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The second-order structure functions (SFs) of the velocity field, which characterize
the velocity difference at two points, are widely used in research into non-reacting
turbulent flows. In the present paper, the approach is extended in order to study
the influence of combustion-induced thermal expansion on turbulent flow within a
premixed flame brush. For this purpose, SFs conditioned to various combinations of
mixture states at two different points (reactant–reactant, reactant–product, product–
product, etc.) are introduced in the paper and a relevant exact transport equation
is derived in the appendix. Subsequently, in order to demonstrate the capabilities
of the newly developed approach for advancing the understanding of turbulent
reacting flows, the conditioned SFs are extracted from three-dimensional (3-D) direct
numerical simulation data obtained from two statistically 1-D planar, fully developed,
weakly turbulent, premixed, single-step-chemistry flames characterized by significantly
different (7.53 and 2.50) density ratios, with all other things being approximately
equal. Obtained results show that the conditioned SFs differ significantly from
standard mean SFs and convey a large amount of important information on various
local phenomena that stem from the influence of combustion-induced thermal
expansion on turbulent flow. In particular, the conditioned SFs not only (i) indicate a
number of already known local phenomena discussed in the paper, but also (ii) reveal
a less recognized phenomenon such as substantial influence of combustion-induced
thermal expansion on turbulence in constant-density unburned reactants and even
(iii) allow us to detect a new phenomenon such as the appearance of strong local
velocity perturbations (shear layers) within flamelets. Moreover, SFs conditioned
to heat-release zones indicate a highly anisotropic influence of combustion-induced
thermal expansion on the evolution of small-scale two-point velocity differences
within flamelets, with the effects being opposite (an increase or a decrease) for
different components of the local velocity vector.
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1. Introduction

The influence of thermal expansion in a premixed turbulent flame on the turbulence
characteristics has been investigated by the combustion community over the decades
since the seminal work by Karlovitz, Denniston & Wells (1951) and Scurlock &
Grover (1953). As reviewed elsewhere (Günther 1983; Bray 1995; Lipatnikov &
Chomiak 2010; Sabelnikov & Lipatnikov 2017), the focus of research into the problem
was placed on variations in the root-mean-square (r.m.s.) turbulent velocity u′ and
Reynolds stresses within a mean flame brush, whereas some other important issues
were rarely addressed. In particular, a list of such challenging issues includes, but is
not limited to (i) the choice of fundamentally justified turbulence characteristics within
a premixed flame brush (Lipatnikov 2009), (ii) the influence of combustion-induced
thermal expansion on turbulent flow of constant-density unburned reactants within
and upstream of a premixed flame brush or (iii) the influence of combustion-induced
thermal expansion on two-point flow characteristics, which provide insights into
the turbulent kinetic energy distribution over length scales. For instance, spectra
of turbulence energy obtained (i) by measuring temporal correlations of velocity
fields within premixed flame brushes (Ballal 1979; Gökalp, Shepherd & Cheng 1988;
Videto & Santavicca 1990; Furukawa, Okamoto & Hirano 1996; Furukawa, Noguchi
& Hirano 2000; Furukawa et al. 2002), (ii) by directly extracting two-point spatial
correlations of velocity fields from direct numerical simulation (DNS) data (Kolla
et al. 2014; Lipatnikov et al. 2015b; Towery et al. 2016; O’Brien et al. 2017) or
(iii) by applying wavelet multi-resolution analysis to DNS data (Kim et al. 2018)
indicate significant effects of combustion on the spectra, thus, calling for further
research into the issue. Due to such effects, it is not yet clear whether or not (or
under which conditions) the Kolmogorov (1941) theory may be used to characterize
turbulence in flames.

In order to explore the issue more profoundly, the spectral techniques adopted
in the papers cited above are worth complementing with a structure function (SF)
method, which is widely used by the turbulence community in order to analyse
experimental data (Monin & Yaglom 1975; Kuznetsov & Sabelnikov 1990; Frisch
1995; Pope 2000; Davidson 2015) or to develop large eddy simulation (LES) models
(Lesieur, Métais & Comte 2005). For instance, Kolmogorov developed his theory
of the locally homogeneous and isotropic turbulence by analysing the second-order
SFs of the velocity field (Kolmogorov 1941), whereas the famous 5/3 spectrum of
turbulence in the inertial subrange was predicted by his PhD student (Obukhov 1941).

However, the SF method has yet been rarely applied to turbulent flames. The
present authors are aware of two applications of this method to premixed combustion.
Kuznetsov (1982) adopted SFs to model the interaction between turbulence and the
hydrodynamic instability (Landau & Lifshitz 1987; Matalon 2007) in premixed
flames. Very recently, Whitman et al. (2019) numerically investigated SFs that
(i) were conditioned to various iso-scalar surfaces in a premixed turbulent flame
and (ii) were locally defined in coordinate frameworks centred at various points
on each iso-scalar surface. One major goal of the present work, which was mainly
done before presentation of the results by Whitman et al. (2019), was to develop
another conditioned SF method for analysing DNS and experimental data obtained
from premixed turbulent flames. Contrary to the study by Whitman et al. (2019),
the present approach addresses SFs conditioned to the mixture state and defined in
the laboratory coordinate framework. Another major goal of the present work was
to apply the newly developed method to analysing DNS data in order to advance
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understanding of the influence of combustion-induced thermal expansion on turbulence
and, in particular, its two-point spatial characteristics.

In the next section, the background to the SF approach is summarized. Subsequently,
the approach is extended by introducing conditioned SFs. For this purpose, we will
follow ideas developed earlier by Kuznetsov & Sabelnikov (1990) in order to study
intermittency in non-reacting turbulent flows. While the extended conditioned SF
method can equally well be applied to analysing results of both measurements and
simulations, the present work is solely restricted to adapting the method for processing
DNS data. Accordingly, the DNS attributes are briefly summarized in the third section.
Results obtained by applying the conditioned SF method to analysing the DNS data
are discussed in the fourth section followed by conclusions.

2. Structure functions
In the present paper, we restrict ourselves solely to the second-order SFs of velocity

field, but the approach can easily be extended to SFs of a higher order.

2.1. Background
The second-order SFs of a velocity field are defined as follows (Monin & Yaglom
1975; Pope 2000):

Dij(r, x, t)= 〈[ui(x+ r, t)− ui(x, t)][uj(x+ r, t)− uj(x, t)]〉, (2.1)

where t is the time, x and x + r are two spatial points, r = |r| is the distance
between them, ui is the ith component of the velocity vector u and 〈q〉 designates
an ensemble-averaged value of an arbitrary scalar, vector or tensor quantity q. The
tensor Dij characterizes the second moments of the velocity difference across scales of
size r. Accordingly, Dij measures the energy of such and smaller eddies and, therefore,
allows us to examine the energy distribution over the spatial scales directly in the
physical space, contrary to energy spectra which deal with wavenumbers. Due to this
feature, the second-order SFs are widely used both in theoretical and experimental
studies of turbulent flows (Kolmogorov 1941; Monin & Yaglom 1975; Kuznetsov &
Sabelnikov 1990; Frisch 1995; Pope 2000; Lesieur et al. 2005; Davidson 2015).

In a homogeneous turbulent flow, the tensor Dij does not depend on x and reduces
to

Dij(r, t)= 2〈u′i(x, t)u′j(x, t)〉 − Rij(r, t)− Rji(r, t), (2.2)

where q′(x, t)≡ q(x, t)− 〈q〉(t) for any scalar, vector or tensor quantity q and

Rij(r, t)= Rji(−r, t)= 〈u′i(x+ r, t)u′j(x, t)〉 (2.3)

are correlation functions (Monin & Yaglom 1975; Pope 2000). Consequently, in
a homogeneous turbulent flow, the SFs are directly linked with the correlation
functions Rij(r, t), which are used to obtain energy spectra. If the distance r is
large when compared to an integral length scale L of the turbulence, then, the
correlation functions vanish and Dij → 2〈u′i(x, t)u′j(x, t)〉 or Dij → 2u′2δij if the
turbulence is not only homogeneous, but also isotropic. Here, δij is the Kronecker
delta, u′(t) =

√
u′k(x, t)u′k(x, t)/3 is the r.m.s. turbulent velocity and the summation

convention applies for repeated indexes. In an inhomogeneous turbulent flow, which
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is more relevant to combustion, the relationship between the structure and correlation
functions is not straightforward. Accordingly, the SFs and energy spectra may convey
different (complementary) information in such a case.

In incompressible homogeneous isotropic turbulence (Monin & Yaglom 1975; Pope
2000), the tensor Dij(r, t) is fully determined by a single scalar longitudinal SF

DLL(r, t)≡ 〈[uL(x+ r, t)− uL(x, t)]2〉, (2.4)

i.e.

Dij(r, t)=DNN(r, t)δij + [DL(r, t)−DNN(r, t)]
rirj

r2
, (2.5)

with the transverse SF

DNN(r, t)≡ 〈[uN(x+ r, t)− uN(x, t)]2〉 (2.6)

being equal to

DNN(r, t)=DLL(r, t)+
r
2
∂DLL

∂r
. (2.7)

Here, uL = r(u · r)/r2 is the component of the velocity vector u in the direction of
vector r, and uN is the component of the velocity vector normal to r.

Within the framework of the Kolmogorov theory of the inertial range (Kolmogorov
1941), DLL(r) = C2(〈ε〉r)2/3 and DNN(r) = 4DLL(r)/3, with C2 being a universal
constant. Here, ε= 2νSijSij is the viscous dissipation rate, ν is the kinematic viscosity
of the fluid and Sij = 0.5(∂ui/∂xj + ∂uj/∂xi) is the rate-of-strain tensor. Therefore,
consistency of DNS conditions with the Kolmogorov theory of turbulence can be
checked not only by comparing the energy spectrum with the 5/3 law (Obukhov
1941), as commonly done in combustion DNS, but also by examining (i) in which
range of scales l (if any) a ratio of DLL(r)/(〈ε〉r)2/3 or DNN(r)/(〈ε〉r)2/3 is independent
of r, (ii) whether or not this range of scales is consistent with η � l � L and
(iii) whether or not the computed constant ratio is consistent with the known value
of C2 (or 4C2/3, respectively). Here, η= (ν3/〈ε〉)1/4 is the Kolmogorov length scale.

If r is sufficiently small, e.g. r � η, the two-point velocity difference may be
evaluated using Taylor expansion, i.e. Dij ∝ 〈(∂u′i/∂xk)(∂u′j/∂xl)〉rkrl in a general case
or DLL → (〈ε〉/15ν)r2 in locally homogeneous isotropic turbulence (Kolmogorov
1941).

