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Compressible mixing layer in
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Unsteadiness in separated shock–boundary layer interactions have been previously
analysed in order to propose a scenario of entrainment–discharge as the origin of
unsteadiness. It was assumed that the fluid in the separated zone is entrained by
the free shear layer formed at its edge, and that this layer follows the properties of
the canonical mixing layer. This last point is addressed by reanalysing the velocity
measurements in an oblique shock reflection at a nominal Mach number of 2.3 and
for two cases of flow deviation (8◦ and 9.5◦). The rate of spatial growth of this
layer is evaluated from the spatial growth of the turbulent stress profiles. Moreover,
the entrainment velocity at the edge of the layer is determined from the mean
velocity profiles. It is shown that the values of turbulent shear stress, spreading rate
and entrainment velocity are consistent, and that they follow the classical laws for
turbulent transport in compressible shear layers. Moreover, the measurements suggest
that the vertical normal stress is sensitive to compressibility, so that the anisotropy of
turbulence is affected by high Mach numbers. Dimensional considerations proposed
by Brown & Roshko (J. Fluid Mech., vol. 64, 1974, 775–781) are reformulated to
explain this observed trend.
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1. Introduction
Turbulent boundary layer separation is generally unsteady; this means that separated

zones develop motions whose frequency scale is several orders of magnitude below
the turbulence in the incoming layer. This is particularly spectacular in compressible
flows where shock waves can be formed, leading to shock–boundary layer interactions
which induce separation (see e.g. Dupont, Haddad & Debiève 2006; Babinsky &
Harvey 2011). For many years efforts have been made to characterise this point and
comprehensive scenarios have been investigated (see Plotkin 1975; Piponniau et al.
2009; Touber & Sandham 2011; Clemens & Narayanaswamy 2014, among others).
The latter paper proposed a scenario of entrainment–discharge mechanism, according
to which the mixing layer at the edge of the dead-air zone entrains air from the
separated bubble, and sheds it into the downstream layer. This produces a mass
deficit in the recirculation, which, from time to time has to be re-fed by fresh air
flowing backwards. This mechanism possesses a characteristic time (or frequency),
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which is used to evaluate the frequency scale of the phenomenon, by assuming that
the mass entrainment rate by the shear layer follows the same laws as a canonical
mixing layer, and in particular has the same Mach-number dependence. It is felt
that this assumption is important, and although the proposed analysis provided very
encouraging results, it deserves further assessment and deeper scrutinising for a more
precise validation of the hypothesis.

Referring to a canonical mixing layer raises several questions. For example, the
length of development of the mixing layer is rather limited so that it is not obvious
whether self-similar properties can be reached. The mixing layer is embedded in a
turbulent environment produced by the upstream boundary layer, and the influence
of these conditions is not really known. The mixing layer makes an angle with the
incoming flow, so that entrainment can be modified. Finally, the mixing layer is
formed by two counterflowing streams that are known to produce bifurcations in the
formation of large-scale eddies and, very probably, in the related mass entrainment
rate (see Strykowski, Krothapalli & Jendoubi 1996; Forliti, Tang & Strykowski
2005). The properties and related correlations have been given for two-dimensional
(2D) canonical mixing layers by Brown & Roshko (1974) and Papamoschou &
Roshko (1988), among others. In particular, the frequency scale for the breathing
of the interaction was estimated from the relations they proposed for predicting the
spreading rate of the layer. It was felt that these correlations were general enough to
be used in non-canonical flows. Their derivation and their properties were discussed
in detail in Smits & Dussauge (2006). For example, the dependence of the spreading
rate on velocity ratio can be derived in a simple way by comparing the time scale
related to turbulent transport with the time for convection; it is not linked to a
particular geometry.

Another example is the determination of the convection velocity from the velocity
and density ratios, which is shown to be a rather good approximation, as long as
no shocks are formed in the external flow. Finally, the same authors show that
the convective Mach number, although sometimes of uneasy use, is the pertinent
parameter, based on the relative velocity, and consistent with many linearised
problems. Therefore, the choice of such formulations is maintained, but the other
aspects listed in this section have to be examined, to validate the approximations
used in the earlier work: properties of canonical mixing layers had been employed
to derive an entrainment–discharge mechanism. It is necessary to check whether the
existing data are consistent with the canonical properties, and therefore whether the
formulations proposed in Piponniau et al. (2009) are confirmed.

Thus, the experimental results given in this article are reanalysed. In the next
section, the experimental set-up is briefly described together with the measurement
methods, and their accuracy is assessed from measurements in the equilibrium
upstream boundary layer. In the third section, the analysis is developed in order to
estimate the consequences of similarity in the separation mixing layer. The spreading
rate of this embedded layer is evaluated, in conjunction with the value of turbulent
shear stress. As a consequence, two questions will be examined: Is the turbulent shear
stress close to what we could expect? In other words, does it follow usual turbulent
transport properties? And, is there any influence of compressibility? Finally, issues
related to the properties of compressible turbulence will be raised again: analysis of
the Reynolds stresses shows a modification of their anisotropy. An interpretation is
proposed by following and revisiting the original dimensional analysis of Brown &
Roshko (1974), and results in its identification as an effect of high speeds.
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2. Experimental set-up, flow organisation and measurement methods
The experiment was carried out in the hypo-turbulent supersonic wind tunnel

at IUSTI. It is a continuous facility with a closed-loop circuit. It can be run for
4 h in well-controlled operating conditions. For this experiment, it is operated at a
nominal Mach number of 2.3. A control system stabilises the stagnation pressure
to a prescribed setting. Typically, when the stagnation pressure in the external flow
is 0.5 × 105 N m−2, its variations in time are less than ±0.2 %. The stagnation
temperature is typically atmospheric, with a drift less than 1 K h−1. The level of
background turbulence in the outer flow is essentially due to aerodynamic noise
radiated by the boundary layers. Its level is less than 0.1 % for the turbulence
intensity of velocity.

