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Stress determination through diffraction: establishing the link between
Kröner and Voigt/Reuss limits
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The quantification of stress in polycrystalline materials by diffraction-based methods relies on the proper
choice of grain interaction model that links the observed strain to the elastic stress state in the aggregate.
X-ray elastic constants (XEC) relate the strain as measured using X-rays to the state of stress in a quasi-
isotropic ensemble of grains. However, the corresponding interaction models (e.g., Voigt and Reuss lim-
its) often possess unlikely assumptions as to mechanical response of the individual grains. The Kröner
limit, which employs a self-consistent scheme based on the Eshelby inclusion method, is based on a
more physical representation of isotropic grain interaction. For polycrystalline aggregates composed
of crystals with cubic symmetry, Kröner limit XEC are equal to those calculated from a linear combi-
nation of Reuss and Voigt XEC, where the weighting fraction, xKr, is solely a function of the single-crys-
tal elastic constants and scales with the material’s elastic anisotropy. This weighting fraction can also be
experimentally determined using a linear, least-squares regression of diffraction data from multiple re-
flections. Data on metallic thin films reveals that this optimal experimental weighting fraction, x*, can
vary significantly from xKr, as well as that of the Neerfeld limit (x = 0.5). © 2015 International Centre
for Diffraction Data. [doi:10.1017/S0885715615000238]
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I. INTRODUCTION

During the past century, X-ray diffraction has been used
to probe the crystalline structure of materials, where detecting
the change in lattice spacing as a function of orientation allows
for the determination of strain in reciprocal space. However,
the quantification of stress in materials using X-ray diffraction
relies on the proper use of X-ray elastic constants (XEC). XEC
are required to extract stress from the measured strains due to
the effects of strain anisotropy, which results from the fact that
the elastic response of the diffracting grains varies in the case
of polycrystalline ensembles composed of elastically aniso-
tropic grains. An example of this effect is illustrated in
Figure 1, where the normalized lattice spacings of a 6 μm
thick sputtered Ni film on a Si (111) substrate were measured
for four different (hkl) reflections as a function of sin2(ψ), with
ψ defined as the angle between the sample surface normal and
the diffraction vector. For quasi-isotropic polycrystalline ag-
gregates, the ratio of the fitted slopes, m, of the d vs. sin2(ψ)
data to the unstressed lattice spacings, d0, is proportional to
the in-plane stress in materials [see Eq. (3)] with no finite
out-of-plane components of the film’s stress tensor (Noyan
and Cohen, 1987). Under the assumption that the in-plane, re-
sidual stress in the Ni film is equal for all grains, then the XEC
must clearly differ for these reflections. In fact, Table 1, which
lists these ratios, indicates that the use of a single value of

XEC for all reflections would result in a variation of 73% in
the resulting in-plane stress.

Given this large discrepancy, it is important to determine
the correct forms of XEC that provide the most consistent
depiction of elastic behavior based on X-ray diffraction mea-
surements conducted over multiple reflections. Section II de-
scribes the various grain interaction models and the
methodologies associated with diffraction-based stress analy-
sis. The experimental details are contained in Section III fol-
lowed by a discussion of the results in Section IV. The
conclusions are summarized in Section V.

Figure 1. (Color online) Measurements of normalized lattice spacing
(a = dhkl

��������������
h2 + k2 + l2

√
) as a function of sin2(ψ) and corresponding linear

fits of a 6 μm thick Ni film for four different reflections.

a)Author to whom correspondence should be addressed. Electronic mail:
conal@us.ibm.com

99 Powder Diffraction 30 (2), June 2015 0885-7156/2015/30(2)/99/5/$18.00 © 2015 JCPDS-ICDD 99

https://doi.org/10.1017/S0885715615000238 Published online by Cambridge University Press

mailto:conal@us.ibm.com
http://crossmark.crossref.org/dialog/?doi=10.1017/S0885715615000238&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0885715615000238&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0885715615000238&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0885715615000238&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0885715615000238&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0885715615000238&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0885715615000238&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/S0885715615000238&domain=pdf
https://doi.org/10.1017/S0885715615000238


II. STRESS DETERMINATION USING DIFFRACTION

For a quasi-isotropic ensemble of crystals, the strain as
measured using diffraction is related to the volume-averaged
stress tensor, �sij, through the traditional X-ray stress/strain
equation (Stickforth, 1966):

k1L33l = SXEC1 �sS
ii + 1

2S
XEC
2 aLS3ma

LS
3n �s

S
mn (1)

where SXEC1 and (1/2)SXEC2 represent the XEC and aLSij the di-
rection cosines associated with the transformation from the
sample coordinate system to the laboratory coordinate system.
Let us simplify Eq. (1) to the case of isotropic, in-plane biaxial
stress (σ11 = σ22 = σ0