2.2. Conditioned structure functions
Within a premixed turbulent flame brush, local velocity is increased due to a decrease
in the local density ρ, caused by combustion-induced thermal expansion. Often, such
density changes are localized to thin zones and the local velocity normal to the
zone jumps at the burned side of the zone when compared to the unburned side,
with such effects being most pronounced in the flamelet regime of premixed turbulent
combustion (Bray 1995; Lipatnikov & Chomiak 2010; Sabelnikov & Lipatnikov 2017).
Because such a velocity jump is hardly associated with turbulence described by the
Kolmogorov theory, the use of mean (ensemble-averaged) quantities for characterizing
turbulence in premixed flames appears to be a flawed approach (Lipatnikov 2009;
Lipatnikov & Chomiak 2010; Sabelnikov & Lipatnikov 2017), at least in the flamelet
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combustion regime. To resolve the problem, flow characteristics conditioned to an
unburned (or burned) mixture are often considered instead of mean flow characteristics,
as reviewed elsewhere (Lipatnikov & Chomiak 2010). However, as far as energy
spectra obtained from spatial correlations computed in DNS are concerned (Kolla
et al. 2014; Lipatnikov et al. 2015b; Towery et al. 2016; O’Brien et al. 2017), the
present authors are aware on a single study of the conditioned spectra (Lipatnikov
et al. 2015b), with that study being restricted to the leading edges of mean flame
brushes. The SFs offer an opportunity to feel the gap and to gain insight into the
conditioned two-point statistics of the turbulent velocity field.

For this purpose, we will follow an approach developed earlier to study intermittency
in non-reacting turbulent flows (Kuznetsov & Sabelnikov 1990). Because the
aforementioned velocity jump is associated with some kind of intermittency, i.e.
unburned–burned intermittency, extension of the approach to premixed flames is
straightforward (Sabelnikov et al. 2019).

Let us (i) characterize the state of a reacting mixture with a single combustion
progress variable c(x, t) (Bray 1995), which monotonically increases from zero
in fresh reactants to unity in equilibrium combustion products, and (ii) introduce K
indicator functions Ik(x, t), k= 1, . . . ,K, such that Ik(x, t)= 1 if ck−1< c(x, t)6 ck and
vanishes otherwise. Here, c0 = 0 (fresh) reactants and cK = 1 (equilibrium products).
Obviously, the following identity

K∑
k=1

Ik(x, t)= 1 (2.8)

holds at any point at any instant. Then, for any bounded, single-point, scalar, vector
or tensor quantity q(x, t),

〈q〉(x, t) =

〈
q(x, t)

K∑
k=1

Ik(x, t)

〉
=

〈
K∑

k=1

q(x, t)Ik(x, t)

〉

=

K∑
k=1

〈q(x, t)Ik(x, t)〉 =
K∑

k=1

Pk(x, t)〈q〉k(x, t), (2.9)

and, for any two-point scalar, vector or tensor quantity QAB =Q(xA, xB, t),

〈QAB〉 =

〈
QAB

(
K∑

k=1

IA,k

)(
K∑

l=1

IB,l

)〉
=

K∑
k=1

K∑
l=1

〈QAB〉klPkl. (2.10)

Henceforth, dependencies of various quantities on time t and spatial coordinates x
are not specified unless the opposite is required, qA and qB designate values of q,
measured at points xA and xB = xA + r, respectively, at the same instant t, 〈q〉 is the
mean value of q, 〈q〉k = 〈qIk〉/Pk is the value of q conditioned to the kth state of
the mixture, i.e. ck−1 < c(x, t) 6 ck, Pk(x, t) = 〈Ik〉 is the probability of finding this
state at point x at instant t, 〈QAB〉kl = 〈QABIA,kIB,l〉/Pkl is conditioned to the kth state
of the mixture at point A and the lth sate of the mixture at point B and Pkl≡〈IA,kIB,l〉

is the probability that the mixture states k and l are recorded at points xA and xB,
respectively, at the same instant.
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If QAB designates tensor (uB,i − uA,i)(uB,j − uA,j), then, (2.10) reads

Dij =

K∑
k=1

K∑
l=1

Dij,klPkl, (2.11)

where subscripts i and j refer to spatial coordinates, subscripts k and l refer to the
state of the mixture and

Dij,kl ≡ 〈(uB,i − uA,i)(uB,j − uA,j)IB,lIA,k〉/Pkl (2.12)

are conditioned SFs.
If K=3, c1= ε�1 and c2=1− ε, then, there are six different conditioned structure

function tensors and six different probabilities:

(i) Dij,11 or Dij,uu and P11 or Puu (fresh reactants at both points);
(ii) Dij,22 or Dij,ff and P22 or Pff (intermediate states of the mixture at both points);

(iii) Dij,33 or Dij,bb and P33 or Pbb (equilibrium products at both points);
(iv) Dij,12 or Dij,uf and P12 or Puf (the reactants at one point, but an intermediate state

at another point);
(v) Dij,13 or Dij,ub and P13 or Pub (the reactants at one point, but the products at

another point);
(vi) Dij,23 or Dij,fb and P23 or Pfb (an intermediate state at one point, but the products

at another point).

Here, standard subscripts u and b designate unburned (fresh) reactants, i.e. k= 1 and
0 6 c(x, t)6 ε, and burned (equilibrium) products, i.e. k = 3 and 1− ε < c(x, t)6 1,
whereas intermediate states of the mixture, i.e. k = 2 and ε < c(x, t) 6 1 − ε, are
designated with subscript f associated with flames or flamelets.

Exact transport equations for Dij,kl can be derived using the continuity and
Navier–Stokes equations in a general unsteady, inhomogeneous and anisotropic case,
as shown in appendix A for Dij,11. Since the obtained equation is cumbersome and
involves a number of unclosed terms, analysis of it (or transport equations for other
conditioned SFs Dij,kl) appears to be warranted provided that the capabilities of the
newly introduced conditioned SF approach to advance the understanding of turbulent
reacting flows is demonstrated. Accordingly, the rest of the paper aims at showing
that even simple and direct application of the proposed approach to analysing DNS
data can substantially advance our understanding of flame–turbulence interaction.
Analysis of the derived transport equation is a subject for future study.

The largest part of the following analysis will be restricted to the aforementioned
six conditioned SFs and three states of the mixture. Nevertheless, one more SF tensor
Dij,ww(x, r) and one more probability Pww(x, r), both conditioned to the heat-release
zone (HRZ), i.e. to cw,1 < c(x, t) 6 cw,2, will also be addressed in the following.
Here, the boundaries of the zone are associated with a threshold value of the rate
W(c) of product creation, e.g. W(cw,1) = W(cw,2) = 0.5 max{W(c)}, and subscript w
indicates a significant reaction rate. Investigation of this SF can shed a new light
on the following fundamental issue. Two-dimensional (2-D) DNS study (Poinsot,
Veynante & Candel 1991) of the interaction of a laminar premixed flame with a
vortex pair and experimental investigations (Roberts et al. 1993) of the interaction
of a laminar premixed flame with a laminar toroidal vortex have shown that isolated
small-scale laminar vortices are inefficient in perturbing the flame HRZ. As reviewed
elsewhere (Renard et al. 2000; Kadowaki & Hasegawa 2005), this finding was
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confirmed in subsequent simulations and measurements of laminar flame–vortex
interaction. Accordingly, the smallest-scale turbulent eddies are often hypothesized
to be inefficient in stretching HRZs in premixed flames, in particular, because such
eddies rapidly disappear due to dilatation and an increase in viscosity within the
flame preheat zone. Recent 2-D experimental data by Wabel, Skiba & Driscoll (2018)
indicate two trends, i.e. (i) an integral turbulence length scale is increased across
flame preheat zones, whereas (ii) the turbulence level does not decrease therein,
which (trends) appear to indirectly support the hypothesis (Poinsot et al. 1991;
Roberts et al. 1993; Renard et al. 2000; Driscoll 2008) on the disappearance of
the smallest-scale turbulent eddies within flame preheat zones. The aforementioned
conditioned SF Dij,ww(x, r) appears to be perfectly suited to directly exploring the
hypothesis.

3. DNS attributes

In the rest of the present paper, we will illustrate certain opportunities associated
with the newly introduced conditioned SFs by extracting them from a DNS database
created by Nishiki et al. (2002, 2006) more than 15 years ago. The choice of this
database, which may appear to be outdated when compared to recent DNS data
generated in the case of complex combustion chemistry and a high ratio of u′ to
the laminar flame speed SL (Aspden, Day & Bell 2016; Lapointe & Blanquart 2016;
Uranakara et al. 2016; Chaudhuri et al. 2017; Wang et al. 2017) requires comment.

Since the focus of the following discussion is placed on the influence of
combustion-induced thermal expansion on the conditioned SFs of the velocity field,
a detailed description of complex combustion chemistry appears to be of secondary
importance when compared to two other major requirements. First, it seems to be
appropriate to begin a study of any new approach with conditions that are associated
with the strongest manifestation of the effects the approach aims at. Accordingly, in
order to make the thermal expansion effects as strong as possible, the heat release
and density drop should be localized to sufficiently thin zones and the velocity jump
across such zones should be sufficiently large when compared to u′. In other words,
the flamelet regime of premixed turbulent combustion associated with a low ratio of
u′/SL should be addressed. The DNS by Nishiki et al. (2002, 2006) did deal with this
regime, as discussed in detail by Lipatnikov, Nishiki & Hasegawa (2015c), whereas
the vast majority of recent very advanced DNS studies attacked other combustion
regimes. Second, to better explore the thermal-expansion effects, data obtained at
significantly different density ratios σ = ρu/ρb are required and the DNS database by
Nishiki et al. (2002, 2006) does satisfy this requirement, because cases of σ = 2.5
and 7.53 were simulated, with all other things being roughly equal. Third, the major
goal of the present work consists in introducing conditioned SFs and showing the
opportunities offered by this new method for analysing DNS and experimental data,
rather than scrutinizing particular local effects. The selected DNS data appear to be
fully adequate to this major goal, because they allow us to quickly calculate and
analyse a large amount of results of significantly different types.