The 2D supersonic equilibrium turbulent boundary layer under investigation
develops on the nozzle floor, which is a flat plate. The incoming conditions (inlet
conditions for the interaction) are located at a distance larger than 25 cm downstream
of the contoured part of the nozzle block (more than 25 boundary layer thicknesses).
The test section has a size of height× span= 122.1 mm× 170 mm at xw = 180 mm
(origin xw = 0 at the end of the contoured part of the nozzle). The coordinates xw
and yw are taken in a reference system related to the wind tunnel, xw being the
longitudinal coordinate along the wall, and yw the normal coordinate perpendicular
to it. The span of 170 mm is constant in the whole flow. The layer is subjected
to a shock wave produced by a generator placed in the external flow. The shock
generator is a sharp-edged plate fixed on the ceiling of the wind tunnel. Its leading
edge is located in the potential flow. It spans the entire test section and generates
an oblique shock wave impinging on the floor boundary layer. Its angle with respect
to the potential flow θ is set at 8◦ and 9.5◦, for the two cases under consideration.
The geometrical details of the flow conditions and of the configurations, including
the CAO files for the nozzle contours, are given in Doerffer et al. (2009), and in the
ERCOFTAC QNET-CFD knowledge database produced by Dussauge et al. (2013).
As reported in Doerffer et al. (2009), the vertical distance from the wall at which
the leading edge of the shock generator is placed is 104.7 mm for the 8◦ interaction,
and 107.6 mm in the 9.5◦ case. This corresponds to an aspect ratio span/height of
1.62 for the 8◦ deviation and of 1.58 for the 9.5◦ interaction.

The incoming boundary layer is turbulent and fully developed. As reported in
Doerffer et al. (2009) and Piponniau et al. (2009), upstream of the interaction, the
thicknesses of the boundary layer, displacement and momentum are, respectively,
11 mm, 3.4 mm and 0.96 mm. The Reynolds number based on momentum thickness
is 5100. The longitudinal coordinate xw of the mean location of the reflected shock at
the wall is denoted X0. The length of interaction L is defined as the distance between
X0 and the extrapolation to the wall of the incident shock; it is used to normalise the
longitudinal coordinate xw. The dimensionless coordinate is therefore X∗= (xw−X0)/L,
and the interaction extends mainly from X∗= 0 to 1. The interaction length is 41 mm
for a flow deflection angle of 8◦ and 71 mm for the 9.5◦ case.

The global organisation of the incident shock wave–boundary layer interaction
illustrated by spark schlieren visualisation and by particle image velocimetry (PIV)
measurements is presented in figure 1, in which the flow deviation due to the incident
shock is 9.5◦, and the pressure gradient is strong enough for the layer to separate.
Measurements of the velocity fields along the interaction have been made in vertical
planes, along the centreline of the test section.

The spatial resolution of the PIV measurements was 50 pixel mm−1, leading to
a longitudinal field of view (FOV) of 32 mm. Such a reduced field of view was
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FIGURE 1. Spark schlieren visualisation of the interaction, for a deflection angle of 9.5◦.
Superimposed onto the schlieren visualisation is the standard deviation of the vertical
velocity component in the frame of reference of the wind tunnel, obtained by particle
image velocimetry (PIV) measurements (grey scale associated, (m s−1)).

necessary to correctly measure the turbulent quantities along the interaction: indeed,
we had to measure vertical components that can be 10 times lower than the mean
longitudinal velocity.

Particle image velocimetry (PIV) measurements were performed with a Dantec
Dynamics system. The light sheets were generated by a double-pulse Nd:Yag laser
(New Wave Solo II), which delivered 30 mJ per pulse (flashing time 5 ns), two
consecutive flashes being separated by 1 µs. The images of particles were recorded
by FlowSense cameras (1600 pixels × 1200 pixels). Explorations were made in
vertical planes, along the longitudinal axis of the wind tunnel, to get the velocity
fields along the interaction. As the shock generator was fixed on the ceiling, some
optical arrangements were necessary to illuminate the test section: a prism was placed
in the diffuser to allow the laser sheet to propagate backwards to the measurement
area. Sets of 4000 digital images were used. Two cameras were lined up next to each
other in the longitudinal direction to provide a wide field of view. The two pictures
recorded by each camera were overlapped by approximately 10 %. A calibration
grid was recorded, and the spatial correlation function between pictures gave spatial
correspondences between both fields; a global panoramic picture was then created,
covering an area of approximately 160 mm× 20 mm (≈ 16δ0 × 2δ0).

Incense smoke was used as seeding particles. After sedimentation of the smoke,
the particles were injected from the wall, upstream of the sonic section on the wind
tunnel axis. As the wind tunnel stagnation pressure was less than atmospheric pressure,
the particles were naturally entrained into the flow. The time constant of the particles
was estimated by using PIV measurements of the mean velocity across the incident
reflected shock outside the boundary layer. A time constant of 4.55 µs was derived
corresponding to diameters of 0.5 µm (see Elena, Tedeschi & Gouin 1999). Samimy
& Lele (1991) suggest that the particles accurately followed the velocity fluctuations
in a turbulent mixing layer if the Stokes number St = τp/τf (with τf = δ/U∞ and τp
the time response of the particles) was less than 0.5. In the present experiments, the
Stokes number was 0.23. This low value showed that the particles were able to follow
the large-scale velocity fluctuations in the interaction and particularly in the separation
and in the shear layer: the seeding was well adapted to this study for capturing the
energetic fluctuations.
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FIGURE 2. Impact of the spatial resolution of the PIV measurements on the accuracy
of the Reynolds stresses: 6, laser Doppler anemometry (LDA) measurements; E, large
field-of-view (FOV) (PIV);@, intermediate FOV PIV;f, reduced FOV PIV.