S) with all other components of the stress
tensor being equal to zero, corresponding to the stress state
of a blanket thin film.

k1L33l =
dhkl − d0

d0
= sS

0 2SXEC1 + 1
2S

XEC
2 sin2(c)

[ ]
(2)

where d0 refers to the unstrained lattice spacing of the
material. By taking the derivative of Eq. (2) with respect to
sin2(ψ):

1
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∂dhkl
∂sin2(c)

= m
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hkl

= 1
2S

XEC
2 sS

0 (3)

where m is the slope of a linear fit of the d vs. sin2(ψ) plot for a
particular (hkl).

Establishing the specific XEC values depends on the nature
of the specimen under investigation. For single-crystal samples,
a unique correspondence exists between elastic stress and strain,
as defined by the compliance or stiffness tensors,CC

ijkl or S
C
ijkl, re-

spectively. For polycrystalline aggregates, assumptions regard-
ing the mechanical behavior within the grains are necessary.
For polycrystalline aggregates composed of crystals possessing
cubic symmetry, Reuss-averaged XEC, which assume that the
stress tensors of the constituent crystals are all equivalent, can
be represented as (Reuss, 1929), (Möller and Martin, 1939),
and (Stickforth, 1966):

SR1 = SC1122 + S0G and
1
2
SR2 = SC1111 − SC1122 − 3S0G (4)

where SCijkl represent the single-crystal compliance tensor coef-

ficients and S0 = SC1111 − SC1122 − 2SC1212. The orientation pa-
rameter, Γ, is a function of the Miller indices of the
reflection under investigation (hkl):

G = h2k2 + h2l2 + k2l2

(h2 + k2 + l2)2
(5)

The Voigt-limit XEC, which assume that the crystallite
strain tensors are equal, take the form (Voigt, 1928):

SV1 = S0(SC1111 + 2SC1122)+ 10SC1122S
C
1212

3SC1111 − 3SC1122 + 4SC1212
,

1
2
SV2 = 10SC1212(S

C
1111 − SC1122)

3SC1111 − 3SC1122 + 4SC1212

(6)

Although the assumptions associated with the Voigt and
Reuss models are not representative of the actual mechanical
behavior in a polycrystalline aggregate, they represent upper
and lower bounds, respectively, on the elastic strain energy
generated within such an ensemble (Hill, 1952). The mechan-
ical behavior of the entire aggregate can be represented by a
linear combination of these limits to generate a weighted
XEC model (Serruys et al., 1988), (Van Houtte and De
Buyser, 1993):

SW1 = SV1 (1− x)+ x SR1 ,
1
2
SW2 = 1

2
SV2 (1− x)+ x

1
2
SR2 (7)

The Neerfeld limit (Neerfeld, 1942) corresponds to an ar-
ithmetic average of the Voigt and Reuss limits, where x = 0.5.

Under the Kröner limit, the elastic anisotropy of the crys-
tallite is incorporated into an elastic susceptibility tensor, tijkl,
while the aggregate is represented by an elastically isotropic
matrix, SBijkl (Eshelby, 1957), (Kröner, 1958). For a polycrys-
talline aggregate composed of cubic crystals, the XEC take
the form (Bollenrath et al., 1967), (Dölle, 1979):

SK1 = SB1122 + t1 + t0G,

1
2
SK2 = 2SB1212 + 2t2 + t0(1− 3G)

(8)

where t0 = t1111− t1122− 2t1212, t1 = t1122, t2 = t1212. For
quasi-isotropic aggregates composed of crystals with hexago-
nal symmetry, Voigt limit XEC are contained in (Behnken and
Hauk, 1986); (Van Houtte and De Buyser, 1993), (Murray,
2013) for the Reuss limit, and (Behnken and Hauk, 1986),
(Tanaka et al., 2000), and (Murray, 2013) under the Kröner
limit.

The question arises as to whether a relationship can be de-
rived between the XEC associated with the Voigt and Reuss
limits and those under the Kröner limit, which represents a
more realistic depiction of the mechanical response of a poly-
crystalline aggregate. Since the traditional Voigt limit XEC
are constant for a given material, direct inspection of the
terms in Eqs (4), (7), and (8) that depend on Γ shows that
the following weighting fraction, xKr, equates the Kröner
and weighted Voigt/Reuss limit XEC:

xKr = t0
S0

(9)

In fact, it has been proven that for cubic materials a single
value of the weighting fraction satisfies this relation for all re-
flections of a polycrystalline aggregate (Murray, 2013).
Table II contains values of the elastic constant parameters
Sijkl, tijkl and the corresponding xKr and Zener anisotropic fac-
tor, A = 2(SC1111 − SC1122)/4S