Since the DNS data were discussed in detail elsewhere (Nishiki et al. 2002,
2006) and were already used by various research groups (Im et al. 2004; Mura,
Tsuboi & Hasegawa 2008; Mura et al. 2009; Robin et al. 2010; Bray et al. 2011;
Robin, Mura & Champion 2011; Lipatnikov, Nishiki & Hasegawa 2014; Lipatnikov
et al. 2015a,c,d, 2017, 2018a,b,c,d; Sabelnikov et al. 2016, 2017, 2019; Lipatnikov,
Nishiki & Hasegawa 2019), we will restrict ourselves to a brief summary of those
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compressible 3-D simulations. They dealt with statistically planar, 1-D, equidiffusive,
adiabatic flames modelled by unsteady 3-D continuity, Navier–Stokes and energy
equations, supplemented with a transport equation for the mass fraction Y of a
deficient reactant and the ideal gas state equation. The Lewis and Prandtl numbers
were equal to 1.0 and 0.7, respectively. Combustion chemistry was reduced to a
single reaction. Accordingly, the mixture state was completely characterized by a
single combustion progress variable c = 1 − Y/Yu. Temperature dependence of the
molecular transport coefficients was taken into account, e.g. ν = νu(T/Tu)

0.7.
The computational domain was a rectangular box Λx ×Λy ×Λz with Λx = 8 mm,

Λy = Λz = 4 mm, and was resolved using a uniform rectangular (21x = 1y = 1z)
mesh of 512× 128× 128 points. Homogeneous isotropic turbulence (u′= 0.53 m s−1,
L = 3.5 mm, η = 0.14 mm and the turbulent Reynolds number Ret = u′L/νu = 96
(Nishiki et al. 2002, 2006)) was generated in a separate box and was injected into the
computational domain through the left boundary x= 0. In the computational domain,
the turbulence decayed along the direction x of the mean flow. The flow was periodic
in the y and z directions.

At t= 0, a planar laminar flame was embedded into statistically the same turbulence
assigned for the velocity field in the entire computational domain. Subsequently, the
inflow velocity was increased twice, i.e. U(0 6 t < tI)= SL < U(tI 6 t < tII) < U(tII 6
t), in order to keep the flame in the computational domain until the end tIII of the
simulations.

Three cases H, M and L characterized by high, medium, and low, respectively,
density ratios were studied (Nishiki et al. 2002, 2006). Since the focus of the present
work is placed on thermal-expansion effects, the following discussion will be restricted
to a comparison of the results obtained in the two cases characterized by the highest
and the lowest density ratios, i.e. (i) case H characterized by the highest σ = 7.53,
SL= 0.6 m s−1, δL= 0.217 mm, Da= 18, Ka= 0.21, St = 1.15 m s−1, and (ii) case L
characterized by the lowest σ = 2.5, SL = 0.416 m s−1, δL = 0.158 mm, Da = 17.3,
Ka= 0.30 and St = 0.79 m s−1. Here, δL= (Tb− Tu)/max{|∇T|} is the laminar flame
thickness, Da= (L/u′)/(δL/SL) and Ka= (u′/SL)

3/2(L/δL)
−1/2 are the Damköhler and

Karlovitz numbers, respectively, evaluated at the leading edges of the mean flame
brushes. The two flames are well associated with the flamelet combustion regime, e.g.
various Bray–Moss–Libby (BML) expressions hold in cases H and L (Lipatnikov et al.
2015c, figures 1–4).

The DNS data were processed as follows. Mean quantities 〈q〉(x) were averaged
over transverse yz-planes and over time tII 6 t6 tIII (220 and 200 snapshots in cases H
and L, respectively, stored during a time interval of tIII − tII ≈ 1.5L/u′ ≈ 10 ms).
Subsequently, x-dependencies were mapped to 〈c〉-dependencies using the spatial
profiles of the Reynolds-averaged combustion progress variable 〈c〉 = 1− 〈Y〉/Yu, i.e.
the mean value 〈q〉(x) was linked with the mean value 〈c〉(x) of the combustion
progress variable. Accordingly, in the following, dependencies of 〈q〉(x) and 〈c〉(x)
extracted directly from the DNS data will be presented in the form of 〈q〉(〈c〉) or
〈q〉[〈c〉(x)]. The probabilities Pkl[〈c〉(x), r] were also extracted from the DNS data,
with reactants and products being associated with c(x, t) 6 ε and c(x, t) > 1 − ε,
respectively. Change of the threshold ε from 0.05 to 0.01 did not affect the major
results reported in the following. Therefore, we will restrict ourselves to reporting
data computed at ε = 0.05.

The flow in the flame H or L is statistically homogeneous and isotropic in any
transverse plane x = const., but the axial flow u(x, t) is accelerated by the mean
axial pressure gradient ∂〈p〉/∂x induced due to combustion. Therefore, to distinguish
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spatial variability of the turbulent flow from the pressure-driven acceleration of the
flow, the focus of the following discussion is placed on SFs measured at two points
xA = {xAB, yA, zA} and xB = {xAB, yB, zB} that lie on the same transverse plane x= xAB,
i.e. r = {0, ry, rz}, ry = yB − yA and rz = zB − zA. Nevertheless, some results obtained
for r= {r, 0, 0}, i.e. xB = xA + r, yB = yA and zB = zA, will also be reported in § 4.3.

For the axial velocity u, the transverse SFs Dxx,T[〈c〉(x), r] and their conditioned
components were obtained by (conditionally) averaging (uB − uA)

2 over time and
two sets of points; (i) xA = {x, y, z}, xB = {x, y + r, z} and (ii) xA = {x, y, z},
xB = {x, y, z + r}. It is worth noting that, following Kolmogorov (1941), the words
‘transverse’ and ‘longitudinal’ SF or subscripts T and L, respectively, characterize
the mutual orientation of velocity vector u(x, t) or u(x + r, t) and vector r that
connects the two considered points. The longitudinal and transverse SFs should be
distinguished from the axial (x) and transverse (y or z) directions, which are normal
and tangential, respectively, to the mean flame brush. For instance, the longitudinal
SF for tangential velocity v or w characterizes variations in that velocity in the
transverse direction y or z, respectively. For the tangential velocities v and z, the
transverse SFs Dyy,T[〈c〉(x), r] and Dzz,T[〈c〉(x), r], respectively, and their conditioned
components were obtained by (conditionally) averaging (vB − vA)

2 and (wB − wA)
2,

respectively, over time and sets of points (ii) and (i), respectively. On the contrary,
the longitudinal tangential velocity SFs Dyy,L[〈c〉(x), r] and Dzz,L[〈c〉(x), r] and their
conditioned components were obtained by (conditionally) averaging (vB − vA)

2 and
(wB−wA)

2, respectively, over time and sets of points (i) and (ii), respectively. Finally,
SFs Dyz,T[〈c〉(x), r] = 0.5(Dyy,T + Dzz,T) and Dyz,L[〈c〉(x), r] = 0.5(Dyy,L + Dzz,L) were
found. Here, u= {u, v,w}, 0 6 y<Λy, 0 6 z<Λz and 0 6 r<Λy/2=Λz/2.

4. Results and discussion
4.1. Typical structure functions

Typical mean (dots) and conditioned (lines) SFs are shown in figures 1–3. These data
were computed in the middle of the flame brushes, i.e. at distance x∗ characterized
by the minimal difference |〈c〉(x) − 0.5|, in order for the probabilities Pkl(〈c〉, r) to
be significant, see figure 4, thus, allowing us to obtain solid statistics. The SFs are
normalized using the square |1u|2L of the normal velocity jump |1u|L = (σ − 1)SL
across the laminar flame (|1u|2L = 15.35 and 0.39 m2 s−2 in cases H and L,
respectively). The distance r is normalized using the distance δε between iso-surfaces
c = ε and c = 1 − ε in the unperturbed laminar flame (δε = 0.28 and 0.22 mm
in cases H and L, respectively). This distance is used instead of δL, because
reactant–product SFs should vanish if r < δε provided that the flamelets retain the
local structure of the unperturbed laminar flame. The laminar flame scales are chosen,
because a substantial part of subsequent discussion, e.g. see § 4.2, will address the
behaviour of reactant–product SFs at distances close to δε .

To illustrate the capabilities of the SF approach, let us note certain trends indicated
in figures 1–3.

First, the mean SFs differ substantially from the conditioned SFs, thus, showing that
the velocity jumps associated with the unburned–burned intermittency strongly change
the two-point statistics of the velocity field within a premixed turbulent flame brush.
Therefore, the results plotted in figures 1–3 call for investigation of the conditioned
fields in order to properly characterize the aforementioned two-point statistics.

Second, the magnitudes of almost all SFs are significantly increased by the density
ratio σ , cf. results obtained in cases H and L. (The higher magnitude of reactant–
reactant (i.e. uu) SFs computed in case H is associated with a shorter time during
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FIGURE 1. (Colour online) Normalized conditioned (lines) and mean (dots) longitudinal
SFs Dyz,L[〈c〉(x∗), r/δε]/|1u|2L for the transverse velocity, obtained in the middle of flame
brush in case (a) H or (b) L.
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FIGURE 2. (Colour online) Normalized conditioned (lines) and mean (dots) transverse SFs
Dxx,T[〈c〉(x∗), r/δε]/|1u|2L for the axial velocity, obtained in the middle of flame brush in
case (a) H or (b) L.
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FIGURE 3. (Colour online) Normalized conditioned (lines) and mean (dots) transverse SFs
Dyz,T[〈c〉(x∗), r/δε]/|1u|2L for the transverse velocity, obtained in the middle of flame brush
in case (a) H or (b) L.

which the turbulence decays upstream of the mean flame brush, as discussed in detail
elsewhere (Lipatnikov et al. 2018a). This time is shorter in case H when compared
to case L, because the turbulent flame speed St and the mean inlet velocity are higher
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FIGURE 4. (Colour online) Probabilities Pkl[〈c〉(x∗), r/δε] obtained in the middle of flame
brush in case (a) H or (b) L.

in the former case, whereas distances from the inlet to the flame leading edges are
approximately equal in the two cases.) This trend is expected because variations in
the density increase the variability of the velocity field and, consequently, the velocity
differences between two points. The discussed difference between cases H and L is
much more pronounced if different mixture states are observed at the two points, i.e.
if the difference in ρA and ρB is large, cf. curves ub, uf or fb in cases H and L.

Third, in case H, the reactant–reactant SFs, see curves uu plotted by the dashed
lines in figures 1(a) and 2(a), have the lowest magnitudes among all conditioned SFs,
because the reactants are least subjected to thermal-expansion effects.