For the wide FOV measurements, the calibration factor of the pictures was
17 pixels mm−1. The intercorrelation was carried out recursively from a cell of
size 128 × 64 to a final cell size of 64 pixels horizontally by 32 pixels vertically
with a Gaussian weighting window applied to the interrogation cell. Therefore, the
final effective cell size was 32 pixels × 16 pixels; this led to a PIV resolution of
0.64 mm × 0.32 mm. An overlap of 50 % between cells provided a final field of
138× 505 vectors, after assembly of the different acquisitions.

The subpixel interpolation is assumed to have an accuracy of 0.1 pixel. This
accuracy, combined with the spatial resolution and the time between the two flashes,
gives a resolution of 2 m s−1 on the velocity. As samples of 4000 images were
used for root-mean-square (r.m.s.) values of velocity typically of 0.1Ue (Ue is the
external velocity), the evaluation of statistical uncertainty, given the limited size of
the sample, is 0.0016Ue, i.e. typically 0.8 m s−1, if Ue ≈ 500 m s−1. Finally, the
influence of the presence of fluctuations in the third direction w′ was estimated
from the work of Scharnowski et al. (2017). The thickness of the light sheet is
approximately 1 mm. For a velocity fluctuation w′ in the spanwise direction of 0.1Ue
(with Ue ≈ 500 m s−1) and a time delay of 1 µs, the displacement is 5 × 10−5 m,
while the displacement/thickness ratio is close to 5 × 10−2, so that the loss of
correlation due to such three-dimensional (3D) perturbations is probably significantly
smaller than the other possible sources of uncertainty.

A global control of the accuracy was performed by checking the influence of
spatial resolution resulting from the field of view. Figure 2 shows the Reynolds
shear stress measurements for different PIV spatial resolution, taking laser Doppler
anemometry (LDA) measurements as a reference, inside the incoming boundary
layer with the same seeding as the PIV. Details of the LDA system will be given
below. Three different fields of view are presented: 16 pixels mm−1 (large FOV PIV),
32 pixels mm−1 (intermediate FOV PIV) and 50 pixels mm−1 (reduced FOV PIV).
Very clearly, the reduced FOV measurements agree with the LDA determination, and
increasing the spatial resolution of the PIV measurements gives a better description
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FIGURE 3. Comparison LDA versus PIV velocity measurements in the upstream boundary
layer. Closed symbols, PIV (reduced FOV); open symbols, LDA. (a) Mean velocity
in Van Driest representation. (b) Longitudinal (E) and normal (A) r.m.s. velocity
in Morkovin representation (p, Humble et al. (2009a)). (c) Reynolds shear stress in
Morkovin representation. Black lines, Klebanoff’s data (M = 0, Klebanoff (1954)).

of the turbulent quantities. This is also exemplified by comparison with the Klebanoff
profiles (see figure 3) where the measured boundary layer profiles in Morkovin’s
representation are in agreement with the subsonic profiles (Klebanoff 1954), down to
yw/δ = 0.1. Examining the discrepancy between PIV and LDA results suggests that
the accuracy of the PIV measurements on the Reynolds stresses is ±5 %. This is for
measurements in the frame of reference related to the flat plate. In our analysis, a
frame of reference related to the shear layer is used. As will be explained in the next
section, orientation of the longitudinal axis is determined empirically. A conservative
estimate of the uncertainty on this angle is 0.5◦. This is at the origin of an uncertainty
on Reynolds stresses, estimated in the centre of the layer, between 0.5 % (on u′ 2) and
3 % (on u′v′). The value of 3 % is retained as a conservative estimate for all stresses,
so that the final assessment of the total uncertainty on the Reynolds stress is ±8 %.

The measurements represent effectively the average over the size of the interrogation
window. An assessment of this space integration can be made as follows. The method
implicitly assumes that, for all scales, particles are convected at the local flow velocity.
In inhomogeneous conditions, a problem can arise if the velocity fluctuation is affected
by the finite size of the interrogation cell. A criterion was proposed by Dussauge &
Dupont (2005), who assumed that a cell is sufficiently small if the velocity variation
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1U over the cell is small compared to the velocity fluctuation, i.e. 1U� u′. For a
cell of height h, the previous condition, after linearisation, leads to

h
∂U
∂y
� u′ or h�

u′

∂U/∂y
. (2.1a,b)

On the right-hand side we recognise the definition of the mixing length. In the external
boundary layer the mixing length is constant, l' 0.1δ. Therefore, in the external layer,
it is possible to derive the simple criterion h � 0.1δ which gives an indication of
an acceptable size for the interrogation window. In the present experiment, in the
incoming boundary layer, h/δ = 0.06. This is not much less than 0.1, but this seems
to be an adequate choice, as will be shown in the next section, by cross-checking PIV
measurements with laser Doppler determinations.

In order to have reference data for validating PIV results, LDA measurements have
also been carried out with a two-component system operated in forward scatter mode.
The probe volume was an ellipsoid of 0.2 mm× 0.2 mm× 1 mm, taking into account
the off-axis setting of the receiving optics. The same seeding as in PIV measurements
was used, with a 7 W argon laser and an optical fibre between the laser source and
the optical head. Photomultiplier signals are low-passed at 50 MHz and recorded
with an eight-bit digitiser (model Acqiris DP235) with 2M words inboard memory,
at a sampling rate of 100 MHz. LDA signals are then processed with a home-made
algorithm. For each point of measurement, around 4× 103 points were recorded.

