking measured by ∆, and the positive
correlation between ∆ and p is distinct (figures 16 and 17). Therefore, p changes
along with the downstream flow condition and would not be altered by upstream flow
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FIGURE 19. Wall-pressure distributions and flow configurations for illustrating shock
reflection transition.
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FIGURE 20. The evolution processes of shock configuration transition: (a) symmetrical
RR to asymmetrical RR, and (b) asymmetrical RR to symmetrical MR.

configurations, and it is the same with downstream pressures, which means p could
represent back-pressure. Because p can be estimated by upstream wall pressures and
incident shock angles on the top and bottom, respectively, it can be used as the
critical parameter of flow configuration.

3.3. Evolution processes of shock configuration
The evolution processes of symmetrical RR to asymmetrical RR transition and
asymmetrical RR to symmetrical MR transition are illustrated in figures 20(a)
and 20(b), respectively. As can be seen in figure 20(a), the incident shock angle
on the top increased smoothly, while it changed indistinctly on the bottom, which
demonstrates a gradual transition in symmetrical RR to asymmetrical RR. However,
in figure 20(b), the process lasted no more than 4 ms from asymmetrical RR to
symmetrical MR with a sharp change in β1= 48◦ and β2= 19◦ to β1=β2= 34◦. Then
the configuration turned back to asymmetrical RR immediately, and the subsequent
process is asymmetrical RR to symmetrical MR again.
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FIGURE 21. Statistical results of incident shock angles detected from schlieren images:
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FIGURE 22. Typical MR configurations under the different downstream conditions of p.

The evolution processes demonstrate that it is a relatively steady flow in RR while it
is unsteady when RR–MR transition occurs, which is the same as the analysis from
dynamic transducer signals. Figure 21 gives the statistical results of incident shock
angles including 6000 schlieren images. Figure 22 indicates that the incident shock
angles of symmetrical MR under different p can keep the same degree (β1=β2= 34◦)
with an increasing Mach stem (it may be regarded as a normal shock when p/p∞ =
29 and l0 = 1). The results above demonstrate a good agreement between theory and
experiment.

3.4. Solution path of reflected shock that fulfills the minimum entropy production

The schlieren images under different p are selected to illustrate the typical shock
configurations, which are shown in figure 23(a), and the accompanying reflected
shock solutions, a–i, are depicted via shock polar lines in figure 23(b). It is obvious
that there is a solution path in the overall RR domain, along which the reflected shock
solutions fulfill the minimum entropy production. Based on the comprehensive analysis
of theoretical and experimental results, the path is depicted clearly in figure 24, in
which the direction means a rising influence of the downstream condition. The path
is along a symmetry line at first, then it divides into two opposite paths at the
differentiation point, which means the symmetrical configuration fulfills the minimum
entropy production with weak enough influence of downstream condition, while
it may change to be asymmetrical when the downstream condition increases to a
critical level, and the direction chosen by flow is random (as shown in figure 20a).
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FIGURE 23. (Colour online) Typical (a) shock configurations and (b) reflected shock
solutions under different downstream conditions.
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entropy production.

When the two divided paths reach the strong polar line of the incident shock at
the transition points, the configuration will transform from RR to MR (as shown in
figure 20b). In fact, when the downstream condition approaches the transition point
in the experiment, the RR–MR transition and MR–RR transition will occur repeatedly.
The most plausible explanation is that the pressures of the solutions along the dashed
path line are too close, and the solutions during the transition process reside on the
dashed path line, which means a small downstream pressure disturbance may cause a
sharp change in shock structure. Hence, it is confirmed that the solutions on the solid
path lines can be regarded as relatively steady, while the solutions on the dashed path
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lines are unsteady. Note that the path is produced by the flow itself, which means the
flow chooses a way to ensure the solutions fulfill the minimum entropy production
under different downstream conditions. Therefore, the solution path can be used to
determine the steadiest shock reflection, according to various condition requirements.

4. Conclusions
In the current study, the shock reflection configurations induced by separation are

studied theoretically and experimentally. A symmetrical test model with two ramps
of 7◦ is tested in a free-stream flow of Mach number 5, and a downstream throttling
device is used to generate the separation region on ramps. The minimum entropy
production principle is employed to analyse the shock configurations as well as
RR–MR transition. In addition, a variable, represented as p, is proposed to measure
the influence of downstream pressure disturbance, based on which the following
conclusions are obtained.

The relation among upstream and downstream conditions and shock configurations
as well as total entropy production is established by an analytical model. Moreover,
separation-induced incident shock angles may be determined by solutions that
fulfill the minimum entropy production, and the criterion of RR–MR transition is
successfully predicted, which indicate a good agreement with experimental results.

On the other hand, there is a solution path residing in the overall RR domain and
the strong incident shock polar line, along which the reflected shock solutions fulfill
the minimum entropy production. Furthermore, the shock configuration is relatively
steady before the path reaches the strong incident shock polar line, while it is unsteady
after that. Therefore, the solution path is very helpful to determine incident shock
angles that may induce the steadiest shock configurations in separation-induced flows.
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