Fourth, curves ub plotted by the solid lines in figure 2 show that the transverse
reactant–product SF Dxx,T,ub for the axial velocity has the largest magnitude among all
SFs plotted in figures 1–3, with the effect being much more pronounced in case H.
These trends are associated with strong (weak) axial acceleration of low-density
products (high-density reactants) by the combustion-induced mean axial pressure
gradient 〈∇xp〉, which is significantly stronger in case H. In particular, an increase
in the reactant–product SF Dxx,T,ub with distance r may be attributed to a mechanism
highlighted by Scurlock & Grover (1953) and by Libby & Bray (1981). For instance,
if the reactant coordinate xA is kept constant, but the distance r is increased, the axial
distance between low-density products at point B and the flamelet surface is likely
to be increased. Therefore, the products have strongly been accelerated by ρ−1

〈∇xp〉
during a longer time required to reach a more distant point B. Consequently, their
axial velocity is higher at that point.

Fifth, a decrease in the longitudinal reactant–product SF Dyz,L,ub with r, see curves
ub plotted by the solid lines in figure 1, may be attributed to the same mechanism
bearing in mind that the studied flames generate a mean axial pressure gradient
〈∇xp〉, but do not induce a mean transverse pressure gradient. Accordingly, when
the products are accelerated by 〈∇xp〉 in the axial direction, the magnitude of their
transverse velocity decreases due to mass conservation, because the product density
is constant.

Sixth, as discussed in detail elsewhere (Lipatnikov et al. 2015c), the local flamelet
structure is weakly perturbed (when compared to the laminar flame) under conditions
of the present DNS at 〈c〉(x∗) ≈ 0.5. Therefore, reactants and products cannot
simultaneously be observed at two points separated by a distance r that is substantially
less than δε . Accordingly, the probability Pub vanishes if r/δε < 1, see curves ub
plotted by the solid lines in figure 4. Nevertheless, at r/δε ≈ 1, the probability
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is small, but finite, and there is a jump of the longitudinal reactant–product SF
Dyz,L,ub, see curves ub plotted by the solid lines in figure 1. This jump is attributed
to local flow acceleration across flamelets in the directions that are locally normal
to the flamelets. The location of the jump at r/δε ≈ 1 indicates the appearance of
flamelets that are locally normal to the y or z coordinate axis. Indeed, if a flamelet
is significantly inclined to both transverse axes, the distance between the reactant
and product edges of the flamelet, counted in the y or z direction, is larger than the
distance δε counted between the two edges in the locally normal direction.

Seventh, a significant increase in the longitudinal product–product SF Dyz,L,bb with
r observed in case H, see curve bb plotted by the dotted-dashed line in figure 1(a),
might result from the opposite directions of the transverse velocities v (or w) induced
due to thermal expansion at opposite sides of a layer that is filled by the reactants and
is almost parallel to the x-axis. Such finger-like structures were observed by analysing
the present DNS data (Lipatnikov et al. 2015a, 2018a). In case L, an increase in the
longitudinal product–product SF Dyz,L,bb with r is also observed, but the magnitude of
the effect is much lower due to significantly weaker flow acceleration within flamelets.

Eighth, the transverse flamelet–product Dxx,T,fb and reactant–flamelet Dxx,T,uf SFs
behave similarly to the reactant–product SF Dxx,T,ub, cf. curves fb, uf and ub,
respectively, in figure 2, but have smaller magnitudes, because the density difference
is largest for the reactant–product pairs of points.

Ninth, differences between SFs conditioned to various events are smallest in the
case of SF Dyz,T , because 〈∇yp〉 = 〈∇zp〉 = 0 and flamelets normal to the y (or z)
component of the local velocity field do not induce a pressure gradient in the
transverse z (or y, respectively) direction. Accordingly, the influence of combustion
on the SFs is least pronounced for the transverse SF Dyz,T for the tangential velocities
v and w in the selected coordinate framework.

Thus, the considered examples show that (i) the conditioned SFs convey a large
amount of information on the influence of combustion-induced thermal expansion
on velocity fields in premixed turbulent flames and (ii) this influence is significantly
reduced when the density ratio is decreased. Although the trends discussed above
might be claimed to be expected, the use of the SFs offers an opportunity to reveal
an apparently surprising effect examined in the next subsection.

4.2. Local shear layers
Figures 1–3 show that the reactant–product SFs vanish at r/δε < 1, but have finite or
even peak values close to r/δε = 1. Thus, if r>δε , then, independently of a transverse
direction (y or z), there are pairs of points (xA, xB) such that (i) both points lie on a
line parallel to a transverse coordinate axis, (ii) distance r between the two points is
close to δε and (iii) c(xA, t) < 0.05 and c(xB, t) > 0.95 or vice versa. However, the
probability of such events is low if r is close to δε , see solid line in figure 4. As
already argued in the previous subsection, such events are associated with flamelets
that are locally normal to a transverse coordinate axis y or z.

Moreover, at the lowest r ≈ δε associated with a finite probability Pub > 0,
the normalized reactant–product SF Dyz,T,ub/|1u|2L has a very small magnitude of
approximately 0.05 at 〈c〉 = 0.5 in case H. If flamelets that control the SF at r ≈ δε
were inclined to both transverse axes y and z, then, contributions from Dyy,T,ub,
i.e. difference in v in the z-direction, and from Dzz,T,ub, i.e. difference in w in the
y-direction, would yield a significantly larger Dyz,T,ub/|1u|2L due to jumps of the locally
normal components of v and w across the flamelets. Consequently, the computed small
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FIGURE 5. (Colour online) (a) Minimal and maximal values of the transverse components
of the unit normal vector n = −∇c/|∇c|, found for each transverse plane 〈c〉(x) =
const. and various instants t. 1 – min{ny}, 2 – max{ny}, 3 – min{nz}, 4 – max{nz}.
(b) Maximal (over each transverse plane at various instants) absolute values |〈n ·
∇u|√nyny > n∗‖

√
nznz > n∗〉| of the normal (to the local flamelet) gradient of the axial

velocity u conditioned to either |ny| or |nz| being larger than a threshold value n∗ specified
in the legends. The gradient is normalized using the magnitude |∇u|L = (σ − 1)SL/δL of
the velocity gradient across the laminar flame. Case H.

magnitude of Dyz,T,ub/|1u|2L at r≈ δε also indicates that flamelets associated with the
lowest distance ry or rz between the reactants and products are almost normal to the
y or z-axis, respectively.

Nevertheless, the peak value of Dyz,L,ub[〈c〉(x∗), r/δε], obtained at r≈ δε , see curve ub
in figure 1(a), and, therefore, controlled by such ‘locally normal’ (to the y or z-axis)
flamelets, is substantially less than |1u|2L. This result implies that the local velocity
field within such flamelets is significantly perturbed when compared to the velocity
field within the laminar flame.

Furthermore, the magnitude of Dxx,T,ub/|1u|2L at r ≈ δε in case H, see curve ub in
figure 2, is as large as 0.28 and is comparable with Dyz,L,ub/|1u|2L= 0.32 at the same
r/δε . This result implies that there are significant variations in the axial velocity u
across the considered flamelets, to which the velocity is almost tangential.

Thus, the discussed behaviour of the reactant–product SFs implies (i) appearance
of flamelets almost normal to the y or z-axis, (ii) strong perturbations of the local
velocity field within such flamelets (when compared to the laminar flame) and, in
particular, (iii) strong variations in the locally tangential (to the flamelets) velocity u
in the direction locally normal to the flamelets.

Since the present authors are not aware of any discussion of such local flow
structures in the combustion literature, target-directed diagnostics were applied to
the same DNS data in order to validate the above conclusions drawn by analysing
the conditioned SFs. In the following, we will restrict ourselves to reporting some
results that support the aforementioned effects revealed using the conditioned SFs.
The reader interested in a more detailed discussion of these effects is referred to a
paper by Lipatnikov et al. (2018c).

Figure 5(a) shows that the maximal (minimal) values of the transverse components
ny and nz of the unit normal vector n=−∇c/|∇c|, found for each transverse plane
〈c〉(x) = const. at various instants, are very close to unity (minus unity) provided
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FIGURE 6. (Colour online) Flame shapes in (a) xy and (b) xz planes that cross a point A
characterized by ny ≈ 1 and by a high magnitude |n · ∇u| of the normal (to the local
flamelet) gradient of the axial velocity u, which is almost tangential to the flamelet in the
vicinity of that point. Reaction surface is characterized by the maximal reaction rate W(c).
〈c〉(x∗)≈ 0.5. Case H, t= 18.3 ms.

that 〈c〉(x)>0.2. Consequently, |ny| (or |nz|) is very close to unity at some (or another)
point (y, z) for each x such that 〈c〉(x)> 0.2 at some (or another) instant. Accordingly,
at such points and at such instants, |nx| =

√
1− n2

y − n2
z � 1 and flamelets locally

parallel to the x-axis do appear, in line with the above discussion of the reactant–
product SFs. An example of such a flamelet is shown in the upper part of figure 6(a),
see the neighbourhood of point A therein.

Figure 5(b) indicates that the locally tangential (to such flamelets) velocity u
can significantly vary in the direction locally normal to the flamelets, in line with
the above discussion, but contrary to the behaviour of the velocity field in weakly
stretched laminar flames. Such variations of u in the y-direction are shown by the
dotted line in figure 7(a).