The quality of the flow in particular was examined in the past. Such interactions
may develop a 3D structure because of the interactions produced by the shock
generator with the sidewalls, which may alter deeply the structure of the separated
zone (see Babinsky, Oorebeek & Cottingham 2013; Eagle & Driscoll 2014; Wang
et al. 2015, among others). Spanwise wall pressure distributions were measured and
PIV measurements in planes parallel to the wall were performed. The results were
published in Dupont et al. (2005), Dussauge, Dupont & Debiève (2006) and Dussauge
& Piponniau (2008); and they were reported by Garnier in Doerffer et al. (2009) and
Garnier (2009). The results have shown that, in the 8◦ interaction and upstream of
reattachment, no significant three-dimensionality developed over more than half of
the span. In the 9.5◦ interactions, conical interactions are formed along the sidewalls.
The reattachment zone is clearly 3D, but, in the part where the mixing layer takes
place and in qualitative agreement with the results of Wang et al. (2015), the flow
along the centre of the wind tunnel remains 2D over a significant spanwise distance
(approximately half of the span), so that the usual 2D analysis can still be used.

3. Upstream boundary layer

The incoming boundary layer has already been partly described in some previous
papers (e.g. Piponniau et al. 2009). However, a detailed description of the velocity
field and the Reynolds stresses was needed, in particular to obtain an assessment of
the measurement accuracy.

They are described in the reference section xw = 240 mm located 3δ0 upstream of
the interaction. The results are given in figure 3. Figure 3(a) presents the comparison
of the Van Driest transformed velocity profiles Vvd given by PIV and by LDA. As in
Piponniau et al. (2009), density was determined from a Walz/modified Crocco relation,
with a recovery factor of 0.89. It can be seen that the agreement is very good, except
for the first point at y+w ≈ 20, corresponding to a distance of ≈0.28 mm from the
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wall, where bias and uncertainties exist probably for both methods. The solid line
corresponds to the classical log law,

Vvd

uτ
=

1
κ

ln(y+w )+ B, (3.1)

with κ = 0.41 and B= 5.25. The value of uτ was determined from the slope of the
log zone.

The excellent agreement between two independent methods suggests that we
can confidently accept the accuracy of these measurements. Figure 3(b) presents
the longitudinal and vertical r.m.s. velocity in Morkovin’s representation. Again,
the agreement between LDA and PIV is more than satisfactory. Data from other
work at a Mach number of 2.1 (Humble et al. 2009a) have also been plotted for
comparison. Moreover, considering the expected accuracy of the present Reynolds
stress measurements, the agreement with Klebanoff’s subsonic data (Klebanoff
1954) is also very good. This provides a well-controlled verification of Morkovin’s
hypothesis at Mach numbers around 2.

The question of the shear stress −u′v′ is more difficult. The previous section has
shown that accuracy can be an issue for this quantity. It can be seen (figure 3c) that
the overall agreement of PIV, LDA and Klebanoff is good for y/δ0 > 0.1.

4. Analysis of velocity profiles
Velocity was measured in two cases of interactions at a Mach number of 2.3. The

corresponding isovelocity maps are presented in figure 4. The maps of mean velocity,
r.m.s. velocity (longitudinal and wall-normal components) and turbulent shear stresses
are presented. It appears that, in both cases, the levels of velocity fluctuations are
dramatically increased in the interactions and this high level persists over a long
distance downstream of the interaction. As suggested by several authors (Na & Moin
1998; Dupont et al. 2006, 2008; Humble, Scarano & Van Oudheusden 2009b), the
flow at the edge of the separated zone looks like a mixing layer. This led us to
analyse the velocity and Reynolds stress profiles in a particular frame of reference
related to this mixing layer. In figure 5, the map of

√
u′ 2 is shown in the frame

of reference related to the wall, again evidencing the zone of high fluctuation level,
which grows linearly in space. This is illustrated by the two oblique lines which give
a first hint of the zone where the mixing layer is formed. This drawing was not used
to define the boundaries of the layer. However, only the bisector was determined
as a first guess in an iterative process for defining the longitudinal axis. Defining
this axis is constrained by the fact that, along Oxw, after rotation of the frame of
reference, the mean longitudinal velocity should be constant, the transverse mean
velocity should be close to zero, and the Reynolds stresses should be constant. A
procedure of trial and error was used to change the slope and the location x0 of
the intersection of the axis with the wall. The final result is shown in figures 6(a)
for U and V and 6(b) for the Reynolds stresses. It can be seen that U and V are
reasonably constant along Ox, and that V is close to zero. The Reynolds stresses are
also approximately constant. The rotation of the axis is 11◦ (respectively 9◦) for the
9.5◦ interaction (respectively 8◦ interaction). If the origin is chosen at the foot of the
reflected mean shock, the resulting values of the intersection of this axis with the
wall are x0 =−2 mm and −4 mm (x0/δ=−0.18 and −0.36) for the 9.5◦ interaction
and 8◦ interaction, respectively, i.e. close to the foot of the shock.
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FIGURE 4. The 8◦ (a) and 9.5◦ (b) iso-values for (from top to bottom): mean longitudinal
velocity; mean normal velocity; longitudinal r.m.s. velocity; normal r.m.s. velocity; and
turbulent shear stress.

The angles are close to the value of 10◦ reported by Délery & Marvin (1986) for
the flow deviation at Mach number 2.5 downstream of the separation shock. In the rest
of the text, the system of reference is related to the mixing layer. It is denoted Ox,Oy.
Moreover, we use the same notation for velocity components U, V, u′v′ defined now
in the system of coordinates related to the mixing layer.
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FIGURE 5. R.m.s. longitudinal velocity in the wind tunnel coordinate system, θ = 9.5◦.
Black lines delimit the mixing layer and were used for a first estimate of its virtual origin.
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FIGURE 6. Evolution along the estimated centreline of the mean longitudinal and vertical
velocity (a) and of the Reynolds stresses (b) in the mixing layer coordinate system and
for θ = 9.5◦.