Insight into a physical mechanism that can cause such a large locally normal
gradient |n · ∇u| of the locally tangential velocity u can be gained by looking into
figures 6(a), 7 and 8. At point A, which is close to the reaction surface characterized
by the maximal reaction rate as shown in figure 6(a), ny ≈ 1, whereas |nx| � 1
and |nz| � 1. Accordingly, in the vicinity of point A, the reaction surface is almost
parallel to the x-axis and the axial distance 1x between point A and the flamelet
cold boundary c(x, yA, zA, t) = 0.01 is relatively large (1xA = 0.6 mm). On the
contrary, a neighbouring point B (xB = xA, yB = yA + r and zB = zA) is close to
the cold boundary (1xB = 0.07 mm). Consequently, a fluid volume that comes to
point A is likely to move within the flamelet during a time interval 1tA, which is
significantly longer than the time interval 1tB required for another fluid volume to
move from the flamelet cold boundary to point B. When a fluid volume moves within
the flamelet, the density in the volume is less than ρu and decreases with distance
from the flamelet cold boundary. Therefore, the volume acceleration ρ−1∇p by the
combustion-induced pressure gradient is significantly stronger than the acceleration
that a volume of unburned reactants would experience under the influence of the same
pressure gradient, cf. solid and dotted-dashed lines in figure 7(b) or see figure 8(b).
Thus, the volume associated with point A (or B) is subject to an increased axial
acceleration, see solid line in figure 7(a) or figure 8(a), during a relatively long
(short, respectively) time interval 1tA (1tB, respectively). As a result, a significant
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FIGURE 7. (Colour online) Local profiles of (a) the x-component u(x) of the velocity
vector u={u, v,w} and (b) components of the pressure-induced acceleration vector ρ−1∇p.
Axial profiles plotted by dotted-dashed lines cross point B shown in figure 6(a), with the
axial distance being counted from the transverse plane z= zA that points B and A lie on.
Other profiles cross point A shown in figure 6, with distance being counted from this
point. Negative distance is associated with lower (or higher) values of the combustion
progress variable c for the x and z (or y, respectively) profiles. The velocity is normalized
using SL, the density is normalized using ρu, and the pressure gradient is normalized using
ρu(σ − 1)S2

L/δL.
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FIGURE 8. (Colour online) Two-dimensional fields of (a) velocity u and (b) pressure-
induced acceleration ρ−1∇p. Arrows show the vector directions and the vector magnitudes
are shown in grey scale. Left and right solid lines show the flamelet cold boundary and
reaction surface, respectively. The fields are extrapolated to y> 4 mm using the symmetry
boundary condition and are plotted in the transverse plane z= zA that point B and point A
(black dot) lie on. The velocity is normalized using SL, the density is normalized using ρu
and the pressure gradient is normalized using ρu(σ − 1)S2

L/δL. Spatial distances x and y
are reported in mm. Case H, t= 18.3 ms.

difference in uB and uA and, hence, a significant locally normal gradient of the locally
tangential velocity appears, see dotted line in figure 7(a).

Furthermore, figure 6(b) shows that the local flamelet structure is perturbed in
the vicinity of point A, e.g. the distance between the reaction surface and the cold
boundary is increased. However, such effects are statistically weak, as discussed in
detail elsewhere (Lipatnikov et al. 2018c).
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FIGURE 9. (Colour online) Conditioned PDFs of the absolute value of the gradient n ·∇u
of the axial velocity u in the direction normal to the local flamelet, evaluated at (a) 〈c〉=
0.5 and (b) 〈c〉 = 0.9 in cases H (σ = 7.53, curves 1 and 2) and L (σ = 2.50, curves 3
and 4). The PDFs are obtained by sampling from points where either 0.97< |ny(x, t)|6
0.99 (curves 1 and 3) or 0.97 < |nz(x, t)| 6 0.99 (curves 2 and 4). The gradient is
normalized using |∇u|L = (σ − 1)SL/δL.

It is also worth stressing that the local shear layers revealed by analysing the
conditioned SFs in the present work and unburned mixture fingers studied by us earlier
(Lipatnikov et al. 2015a, 2018a) are different phenomena and their appearances are
controlled by different physical mechanisms. In particular, the local shear layer is a
small-scale structure, which (i) is localized to flamelets, e.g. to a small neighbourhood
of point A in figure 6(a), (ii) appears due to preferential acceleration of the reacting
mixture and (iii) is observed in case H, but not in case L. The unburned mixture finger
is (i) a large-scale structure, see the central part of figure 6(b), which (ii) appears
due to acceleration of unburned gas by the axial pressure gradient induced due to
combustion in surrounding flamelets and (iii) is observed both in cases H and L
(Lipatnikov et al. 2015a, 2018a).

Finally, shown in figure 9 are conditioned probability density functions (PDFs) of
the absolute value |n · ∇u| of the gradient of the axial velocity u in the direction
normal to the local flamelet. These conditioned PDFs were sampled within flamelets
(ε < c(x, t) 6 1 − ε) and solely from points such that either 0.97 < |ny(x, t)| 6 0.99
or 0.97 < |nz(x, t)| 6 0.99. In other words, the PDFs were conditioned to flamelets
that were almost normal to one of the transverse coordinate axes. Accordingly, these
conditioned PDFs characterize the locally normal (to flamelets) gradient of the locally
tangential velocity. Figure 9 indicates that the PDFs peak around 0.5|∇u|L in case H,
see curves 1 and 2, where |∇u|L = (σ − 1)SL/δL is the characteristic magnitude of
velocity gradient in the laminar flame. Therefore, if flamelet zones characterized by
either large |ny(x, t)| (curves 1 and 3) or large |nz(x, t)| (curves 2 and 4) are solely
considered, then, the probability of finding a sufficiently large value of the locally
normal gradient n · ∇u of the locally tangential (either |ny(x, t)| or |nz(x, t)| is close
to unity) velocity u is significant. In case L, see curves 3 and 4, such a probability is
also substantial, but the PDFs are well shifted to the ordinate axis and peak around
0.2|∇u|L in spite of the fact that |∇u|L applied to normalize the DNS data in case L
is lower by a factor of approximately 8.7 than |∇u|L in case H. Thus, comparison
of the DNS data computed in cases H and L indicates that (i) the magnitude of the
effect cannot simply be scaled invoking a characteristic of a laminar flame such as
|∇u|L, but (ii) the effect stems from density variations, as the PDF shapes are clearly
different in cases H and L.
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FIGURE 10. (Colour online) Longitudinal reactant–reactant SFs Dyz,L,uu(x, r/δε) normalized
using (v′2 + w′2)/2 conditioned to the reactants. 1 – x = 0.25 mm, 〈c〉 = 0; 2 – x =
0.50 mm, 〈c〉 = 0; 3 – x= 0.75 mm, 〈c〉 = 0; 4 – x= 1.0 mm, 〈c〉 = 0.001; 5 – x= 1.3 or
1.4 mm in case H or L, respectively, 〈c〉 = 0.10; 6 – x= 1.5 or 1.8 mm in case H or L,
respectively, 〈c〉 = 0.25; 7 – x= 1.9 or 2.3 mm in case H or L, respectively, 〈c〉 = 0.50;
8 – x= 2.5 or 2.8 mm in case H or L, respectively, 〈c〉 = 0.75.

To conclude this subsection, it is worth stressing that all data reported in
figures 5–9 were only computed after the conditioned SFs had been analysed. In
fact, diagnostic techniques required to obtain these data were developed, because the
SF analysis implied the appearance of unexpected local flow structures and called for
target-directed research into them. Therefore, the contents of the present subsection
well illustrate the new opportunities offered by the conditioned SF approach.

4.3. Turbulence in unburned reactants

The conditioned SFs appear to be particularly useful for exploring the eventual effects
of thermal expansion in premixed flames on the incoming turbulent flow of unburned
reactants. This issue is of great fundamental importance, because a flame propagates
into unburned reactants and, therefore, flame motion is controlled by its speed and
the local velocity field in the unburned reactants just upstream of the flame. Although
the aforementioned effects could be expected due to the appearance of combustion-
induced pressure perturbations in the reactant turbulent flow, the effects have yet been
poorly evidenced in experimental or DNS studies.

Application of the conditioned SFs to the present DNS data does evidence
such effects. For instance, figure 10 shows the evolution of the longitudinal
reactant–reactant SFs Dyz,L,uu(x, r) upstream of and within the turbulent flame brushes
in cases H and L. Upstream of the flame brushes, see curves 1–4, the evolution of
Dyz,L,uu(x, r) looks qualitatively and quantitatively similar in both cases. A decrease in
Dyz,L,uu(x, r) with x at r/δε < 3.5, i.e. less-pronounced spatial variations in the velocity
difference at larger x, could be attributed to an increase in the length scales of the
spatially decaying turbulence. However, the behaviour of Dyz,L,uu(x, r) in the H-flame
brush, i.e. at 〈c〉(x)> 0.1, differs substantially from the behaviour of Dyz,L,uu(x, r) in
the L-flame brush, cf. curves 5–8 in figures 10(a) and 10(b), respectively. In particular,
Dyz,L,uu[〈c〉(x), r/δε] is increased and decreased with increasing 〈c〉 in cases H and L,
respectively, with this difference between the two cases being well pronounced already
at 〈c〉(x)> 0.25, cf. curves 6.
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FIGURE 11. (Colour online) Longitudinal reactant–reactant SFs Dxx,L,uu(xA, r/δε)
normalized using u′2 conditioned to the reactants. Legends are explained in caption to
figure 10.

Figure 11 shows the evolution of the longitudinal reactant–reactant SFs Dxx,L,uu(xA, r)
evaluated as follows

Dxx,L,uu(x, r)
≡ 〈[uB(xA + r, y, z, t)− ūu(xA + r, t)− uA(xA, y, z, t)+ ūu(xA, t)]2IB,uIA,u〉/Puu, (4.1)

where xB = xA + r, yB = yA, zB = zA and ūu(x, t) is the axial velocity conditionally
averaged in the unburned gas over various y and z at instant t. Differences in the
evolutions of Dxx,L,uu(x, r) within the H and L flame brushes are also observed, but
the effect is opposite to the effect documented for Dyz,L,uu(x, r) in figure 10. Indeed, at
small separation distances r/δε < 3 in figure 11, Dxx,L,uu(x, r) decreases with increasing
〈c〉(x) in both cases, but the decrease is less pronounced in case L, characterized by a
lower density ratio. Thus, figures 10 and 11 considered together indicate not only the
influence of combustion-induced thermal expansion on the turbulent flow of constant-
density unburned reactants, but also show that the influence is anisotropic.

Such differences between cases H and L are even more pronounced if the SFs
Dyz,L,uu(x, r/δε) are ‘compensated’ by dividing them by reference SFs D∗yz,L,uu ≡

Dyz,L,uu(x= 0.25 mm, r/δε), which are almost the same in cases H and L. Figure 12(b)
(case L) shows that Dyz,L,uu(x, r/δε)/D∗yz,L,uu decreases with distance x (or with 〈c〉) at
small scales (r/δε < 4). On the contrary, curves 5–8 in figure 12(a) (case H) show that
Dyz,L,uu(x, r/δε)/D∗yz,L,uu increases with increasing 〈c〉 provided that r/δε < 4. Moreover,
local maxima of Dyz,L,uu(x, r/δε)/D∗yz,L,uu are observed at r/δε ≈ 2.6 and 〈c〉(x∗)≈ 0.5,
see curve 7 in figure 12(a), or at r/δε ≈ 4 and 〈c〉(x)≈ 0.75, see curve 8. Furthermore,
Dyz,L,uu[〈c〉(x) ≈ 0.75, r/δε]/D∗yz,L,uu is larger than unity if r/δε > 1 in case H. These
results confirm that combustion-induced thermal expansion can substantially affect
small-scale two-point velocity statistics even in the turbulent flow of constant-density
unburned reactants.

Figure 13 shows another effect of this kind, i.e. differences between various
compensated reactant–reactant SFs are substantially more pronounced at small scales
(r/δε < 3) in case H when compared to case L, thus, indicating that the influence of
combustion-induced thermal expansion on the turbulence in unburned gas is highly
anisotropic.

The influence of combustion on the incoming turbulent flow of constant-density
reactants can also be evidenced using other methods. For instance, the present authors
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FIGURE 12. (Colour online) A ratio of the longitudinal reactant–reactant SFs
Dyz,L,uu(x, r/δε) to a reference SF Dyz,L,uu(x = 0.25 mm, r/δε). Legends are explained in
caption to figure 10.
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FIGURE 13. (Colour online) A ratio of reactant–reactant SFs to reference SFs obtained at
x= 0.25 mm. 1 – Longitudinal SF Dyz,L,uu for tangential velocities v and w; 2 – transverse
SF Dxx,T,uu for the axial velocity u; 3 – transverse SF Dyz,L,uu for tangential velocities v
and w, with r being equal to {0,0, r} and {0, r,0}, respectively; 4 – longitudinal SF Dxx,L,uu
for the axial velocity u, defined with (4.1); 5 – transverse SF for tangential velocities v
and w, with r being equal to {r, 0, 0}, i.e. xB = xA + r, yB = yA, and zB = zA.

(Lipatnikov et al. 2015b; Sabelnikov & Lipatnikov 2017) analysed the same DNS
data in order to compare the behaviour of small-scale turbulence characteristics
(i) upstream of the mean flame brushes H and L, (ii) at the leading points of
the flame brushes at various t and (iii) at the unburned flamelet edges within the
flame brushes. For these purposes, first, the flame leading point xlp(t) was found by
selecting the single grid point with the lowest axial coordinate x among all grid points
characterized by c(x, t)> 0.05 at each instant t. Subsequently, quantities conditioned
to this point were evaluated by averaging their values over a small square located
on the leading transverse plane x= xlp(t) and centred around the leading point xlp(t).
Second, due to the decay of incoming turbulence in the axial direction, quantities
averaged over the leading transverse plane x= xlp(t) were considered to characterize
turbulence upstream of the mean flame brush. Third, at each instant t, the unburned
flamelet edge x= xf (y, z, t), i.e. a 2-D surface within the mean flame brush, was found
using the following two constraints; (i) c(xi, yj, zk, t) > 0.05 if xi = xf (yj, zk, t), but
(ii) c(xi, yj, zk, t)< 0.05 if xi< xf (yj, zk, t) at the same j and k. In other words, for each
ray { j= const., k= const.} (or {y= const., z= const.}) parallel to the x-axis, a single
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FIGURE 14. (Colour online) (a) Q criterion (solid lines), total strain S2/2 (dashed lines)
and enstrophy ω2/4 (dotted lines), averaged in the vicinity of the leading points xlp(t) (red
and orange lines in cases H and L, respectively) and over leading planes x= xlp(t) (blue
and violet lines in cases H and L, respectively). (b) Probabilities of Q > 0 (solid lines)
and Q< 0 (dashed lines), conditioned to unburned flamelet edge, i.e. c(x, t)≈ 0.05.

axial coordinate xi = xf (yj, zk, t) was determined so that c(x, yj, zk, t) < 0.05 on the
ray upstream of the unburned flamelet edge, but c(xi, yj, zk, t)> 0.05 at the boundary.
Then, the value of a considered quantity was averaged over the entire 2-D surface of
the unburned flamelet edge xf (y, z, t) at different instants, i.e. over all 16 j6 128 and
1 6 k 6 128 and over tII 6 t 6 tIII . Thus, (i) characteristics of the incoming turbulence
were averaged over the leading transverse plane x = xlp(t) upstream of the mean
flame brush, (ii) characteristics of the leading point were averaged in its vicinity and
(iii) characteristics of the unburned flamelet edge were averaged over a 2-D surface
within the mean flame brush.

Three quantities, i.e. enstrophy ω2
= (∇ × u)2, total strain S2

= SijSij and the Q-
criterion (Tsinober 2009)

Q= 1
4ω

2
−

1
2 S2, (4.2)

were studied to explore the influence of combustion-induced thermal expansion on
small-scale turbulence by comparing their values averaged in the incoming turbulence
with their values conditioned to either the leading point or to the unburned flamelet
edge.

Figure 14(a) shows that the behaviour of ω2, S2 or Q averaged over the leading
plane, i.e. in the incoming turbulent flow, is similar in cases H and L, cf. blue and
violet lines. In both cases, the magnitudes of ω2/4 and S2/2 are much larger than the
magnitude of Q, which is predominantly negative. Moreover, in case L, the behaviour
of Q averaged in the vicinity of the leading point is similar to the behaviour of Q
averaged over the leading plane, cf. solid orange and violet lines. On the contrary,
in case H characterized by a significantly larger density ratio, the behaviour of Q,
ω2 or S2 averaged in the vicinity of the leading point differs significantly from the
behaviour of Q, ω2 or S2, respectively, averaged over the leading plane, cf. red
and blue lines. In particular, the former Q is always negative, see red solid line,
thus, indicating a substantial influence of combustion-induced thermal expansion on
small-scale turbulent structure in the unburned constant-density reactants. The negative
values of Q averaged in the vicinity of the leading point imply that the potential flow
perturbations caused by the thermal expansion overwhelm the rotational perturbations.
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FIGURE 15. (Colour online) Typical 2-D images of the sign of the Q-criterion in cases
(a) H and (b) L. Spatial regions characterized by Q> 0 and Q< 0 are shown in grey and
white, respectively. Left and right solid lines show surfaces of c(x, t)≈ 0.01 and c(x, t)≈
0.5, respectively. Spatial x and y coordinates are reported in mm, z= 2 mm.

In other words, the flow in the vicinity of the leading point appears to be significantly
affected by pressure perturbations generated within flamelets.

Figure 14(b) reports probabilities of positive (solid lines) and negative (dashed lines)
Q at the unburned flamelet edge x= xf (y, z, t). In case L, the probabilities of Q< 0
and Q > 0 are comparable. On the contrary, values of Q calculated at the unburned
flamelet edge are negative in case H almost always, indicating a substantial influence
of combustion-induced thermal expansion on small-scale turbulent structures in the
unburned constant-density reactants. Again, the negative values of Q evaluated at the
unburned flamelet edge imply that the flow upstream of the flamelets is significantly
affected by pressure perturbations generated within the flamelets.

Typical 2-D images of the sign of the Q-criterion, plotted in figure 15, also indicate
that Q< 0 in the vicinity of the flamelets in case H, but Q can change sign within
the flamelets in case L.

Finally, it is worth noting that while figures 14 and 15 may appear to show the
influence of combustion on the incoming turbulence in a clearer manner when
compared to figures 10–13, the latter results convey additional information. In
particular, contrary to the conditioned SFs, values of ω2, S2 or Q do not allow
us to compare the magnitudes of the discussed effects at different length scales.

4.4. Turbulence in heat-release zones
SFs conditioned to HRZs, introduced in § 2.2, offer an opportunity to show the
influence of combustion-induced thermal expansion on two-point statistics of the
turbulent velocity field within such zones. If solely events such that the entire segment
[A, B] is within the HRZ are selected, then, the probability of these events is low
and decreases rapidly with distance r between the considered points A and B, see
figure 16. Accordingly, statistically solid results can only be obtained at sufficiently
small r. Nevertheless, the method does offer an opportunity to study behaviour of
small-scale velocity differences in HRZs.

For instance, figure 17 indicates that the transverse SFs Dxx,T,ww[〈c〉(x), r/δε] and
Dyz,T,ww[〈c〉(x), r/δε] differ significantly from one another at low r/δε in case H, but
exhibit similar dependencies on r/δε in case L. In particular, at low r/δε , the shape
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FIGURE 16. (Colour online) Probabilities of finding the entire segment [A, B] within
HRZs (0.75 < c(x, t) < 0.95), obtained at three different 〈c〉(x) specified in the legend,
versus the normalized segment length r/δε . Red and blue lines show results obtained in
cases H and L, respectively.
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FIGURE 17. (Colour online) Transverse SFs Dxx,T,ww[〈c〉(x), r/δε] (black lines) and
Dyz,T,ww[〈c〉(x), r/δε] (red lines) conditioned to HRZs (0.75 < c(x, t) < 0.95) at three
different 〈c〉(x) specified in the legends. The SFs are normalized with u′2 and 0.5(v′2+w′2),
respectively, conditioned to the same zone at the same 〈c〉. (a) case H, (b) case L.

of the Dxx,T,ww(r/δε)-curves in figure 17(a) differs significantly from the shape of the
other curves.

The observed increase in Dxx,T,ww[〈c〉(x), r/δε] at low r/δε in case H may be
associated with vorticity generation by baroclinic torque. Indeed, first, the present
DNS data show that the components ωy and ωz of the vorticity vector ∇ × u are
increased by baroclinic torque within the H-flame brush, whereas ωx in case H and
all three components of the vorticity vector in case L are decreased with increasing
〈c〉 due to dilatation (Lipatnikov et al. 2014, figure 2b). Second, variations in the
axial velocity u in the transverse directions y and z, i.e. Dxx,T,ww, contribute to ωz
and ωy, respectively, whereas variations in the tangential velocities v and w in the
transverse directions z and y, respectively, i.e. Dyz,T,ww, contribute to ωx. Consequently,
(i) results plotted in figure 17(a) are in line with different behaviours of ωy or ωz
(an increase with 〈c〉) and ωx (a decrease with 〈c〉), reported in case H by Lipatnikov
et al. (2014, figure 2b), and (ii) results plotted in figure 17(b) are in line with similar
behaviours of ωx, ωy and ωz, reported in case L by Lipatnikov et al. (2014, figure 2b).
Accordingly, not only viscous dissipation and dilatation, but also baroclinic torque
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may significantly affect small-scale turbulent eddies in flamelet preheat zones and the
net effect (dissipation or generation of such eddies) depends on the conditions and is
highly anisotropic. The conditioned SFs introduced in the present work appear to be
an appropriate tool for exploring the competition of such mechanisms by analysing
experimental or DNS data obtained under various conditions.

5. Conclusions

In order to explore the influence of combustion-induced thermal expansion on
turbulent flow within a premixed flame brush, a new method for analysing DNS or
experimental data is introduced. The method consists in conditioning the second-order
structure functions of the velocity field to various events such as; (i) unburned
reactants at both points, (ii) combustion products at both points, (iii) intermediate
states of the mixture at both points, (iv) the reactants at one point and the products
at another point, (v) the reactants at one point and an intermediate state at another
point and (vi) the products at one point and an intermediate state at another point.
Moreover, structure functions conditioned to heat-release zones are also introduced
by considering events such that both points A and B are within the zones.