The results on the mean velocity and on the Reynolds stresses are shown in figure 7
for the 8◦ and 9.5◦ cases, in the representation U/Ue versus y/(x− x0). Here Ue is the
velocity on the high-speed side, downstream of the reflected shock; Ue= 500 m s−1

for the 8◦ deviation and 490 m s−1 for the 9.5◦ interaction. Reynolds stresses are
normalised by Ue2.

In the 9.5◦ interaction, the mean velocity profiles (figure 7b) collapse for
y/(x − x0) < 0.1. In the same range, there is also a good collapse of the Reynolds
stress profiles (figure 7c,e,g); their shape looks like their canonical mixing layer
counterparts. For larger values, the velocity is not distributed along a single curve,
and self-similarity is not found. The same properties are observed in the 8◦ interaction
(figure 7), however with a larger scatter.

The influence of the reference system can be illustrated by comparing the same
profiles in the system of coordinates related to the flat plate (figure 8). As the velocity
components are not invariant in a rotation, the picture is quite different, no trend to
similarity is observed, and a large scatter appears on all quantities. In particular, the
shear stress has scattered values and the correlation coefficient (not shown) is far from
the expected distribution in shear flows. This underlines the importance of such a
choice for the physical analysis of the flow.

Coming back to figure 7, self-similarity has been found on the mean velocity and
on the Reynolds stresses for y/(x − x0) < 0, 1. If there is a collapse of the profiles
when plotted versus y/(x− x0), the locus of iso-values is on lines y/(x− x0)= const.,
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velocity. (e, f ) Variance of the normal velocity. (g,h) Turbulent shear stress. All stresses
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i.e. straight lines. Therefore, this part of the flow, like a mixing layer, is confined
in an angular zone of the plane with a width growing linearly with x − x0. The
flow outside of this zone is believed to be the remnant of the incoming boundary
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FIGURE 9. Conceptual model for the separated interaction.

layer. Such observations lead to a representation of the flow given in figure 9. In
this conceptual model, the mixing layer grows up to the apex of the separated zone
where the incident shock impinges the layer. It is believed that, in this part of the
flow, large-scale coherent structures are formed as in free shear layers. This is the
complement for developed separation of the model proposed by Humble et al. (2009b)
for interactions with incipient separations. The slope of the centreline of the mixing
layer is 0.2 in the 9.5◦ case and 0.16 in the 8◦ interaction.
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u′ 2 Shear stress

8◦ interaction 0.213 0.241
9.5◦ interaction 0.199 0.18

TABLE 1. Determination of the spreading rate.

5. Determination of the spatial rate of growth
It is problematic to determine the spreading rate of this free shear layer, since it

is embedded in the rest of the flow and its external limits are not well defined. In
the present work, the vorticity thickness δ has been used. The profiles of velocity
and of Reynolds stresses plotted versus y/(x − x0) reveal a clear trend to similarity
for y/(x − x0) < 0.1, and their shape looks the same as in mixing layers. Moreover,
if δ = dδ/dx(x − x0), the representation using y/(x − x0) differs from the similarity
representation in y/δ only by the constant dδ/dx. This is used here to determine
this spreading rate by adjusting the present distributions to reference distributions in
self-similar mixing layers.

In a first determination, the profiles of u′ 2 are used. If some level of u′ 2 normalised
by its maximum value is considered, this value intersects the profiles for two
values of y/(x − x0). The difference between these two values defines an interval
1(y/(x− x0)) (see figure 10a). Considering the same value of u′ 2/u′ 2max on a reference
distribution (here the subsonic mixing layer of Mehta & Westphal (1986)) provides
an interval 1(y/((x− x0)δ

′)) (see figure 10b). The ratio of these two intervals gives
a determination of the spreading rates, since

1(y/(x− x0))

1(y/δ′(x− x0))
=

dδ
dx
. (5.1)

In the second method, it is assumed that the profiles of turbulent shear stress are
Gaussian around their maximum, which implies that the velocity profiles follow an
error function in this zone. Estimating the width of the profile for some fraction of
the maximum shear stress gives another determination of the spreading rate.

This has been applied to the interactions with 8◦ and 9.5◦ deviations. For the
u′ 2 profiles, the choice of the value of u′ 2/u′ 2max depends on the interaction. The
objective is to remain in a part of the profile that is not contaminated by the spurious
contribution of the incoming boundary layer. This has led us to retain a level of
u′ 2/u′ 2max = 0.7 for the 8◦ interaction and of 0.3 for the 9.5◦ case. When shear stress
profiles were considered, a uniform level of 45 % of the maximum was retained for
both interactions. The results are given in table 1.

Note that the limitation of the method depends on the shape of the profiles, which
should be mixing layer profiles, and not corrupted by a contribution from the boundary
layer. It can be checked (figure 8d) that, for the 9.5◦ interaction where the profile
looks clearly like a mixing layer one, the chosen level of 0.3 is at the beginning of
a divergence of the profiles. In the 8◦ case, the shapes are not as clearly marked and
the value of 0.7 is thought to be a rather conservative choice. Finally, the results are
not very different if another level is retained, in particular in the 9.5◦ interaction, if
a value larger than 0.3 is taken.

Table 1 gives an indication of the accuracy of the method with differences in the
results typically at ±5 %. We must add the uncertainty due to the scatter of the
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FIGURE 10. Method for determination of the spreading rate.

profiles (figure 7), and related to the uncertainty on the maximum of u′ 2 or of shear
stress. The overall uncertainty on the spreading rate in the adjustment of a mean
curve is ±8 % (9.5◦ interaction) and ±13 % (8◦ interaction) when considering all
the determinations from u′ 2 and from u′v′. Therefore an overall assessment of the
uncertainty on the spreading rate is ±13 % for 9.5◦ interaction and ±18 % in the 8◦
case.

The rates of spatial growth are rather large. This is not totally surprising, since
this mixing layer is subjected to very particular conditions. Firstly, it is a shear layer
formed in a countercurrent configuration. Secondly, on the low-velocity side, the
flow makes an angle of approximately 10◦ with the axis of the shear layer, probably
inducing an increase of mass entrainment. These elements should contribute to an
enhanced rate of growth, which will be discussed in the following paragraphs.