This method was applied to analysing DNS data obtained from two weakly turbulent
premixed flames characterized by significantly different density ratios. Obtained results
show that the conditioned SFs differ significantly from the mean SFs. Moreover, the
SFs convey a large amount of important information on various local phenomena
that stem from the influence of combustion-induced thermal expansion on turbulent
flow, with the conditioned SFs not only showing well-studied phenomena, but also
revealing less recognized and even new (to the best of the present authors’ knowledge)
phenomena.

In particular, the conditioned SFs indicate substantial and highly anisotropic
influence of combustion-induced thermal expansion on turbulence in the incoming
flow of constant-density unburned reactants, with the effect being also confirmed by
exploring various small-scale characteristics of turbulence in the reactants, such as
enstrophy, total strain and Q-criterion.

Moreover, the conditioned SFs reveal strong small-scale perturbations of the local
velocity field, i.e. appearance of shear layers, within flamelets. This phenomenon
was further confirmed by applying target-directed diagnostic techniques to analysing
the DNS data, with the techniques being developed after revealing of the layers by
analysing the conditioned SFs.

Furthermore, SFs conditioned to heat-release zones indicate a highly anisotropic
influence of combustion-induced thermal expansion on the evolution of small-scale
two-point velocity differences within flamelets, with the effect being opposite (an
increase or a decrease) for different components of the local velocity vector.

The newly introduced conditioned SF method for analysing DNS or experimental
data appears to be a promising research tool that deserves further development and
application using both experiments and simulations. In particular, application of the
method to analysing DNS data obtained at significantly different ratios of u′/SL

(and high Ret) appears to be of great interest in order to determine the range of
conditions such that results obtained by studying constant-density turbulence, e.g.
the Kolmogorov theory, may be applied to turbulence within a premixed flame
brush. While certain DNS data (Hamlington, Poludnenko & Oran 2011; Whitman
et al. 2019) indicate that the influence of combustion-induced thermal expansion on
turbulence in premixed flames is mitigated by u′/SL, a domain of validity (if any) of
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the Kolmogorov theory in premixed turbulent flames has not yet been outlined even
for unburned reactants and this fundamental issue strongly challenges the combustion
community.

It is also worth noting that the fact that substantially different results are obtained
in two cases H and L, which are characterized by comparable u′/SL = O(1), but
significantly different density ratios, implies that the Bray number NB ∝ (σ − 1)SL/u′
(Bray 1995) is a more appropriate non-dimensional criterion for assessing the
importance of the thermal-expansion effects (they are assumed to be of more
importance at larger NB), but this hypothesis requires further study.
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Appendix A. Exact transport equation for structure function conditioned to
unburned reactants

While exact transport equations for the second-order SFs of the velocity field are
well known in turbulence theory (Monin & Yaglom 1975; Hill 1997, 2001, 2002;
Danaila et al. 1999; Antonia et al. 2003) since the pioneering study by Monin (1959),
we are not aware on such equations for SFs conditioned to the fluid state. Since
(i) the latter equations are substantially more complicated than the former and (ii) an
analysis of the latter equations is beyond the focus of the present work, we will
restrict ourselves to deriving an exact transport equation for the second-order SF tensor
Dij,uu, conditioned to fresh reactants, i.e. to c(x, t) < cu� 1 at two points x and x′ (or
xA and xB, respectively, in the main body of the paper) connected by a vector r =
x′ − x. Both derivation of the transport equations for Dij,bb or Dij,ub and the equations
themselves are very similar to the case of Dij,uu. Transport equations for Dij,uf , Dij,ff or
Dij,bf can be obtained using a basically similar method, but both the derivation and the
equations are more cumbersome in these three cases and will not be addressed in the
present appendix. It is worth noting that the case considered in the following, i.e. the
transport equation for Dij,uu, appears to be of the most fundamental interest, because
combustion-induced thermal expansion should change the turbulence characteristics
upstream of the flame and, in particular, Dij,uu in order to affect the speed of the flame
propagation into the reactants and, therefore, the burning rate.

Let us derive transport equations for the conditioned second-order SFs of both
total and fluctuating velocity fields while solely the former SFs are addressed in the
main body of the paper. For brevity, both (total and fluctuating) velocity vectors will
be designated using the same symbol u = {u1, u2, u3}, but terms that vanish in the
equations for the former (total) field will be specified when necessary. Moreover, the
subscript u will be skipped for brevity, because the following analysis is restricted to
reactants.

Since the density of the fresh reactants is considered to be constant, i.e. ρ(x, t)=ρu,
the continuity and Navier–Stokes equations read

∂uk

∂xk
=−

∂Uk

∂xk
(A 1)

and
∂ui

∂t
+ (Uk + uk)

∂ui

∂xk
=−

1
ρu

∂p
∂xi
+
∂τik

∂xk
− uk

∂Ui

∂xk
+ ai, (A 2)
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respectively, for both fields. Here,

τik = ν

(
∂ui

∂xk
+
∂uk

∂xi

)
(A 3)

is the fluctuating viscous stress tensor and

ai =−

(
∂Ui

∂t
+Uk

∂Ui

∂xk
+

1
ρu

∂P
∂xi

)
+ ν

∂

∂xk

(
∂Ui

∂xk
+
∂Uk

∂xi

)
(A 4)

is the acceleration term. If symbols ui and p are associated with the total velocity and
pressure fields, respectively, then, Ui = P= ai = 0. If symbols ui and p are associated
with the fluctuating velocity and pressure fields, respectively, then, Ui = 〈ûiIu〉/〈Iu〉

and P = 〈p̂Iu〉/〈Iu〉 designate the ith component of the velocity vector and pressure,
respectively, conditioned to the reactants, whereas ûi and p̂ refer to the total velocity
and pressure fields, respectively, in this case.

It is worth stressing that neither the divergence ∇ · U nor the acceleration ai
vanishes, because a statistical sub-ensemble over which a conditional average is taken
depends on x and t due to the random motion of an interface that bounds the reactants.
Consequently, taking the conditional average does not commute with taking the time
or spatial derivative (Libby 1975; Townsend 1976; Kuznetsov & Sabelnikov 1990) and
extra terms averaged over a surface c(x, t)= const. that separates two fluid states (e.g.
unburned reactants and burned products in the simplest case of self-propagation of
an infinitely thin flame front) appear in the conditioned transport equations (Kataoka
1986), as will be shown later. Such surface-averaged terms describe exchange of
mass, momentum or energy between the two fluid states and fundamentally change
features of the conditioned fields when compared to conventional mean fields. For
instance, as shown by Libby (1975), the divergence of a conditioned velocity does
not vanish even in a constant-density flow.

To derive transport equations for the instantaneous second-order SFs dij =

(u′i− ui)(u′j− uj)≡ vivj, a method developed by Hill (2001, 2002) is used. Henceforth,
q and q′ designate values of an arbitrary (scalar, vector or tensor) quantity q, taken
at points x and x′, respectively, and symbol vi designates the difference u′i − ui. First,
(A 2) written for ui is subtracted from (A 2) written for u′i. Second, the obtained
equation is recast to a transport equation for vi using (A 1) and considering x and
x′ to be independent variables. Third, the equation for vi (vj) is multiplied with vj
(vi, respectively) and the two equations are added. Since details of the derivation of
a similar transport equation are presented by Hill (2002), we restrict ourselves to
reporting the final result. In the considered case, it involves some extra terms, e.g.
the conditioned velocities U and U′, and reads

∂dij

∂t
+ (Uk + uk)

∂dij

∂xk
+ (U′k + u′k)

∂dij

∂x′k
=Gij −πij + qij − (ε

′

ij + ε
′

ji)− (εij + εji)+ vj(a′i − ai)+ vi(a′j − aj), (A 5)

where

Gij =−u′kvj
∂U′i
∂x′k
− u′kvi

∂U′j
∂x′k
+ ukvj

∂Ui

∂xk
+ ukvi

∂Uj

∂xk
, (A 6)

πij =
∂vjδp
∂x′i
+
∂vjδp
∂xi
+
∂viδp
∂x′j
+
∂viδp
∂xj
− δp

(
∂vj

∂x′i
+
∂vj

∂xi
+
∂vi

∂x′j
+
∂vi

∂xj

)
, (A 7)
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qij =
∂vjτ

′

ik

∂x′k
−
∂vjτik

∂xk
+
∂viτ

′

jk

∂x′k
−
∂viτjk

∂xk
, (A 8)

ε′ij = τ
′

ik

∂u′j
∂x′k

, εij = τik
∂uj

∂xk
, (A 9a,b)

and δp= p′− p. If dij is associated with the total velocity field, then, Uk =U′k =Gij=

ai = a′i = 0.
To obtain transport equations for conditioned SFs defined by (2.12), let us begin

with multiplication of (A 5) with a product I(x, t)I′(x′, t) of two indicator functions
taken at points x and x′, respectively. If, following Kataoka (1986), the indicator
function is defined as follows

I(x, t)=H[cu − c(x, t)], (A 10)

where H is Heaviside function, then,

∂I
∂t
= −

∂c
∂t
δ[cu − c(x, t)] =

[
(Uk + uk)

∂c
∂xk
− Sd|∇c|

]
δ[cu − c(x, t)]

= −[(Uk + uk)nk + Sd]|∇c|δ[cu − c(x, t)] =−[(Uk + uk)nk + Sd]Σ, (A 11)

∂I
∂xk
=−

∂c
∂xk

δ[cu − c(x, t)] = nkΣ, (A 12)

and
∂I
∂t
+ (Uk + uk)

∂I
∂xk
=−SdΣ, (A 13)

where δ[cu − c(x, t)] is the Dirac delta function, n = −∇c/|∇c| is the unit vector
normal to an interface of c(x, t) = cu, which separates fresh reactants from reacting
mixture, Σ = |∇c|δ[cu − c(x, t)] is the interface surface density, the so-called
displacement speed Sd is the speed of propagation of the interface of c(x, t)= cu with
respect to the reactants. Equations (A 11), (A 12) and (A 13) are well known both
in the multiphase flow (Kataoka 1986; Drew & Passman 2006) and combustion (Im
et al. 2004) literature. In the combustion case, Sd=[∇ · (ρD∇c)+W]/(ρ|∇c|), where
D is the molecular diffusivity of c and W is the mass rate of product creation. At the
interface of c(x, t)= cu� 1, the rate W vanishes and Sd = [∇ · (ρD∇c)/(ρ|∇c|)]c=cu .
If, at c = cu, flamelets retain the structure of the unperturbed laminar flame, then,
Sd = SL.

Let us use (A 12) and (A 13) to transform some terms in an equation that results
from multiplication of (A 5) with a product of II′. First, since I does not depend on
x′ and I′ does not depend on x,

II′
[
∂dij

∂t
+ (Uk + uk)

∂dij

∂xk
+ (U′k + u′k)

∂dij

∂x′k

]
=
∂

∂t
(II′dij)+ (Uk + uk)

∂

∂xk
(II′dij)+ (U′k + u′k)

∂

∂x′k
(II′dij)

− I′dij

[
∂I
∂t
+ (Uk + uk)

∂I
∂xk

]
− Idij

[
∂I′

∂t
+ (U′k + u′k)

∂I′

∂x′k

]
=

D
Dt
(II′dij)+ (I′SdΣ + IS′dΣ

′)dij, (A 14)
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where

D
Dt
≡
∂

∂t
+ (Uk + uk)

∂

∂xk
+ (U′k + u′k)

∂

∂x′k
. (A 15)

Second, similarly,

II′πij =π∗ij − vjδp(In′iΣ
′
+ I′niΣ)− viδp(In′jΣ

′
+ I′njΣ), (A 16)

where

π∗ij =
∂

∂x′i
(II′vjδp)+

∂

∂xi
(II′vjδp)+

∂

∂x′j
(II′viδp)+

∂

∂xj
(II′viδp)

− II′δp
(
∂vj

∂x′i
+
∂vj

∂xi
+
∂vi

∂x′j
+
∂vi

∂xj

)
. (A 17)

Third, similarly,

II′qij = q∗ij − vj(Iτ ′ikn
′

kΣ
′
− I′τiknkΣ)− vi(Iτ ′jkn

′

kΣ
′
− I′τjknkΣ), (A 18)

where

q∗ij =
∂

∂x′k
(II′vjτ

′

ik)−
∂

∂xk
(II′vjτik)+

∂

∂x′k
(II′viτ

′

jk)−
∂

∂xk
(II′viτjk). (A 19)

Thus, (A 5) reads

D
Dt
(II′dij) = −π∗ij + q∗ij + II′[Gij − (ε

′

ij + ε
′

ji)− (εij + εji)+ vj(a′i − ai)+ vi(a′j − aj)]

− (I′SdΣ + IS′dΣ
′)dij + vjδp(In′iΣ

′
+ I′niΣ)+ viδp(In′jΣ

′
+ I′njΣ)

− vj(Iτ ′ikn
′

kΣ
′
− I′τiknkΣ)− vi(Iτ ′jkn

′

kΣ
′
− I′τjknkΣ), (A 20)

where π∗ij and q∗ij are given by (A 17) and (A 19), respectively. If dij is associated with
the total velocity field, then, Ui =U′i =Gij = ai = a′i = 0.

Let us change independent variables x and x′ to new independent variables X =
(x+ x′)/2 and r= x′ − x (Monin 1959; Hill 1997, 2001, 2002; Danaila et al. 1999;
Antonia et al. 2003). Then,

∂

∂xk
=

1
2
∂

∂Xk
−

∂

∂rk
,

∂

∂x′k
=

1
2
∂

∂Xk
+

∂

∂rk
,

∂

∂x′k
−

∂

∂xk
= 2

∂

∂rk
,

∂

∂x′k
+

∂

∂xk
=

∂

∂Xk
.

 (A 21)

Consequently, since uk = (uk + u′k − vk)/2 and u′k = (uk + u′k + vk)/2,

∂

∂xk
(II′ukdij)+

∂

∂x′k
(II′u′kdij)=

1
2
∂

∂Xk
[II′(uk + u′k)dij] +

∂

∂rk
(II′dijk), (A 22)

where dijk = vivjvk. Similarly,

∂

∂xk
(II′Ukdij)+

∂

∂x′k
(II′U′kdij)=

1
2
∂

∂Xk
[II′(Uk +U′k)dij] +

∂

∂rk
(II′Vkdij), (A 23)

where Vk =U′k −Uk. Thus,
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D
Dt
(II′dij) =

∂

∂t
(II′dij)+

∂

∂Xk

(
II′

U′k + u′k +Uk + uk

2
dij

)
+

∂

∂rk
(II′dijk)+

∂

∂rk
(II′Vkdij). (A 24)

If dij is associated with the total velocity field, then, Uk =U′k = Vk = 0.
Moreover,

π∗ij =
∂

∂Xi
(II′vjδp)+

∂

∂Xj
(II′viδp)− II′δp

(
∂vi

∂Xj
+
∂vj

∂Xi

)
. (A 25)

Furthermore,

q∗ij =
1
2
∂

∂x′k
[II′vj(τ

′

ik + τik + τ
′

ik − τik)] −
1
2
∂

∂xk
[II′vj(τ

′

ik + τik − τ
′

ik + τik)]

+
1
2
∂

∂x′k
[II′vi(τ

′

jk + τjk + τ
′

jk − τjk)] −
1
2
∂

∂xk
[II′vi(τ

′

jk + τjk − τ
′

jk + τjk)]

=
∂

∂rk
[II′vj(τ

′

ik + τik)] +
1
2
∂

∂Xk
[II′vj(τ

′

ik − τik)]

+
∂

∂rk
[II′vi(τ

′

jk + τjk)] +
1
2
∂

∂Xk
[II′vi(τ

′

jk − τjk)]. (A 26)

Thus, (A 20) holds if its left-hand side, π∗ij, and q∗ij are given by (A 24), (A 25) and
(A 26), respectively. For brevity, terms Gij, εij, and ai are written using the original
variables, i.e. x and x′, see (A 6), (A 9) and (A 4), respectively. If dij is associated
with the total velocity field, then, Ui =U′i =Gij = ai = a′i = 0.

Ensemble-averaged (A 20) reads

∂

∂t
(PuuDij,uu)︸ ︷︷ ︸

T1

+
∂

∂Xk

(
U′k +Uk

2
PuuDij,uu

)
︸ ︷︷ ︸

T2

+
∂

∂Xk

〈
II′

u′k + uk

2
dij

〉
︸ ︷︷ ︸

T3

+
∂

∂rk
(VkPuuDij,uu)︸ ︷︷ ︸

T4

+
∂

∂rk
(PuuDijk,uu)︸ ︷︷ ︸

T5

=

〈
II′
(
−u′kvj

∂U′i
∂x′k
− u′kvi

∂U′j
∂x′k
+ ukvj

∂Ui

∂xk
+ ukvi

∂Uj

∂xk

)〉
︸ ︷︷ ︸

T6

−
∂

∂Xi
〈II′vjδp〉 −

∂

∂Xj

〈
II′viδp

〉
+

〈
II′δp

(
∂vi

∂Xj
+
∂vj

∂Xi

)〉
︸ ︷︷ ︸

T7

+
∂

∂rk
〈II′[vj(τ

′

ik + τik)+ vi(τ
′

jk + τjk)]〉 +
∂

∂Xk

〈
II′
(
vj
τ ′ik − τik

2
+ vi

τ ′jk − τjk

2

)〉
︸ ︷︷ ︸

T8

−〈II′(ε′ij + ε
′

ji + εij + εji)〉︸ ︷︷ ︸
T9

+ 〈II′[vj(a′i − ai)+ vi(a′j − aj)]〉︸ ︷︷ ︸
T10

−〈(I′SdΣ + IS′dΣ
′)dij〉︸ ︷︷ ︸

T11

+ 〈vjδp(In′iΣ
′
+ I′niΣ)+ viδp(In′jΣ

′
+ I′njΣ)〉︸ ︷︷ ︸

T12

−〈vj(Iτ ′ikn
′

kΣ
′
− I′τiknkΣ)+ vi(Iτ ′jkn

′

kΣ
′
− I′τjknkΣ)〉︸ ︷︷ ︸

T13

, (A 27)
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where Puu=〈II′〉 is the probability of finding fresh reactants at points x and x′, Dij,uu=

〈II′dij〉/〈II′〉 is the second-order SF tensor conditioned to the reactants, dij = vivj is
the instantaneous second-order SF tensor, vi = u′i − ui, Vi = U′i − Ui, δp= p′ − p, the
acceleration ai and the dissipation εij are given by (A 4) and (A 9), respectively, and,
in terms T11, T12 and T13, products that involve Σ are evaluated at the interface of
c(x, t)= cu. If the SFs dij and Dij,uu are associated with the total velocity field, then
Ui = Vi = ai = 0 and terms T2, T4, T6 and T10 vanish.

The derived transport equation describes the distribution of the flow kinetic energy
over various scales. If dij and Dij,uu are associated with the fluctuating velocity field,
the structure of the equation is partly similar to the structure of the transport equation
for turbulent kinetic energy (Monin & Yaglom 1975; Pope 2000). In particular, T1
is an unsteady term, the linear term T2 and term T3 describe convection of Dij,uu by
the conditionally mean flow and the turbulent transport of the energy, respectively, in
X-space, the linear term T4 is associated with redistribution of the energy in r-space,
i.e. between eddies of different length scales, due to the conditionally mean flow,
T5 involves conditioned third-order SFs PuuDijk,uu = 〈II′dijk〉 and describes nonlinear
redistribution of the energy in r-space due to the turbulence, T6 and T10 describe
production of the turbulent energy due to non-uniformities of the conditionally mean
flow, T7 is the turbulent transport and redistribution of the energy due to pressure
fluctuations, T8 is the viscous transport term and T9 describes viscous dissipation of
the turbulent energy.

Terms T11, T12 and T13 are specific to conditioned transport equations. The known
exact transport equations for SFs (Hill 2002) do not involve such terms, while similar
terms appear in the transport equation for turbulent kinetic energy conditioned to fresh
reactants at a single point (Im et al. 2004). These surface-averaged terms describe
exchange of energy between the two fluid states and fundamentally change the features
of conditioned fields when compared to conventional mean fields. For instance, these
terms make mean and conditioned SFs significantly different, cf. results shown in
dotted and other lines in figures 1–3.

Finally, it is worth noting that terms T2, T3, T4, T5, T7 and T8 are written using
coordinates X and r in order to obtain a common structure of the left-hand side, as
discussed above, whereas other terms are written in coordinates x and x′. Nevertheless,
the use of two different sets of coordinates does not seem to impede evaluating all
the terms by analysing DNS data. This will be a subject for future work.
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