The first point is the contribution of the counterflow. Its influence has been studied
by Forliti et al. (2005) for subsonic layers, and by Strykowski et al. (1996) in
supersonic conditions. The work by Forliti et al. (2005) shows that, in subsonic shear
layers, the rate of spread still depends on the velocity ratio according to the relation
proposed by Brown & Roshko (1974). They found that turbulence intensities and
entrainment velocity are not significantly altered for velocity ratios r > −0.1. In the
variable-density case, Strykowski et al. (1996) showed that a transition occurs for
velocity ratios r < −0.07. It was hypothesised that this is due to the onset of an
absolute instability; the net result is that the observed growth rates remain larger than
in the coflowing conditions. The prediction of the usual correlation is

δ′ = δ′ref
(1− r)(1+ s0.5)

1+ rs0.5
, (5.2)

where s is the density ratio. In countercurrent cases, this relation has been assessed
by experiments only in constant-density flows. However, we will assume here that this
relation is still valid in our case. We need to define the values of the density and
velocity, ρ1, ρ2, U1 and U2, to determine the pertinent values of r and s. Here, the
values in the counterflow have been taken for ρ2 and U2. On the high-velocity side,
the conditions at y/δ= 0.5 have been retained: for the 8◦ deviation U2 =−20 m s−1,
U1 = 350 m s−1 and ρ2/ρ1 = 0.79. For the 9.5◦ interaction, U2 = −50 m s−1, U1 =

343 m s−1 and ρ2/ρ1 = 0.812.
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Flow deviation δ′ δ′/δ′inc Mcinc

8◦ 0.227 0.67 0.56
9.5◦ 0.19 0.48 0.59

TABLE 2. Spreading rate of the mixing layer and convective Mach number.

The values of the spreading rate are given in table 2; these values represent the
average between the two determinations of table 1. They are compared (third column
of table 2) to the spreading rate of the low-speed mixing layer with the same r and
s and determined from (5.2). It is clear that the spreading is significantly smaller
than its incompressible counterpart. Using the same values of r and s, it is possible
to determine the corresponding convective Mach number (fourth column in table 2).
The values of the normalised spreading rate versus convective Mach number are in
good agreement with the data for 2D compressible mixing layers (see e.g. Smits
& Dussauge 2006). It is thus clear that the large values of the spreading rate are
consistent with the presence of a counterflow, and that the effect of the Mach number
seems the same as in the coflowing mixing layer.

5.1. Compatibility between spreading rate, entrainment velocity and turbulent shear
stress

The idea is to evaluate the entrainment velocity on the low-velocity side and to check
that it is consistent with the spreading rate determined in the previous section. Note
that, on the low-velocity side, the general direction of the reverse flow is practically
parallel to the wall, so that it makes an angle of approximately 11◦ with the axis
of the mixing layer for the 9.5◦ interaction. In our particular case, the edge of the
mixing layer (or the edge of the part of the flow in which large-scale structures are
growing) is not easily defined on the high-velocity side, since the layer merges into the
remnant of the incoming boundary layer. Therefore, it is more convenient to consider
the low-velocity side and examine the entrainment velocity there. Integration of the
continuity equation between the axis of the layer and its lower edge gives the usual
relationship:

ρ2V2 =
dδ2

dx

∫
−1

0
(ρ2U2 − ρU) d

(
y
δ2

)
(5.3)

or

ρ2V2 =
d
dx

{∫ δ2

0
(ρU − ρ2U2) dy

}
. (5.4)

In this expression, index 2 refers to the low-velocity side; and δ2 is the thickness
of the mixing layer below the centreline. For simplicity, and as the Reynolds stress
profiles are almost symmetric, it will be assumed that δ2 is half of the whole layer
thickness. The previous expressions, in which the condition V = 0 is imposed for y=
0, recall that the vertical velocity at the boundary is proportional to the spreading
rate. This relationship has been applied in our cases, and the value of V2 has been
compared to the PIV measurements.

Comparisons of the computed and measured values of V are given in figure 7(a,b).
The V value was determined by integrating the mean velocity profiles and using the
value of the spreading rate in table 1. First, we can see that the value of V lies at
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FIGURE 11. Relation between spreading rate and turbulent shear stress. Symbols as in
table 3.

the limit of accuracy for the PIV measurements, so that the data points are rather
scattered. Second, V was determined by fitting a polynomial in the self-similar part
of the mean velocity profile, say −0.1< y/δ < 0.1. Therefore, the computation makes
sense only in this range. With these remarks in mind, it appears that the agreement
is excellent in the 9.5◦ interaction and acceptable in the 8◦ case.

This means that the value of the spreading rate is consistent with the measured
entrainment velocity on the low-velocity side: in other words, the large spreading rate
is also consistent with the angle between the layer and the mean reverse flow.

Now, we can check whether the spreading rate determination is in agreement
with the measured value of turbulent shear stress. Barre, Quine & Dussauge (1994)
proposed, on dimensional grounds, that it is possible to relate shear stress and
spreading rates through the relation

dδ
dx
=

1
K
−u′v′max

1UUc
. (5.5)

Here −u′v′max is the maximum shear stress in a section, K is assumed to be a
constant, Uc is the convection velocity of the large-scale structures often determined
from an isentropic assumption, and 1U is the velocity difference through the layer.
This relation is compared with experimental values in figure 11.

Figure 11 includes the measurements in subsonic and supersonic mixing layers. The
abscissa represents the rate of spread based on vorticity thickness. Data are distributed
over a large range of values, in particular for subsonic flows. The values reported
by the authors have been reproduced without changes. A peculiar aspect is that the
value of −u′v′ is rather sensitive to the orientation of the frame of reference. This
can be non-negligible for measurements by laser Doppler and PIV techniques, if the
layer is not horizontal. However, this was accepted, but can contribute to increasing
the scatter of data. Subsonic flows close to half-jet conditions (U2 ≈ 0) have a rate
of growth close to 0.16. Subsonic layers with a rather large velocity ratio (typically
r=U2/U1≈ 0.6) produce a smaller spreading rate. An interesting contribution is given
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TABLE 3. List of symbols.

by the layers with counterflow (U2 < 0) which have a large spreading rate (>0.16),
with a trend different from other (coflowing) data. Strykowski et al. (1996) and Forliti
et al. (2005) have shown that, in the counterflow regime, eddies have a different shape,
probably resulting from a new instability and producing different entrainment rates.
The supersonic data in canonical mixing layers have low spreading rates. Note that
some experiments (Urban & Mungal 2001) did not indicate the spatial growth rate.
In our case, the normalised spreading rate Φ(Mc) defined by the classical relationship

dδω
dx
=

1
2

(
dδω
dx

)
ref

1− r(1+
√

s)
1+ r
√

s
Φ(Mc) (5.6)

has been used to determine dδω/dx. Two particular formulations for Φ(Mc) have been
used: the Langley correlation (see Kline, Cantwell & Lilley 1980; Smits & Dussauge
2006) and the proposal of Slessor, Zhuang & Dimotakis (2000). It was deemed that
this should give a likely interval for dδω/dx.

Two lines of constant K, K = 0.12 ± 0.02, have been drawn. It appears that,
within experimental accuracy, the hypothesis of K independent of the convective
Mach number seems reasonable for coflowing mixing layers. From this viewpoint,
the mechanisms of turbulent transport in such flows seem unaffected by the Mach
number. For counterflows, the slope suggested by the subsonic data is much steeper;
this is in agreement with the existence of a different flow regime, and a modification
of entrainment, as claimed by Forliti et al. (2005).

The results in the present shock–boundary layer interactions have been obtained by
choosing 1U as the velocity difference on both sides of the region where the large
eddies are formed: U2 is taken as the minimum value in the reverse flow, while U1 is
determined at the upper edge of this zone (y/δ= 0.5) where U1/Ue≈ 0.6. They also
refer to two assessments of the convection velocity Uc, which has to be determined.
A first assessment is given by the usual isentropic velocity:

Uc =
a1U2 + a2U1

a1 + a2
=U1

√
s+ r

1+
√

s
. (5.7)
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Interaction Uc,is1 Uc,is2 Wall pressure meas. LES

θ = 8◦ 286 175.5 160 —
θ = 9.5◦ 279 164.0 160 150

TABLE 4. Convection velocity in the mixing layer (m s−1).

In a first attempt, U2 and a2 are taken in the secondary flow, while U1 and a1
are the velocity and the sound speed in the external flow. The resulting values are
denoted Uc,is1 in table 4. In a second determination, U1 and a1 are taken at the
edge of the mixing layer where y/δ = 0.5. The corresponding value is denoted Uc,is2.
These determinations have been compared to the velocity determined from wall
pressure measurements in two points by Dupont et al. (2006). A determination of the
convection velocity has been made by Agostini et al. (2012) from the post-processing
of the results of a large-eddy simulation (LES) of the interaction. The scope of this
article was the determination of the sources of motion for the reflected shock wave.
This led us to determine the convection velocity of the energetic eddies. Values
ranging between 150 and 200 m s−1 were found for the energetic eddies in the
mixing layer. Table 4 shows that the experimental values, the numerical simulations
and Uc,is2 are in reasonable agreement and that Uc,is1 is somewhat larger.

The three assessments of the convection velocity from the present definition of
shear layer boundaries, wall pressure measurements and numerical simulations are
consistent. This gives us some confidence in the definition of the edges of the
mixing layer. However, the choice of 1U and of Uc has strong consequences on the
normalisation of the shear stress: 1U can be chosen at the edges of the shear layer;
Uc,is2 seems a reasonable choice for the convection velocity, and this is retained. An
assessment of the influence of the convection velocity can be made by choosing
the maximum value found in the LES, i.e. 200 m s−1. These result in a value 20 %
lower for 9.5◦ interaction, closer to the counterflow data; and a value 13 % lower
for the 8◦ interaction. The original use of this diagram was to check whether the
dependence between spreading rate and shear stress was sensitive to compressibility.
The conclusion, after considering coflow supersonic mixing layers, was that the
compressibility effects were included entirely in the spreading rate itself, and not in
the relation between the turbulent viscosity (or shear stress) and the rate of growth.
This chart is therefore an indication of the relevance of the usual turbulent transport
considerations for explaining growth of the shear layer. It can be seen that subsonic
layers with counterflow have a particular behaviour, as explained by Forliti et al.
(2005) by a bifurcation in the solutions of the stability problem. The present results
are scattered, probably because of the rather indirect determination of the spreading
rate and also because of the difficulty in defining the edges of the shear layer and
the convection velocity. However, the present results are also consistent with other
data from subsonic and supersonic regime. It can be noted that, in the 8◦ interaction,
the velocity ratio is r ≈ −0.05, above the limit of bifurcation for subsonic flows,
and is rather close to coflow results, while in the 9.5◦ interaction, the velocity ratio
is approximately −0.1, i.e. beyond the threshold of bifurcation; the corresponding
data point is closer to the counterflow experimental results. This suggests that, in the
separation shear layer, as in canonical mixing layers, the effects of compressibility
are included in the spreading rate itself and the turbulent fluxes follow the usual
turbulent transport behaviour.
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FIGURE 12. Ratio of normal stresses in subsosnic and supersonic mixing layers. Symbols
as in table 3; – – –, 1/M2

c ;t, present data; —•–, Langley consensus (Birch & Eggers 1973;
Kline et al. 1980).

Finally, a picture can be drawn from the results presented in this section: separation
generates a mixing layer with a spreading rate typical of a counterflow shear layer.
This spreading is consistent with the angle of deviation for the layer. Correspondingly,
the resulting turbulent shear stress is in agreement with the trend imposed by the
spreading rate. The relation between these two quantities seems to be the same at
low speed and high speed. Compressibility effects are contained directly in these two
quantities and not in the constant K, which appears insensitive to Mach number, but
sensitive to the nature of the flow (coflow versus counterflow) on the low-speed side.
Some other aspects of compressibility are discussed in the next section.

5.2. Anisotropy of the Reynolds stresses

Figure 12 presents the ratio of the maximum values of the variances v′ 2/u′ 2 versus
convective Mach number. It can be seen in figure 7 that the vertical velocity
fluctuations are rather small; the v′ 2 component is lower than the expected value.

Subsonic data in figure 12 have a value generally above 0.5, and some can even
be close to 0.7. In fact, the dataset includes half-jets, coflowing and counterflowing
shear layers, and mixing layers above separated zones, in particular backward-facing
steps. These are the result of direct numerical simulations at lower Reynolds numbers
(Pantano & Sarkar 2002; Helm, Martin & Dupont 2014) and LES at the nominal
Reynolds number (Larchevêque et al. 2009). The diversity of conditions may explain
the observed scatter: subsonic mixing layers above separated zones may have a
modified anisotropy with larger v′; note also that the counterflowing cases have a
larger value for the ratio of the normal components. Moreover, as indicated in the
previous section, the original data have been taken, without correction for the possible
orientation of the frame of reference. This may explain some of the large values of
the ratio v′ 2/u′ 2. However, the evidence shows that the ratio is often larger than 0.5
for subsonic flow conditions. For larger values of Mc (Mc > 0.3), the data are all
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under this value. In particular, the present measurements, obtained at a convective
Mach number close to 0.6, contribute significantly to this trend.

Brown & Roshko (1974) proposed an interpretation using a dimensional analysis
based on momentum and energy equations in which a balance between convective and
pressure terms should be achieved. They used dimensional arguments in which u′ ∝
1U and

v′ ∝ δ′U. (5.8)

This led to the prediction that the ratio of the normal stresses v′ 2/u′ 2 varies like 1/M2.
Their original paper, however, does not specify which characteristic Mach number
should be used. A likely guess could be that the convective Mach number is the
relevant parameter:

v′ 2

u′ 2
∝

1
M2

c

. (5.9)

In fact, it is possible to reformulate these considerations in a slightly different way.
If the convection velocity of the large-scale eddies is the pertinent parameter, relation
(5.8) can be formulated as follows:

v′ ∝ δ′Uc. (5.10)

Using the relation δ′ = δ′0Φ(Mc)(1U/Uc) (Papamoschou & Roshko 1988), we obtain

v′ 2

u′ 2
∝Φ2(Mc), (5.11)

in which Φ(Mc) is the usual dimensionless spreading rate of the compressible mixing
layer.

In figure 12, a line of slope −2 has been indicated, along with two representations
of the spreading: the Langley curve (see e.g. Birch & Eggers 1973; Kline et al. 1980)
and the proposal by Slessor et al. (2000). It appears that all these curves give a good
reproduction of the overall trend and are in agreement with the Brown & Roshko
(1974) proposal. Obviously, the squared spreading rate follows an M−2

c law for Mc ∼

0.8. It may be inferred that the observed decrease is a compressibility effect of the
same sort as in canonical mixing layers. We also conclude that, even if the ratios
u′v′/u′ 2 or u′v′/k (where k is the turbulent kinetic energy) are not very sensitive to
compressibility (see e.g. Pantano & Sarkar 2002; Smits & Dussauge 2006), the ratio
of the normal Reynolds stresses can be affected at high speeds for convective Mach
numbers close to 1. This consequence on the correlation coefficient between u′ and
v′ is illustrated in figure 13 for the 9.5◦ interaction. It shows that the absolute value
of the correlation coefficient is somewhat larger than the results in subsonic layers.
Again, as suggested by Brown & Roshko (1974), this seems to be an effect of the
pressure fluctuation terms in the energy equation.

6. Concluding remarks
The objective of this work was to reanalyse experiments in order to check that

the free shear layer at the edge of a separated bubble in a shock–boundary layer
interaction has properties in common with canonical mixing layers. The main
problem was to extract this mixing layer from its turbulent environment. This was
possible in the case of well-developed separation corresponding to shock–boundary
layer interaction with a flow deviation of 9.5◦, and even in the case of smaller
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FIGURE 13. Correlation coefficient for velocity, expressed in the mixing layer coordinate
system, θ = 9.5◦.

separation produced by an 8◦ interaction. Once this new shear layer is correctly
defined, the experimental results can be explained from the properties of canonical
mixing layers. A first issue came from the unexpectedly large spreading rate, in
spite of the stabilising effect of the Mach number. This has been explained by the
presence of the counterflow in the separated zone. Mixing and spreading rate are
enhanced by the counterflow, but compressibility moderates this effect. Moreover, the
dependence between spreading rate and turbulent shear stress is essentially the same
as in the canonical case, so that the development is related to turbulent transport.
However, the experiment has produced evidence of compressibility effects. These had
been hypothesised by Brown & Roshko (1974) with possible consequences for the
reduction of vertical velocity fluctuations; the present measurements are in agreement
with a reformulation of the same idea, showing a variation in the anisotropy of the
normal Reynolds stresses. Finally, all these elements show that, in many respects, the
shear layer developed at the edge of a separated bubble in a separated shock reflection
shares many features with the canonical ones, so that, finally, the approximations
utilised by Piponniau et al. (2009) in the evaluation of the unsteadiness frequency
remain safe for use.
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