C
1212 for cubic materials. As can be

observed, t0 values decrease monotonically with A since the

TABLE I. Ratio of fitted slope to intercept (m/d0) as calculated from d vs.
sin2(ψ) analyses from multiple (hkl) reflections of a 6 μm thick Ni film and
their relative difference from the (222) data

Ni m/d0 Normalized difference

(222) 0.00308(9) 1
(331) 0.00342(6) 1.110
(420) 0.00423(6) 1.373
(400) 0.00533(9) 1.731

100 Powder Diffr., Vol. 30, No. 2, June 2015 Murray et al. 100

https://doi.org/10.1017/S0885715615000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0885715615000238


elastic susceptibility tensor is a function of the elastic anisot-
ropy of the constituent crystallites that comprise the polycrys-
talline aggregate. However, xKr increases with decreasing A,
indicating that S0 decreases more rapidly than t0 as the mate-
rial’s elastic anisotropy approaches 1. In the limiting case of
elastically isotropic crystallites (A = 1), both t0 and S0 are
zero. However, as shown in Table II, W possesses a finite
value of xKr = 0.48. By analyzing the full form of the quotient
t0/S0, we can derive the limit to which xKr converges for A = 1
based on the single-crystal constants. From Murray (2013),
the full form of xKr can be expressed as:

xKr = 2w2C2CB
2 (C0 + 2C2)

CB
2 (C2 − CB

2 + 2w2CB
2 )(C0 + 2C2 − 2CB

2 + 4w2CB
2 )

(10)

where C2 =CC
1212, C0 =CC

1111−CC
1122− 2CC

1212 and C2
B corre-

sponds to the second stiffness tensor coefficient calculated
under the Kröner limit for the elastically isotropic matrix. w2

represents the second coefficient of the inverse of the
Eshelby tensor for spherical inclusions:

w2 = 5
4
(C0 + 3C1 + 2C2 + 4CB

2 )
(C0 + 3C1 + 2C2 + 6CB

2 )
(11)

with C1 =CC
1122. For elastically isotropic crystallites, C0 is zero

and C2 =C2
B, allowing Eq. (10) to be simplified:

lim
C0�0

xKr = 1
2w2

= 8
15

− 2
15

CC
1122

CC
1111

(12)

It is of interest to note that, although this limit can vary as
a function of the single-crystal elastic constants, the value for
W (0.48) coincides with that produced by a linear fitting of 44
types of materials possessing cubic symmetry (Murray, 2013).

In order to assimilate data obtained by X-ray measure-
ments from multiple reflections, we create a procedure based
on a least-squares determination of the X-ray stress/strain
equation [Eq. (2)]. From the weighted Voigt–Reuss XEC of
Eq. (7), we can rewrite Eq. (3):

m

d0

( )
hkl

= (ahklx+ b)sS
0 = ahkly+ bsS

0 (13)

where ahkl = (1/2)SR2 − (1/2)SV2 is a coefficient that varies
with (hkl), b = (1/2)SV2 is constant for each material and
y = xsS

0 is a secondary variable. To determine the optimal val-
ues of sS

0 and x∗ = y/sS
0, we minimize the residual error for

fits performed on n reflections (Murray et al., 2013). Note
that this procedure can be applied to polycrystalline

aggregates with crystals possessing any symmetry (not just
cubic) so long as the ensemble can be treated as
quasi-isotropic.

III. EXPERIMENTAL DETAILS

The residual stress within three types of thin films was in-
vestigated using X-ray diffraction. The 0.5 μm thick Ti films
were sputter deposited onto oxidized, 300 mm diameter Si
(001) substrates and capped with a 5 nm thick TiN layer.
0.9 μm thick Cu films were electroplated onto sputter depos-
ited TaN/Ta/Cu seed layers, also on oxidized, 300 mm diam-
eter Si (001) substrates. The 6 μm thick Ni films were
deposited onto 100 mm diameter Si (111) substrates using
DC magneton sputtering at 1 kW power and 10 mTorr Ar
pressure. Diffraction measurements were conducted at
Brookhaven National Laboratory’s National Synchrotron
Light Source X20A beamline. Measurements conducted on
the Ni films were performed using a photon energy of 11.2
keV, while those on the Cu and Ti films used a photon energy
of 8.6 keV. Diffractive optics consisted of a double-crystal Ge
(111) monochromator and a single-bounce Ge (111) analyzer
crystal, in non-dispersive configuration with the sample. The
angular width of the incident beam at the detector was mea-
sured to be 0.012° full width at half maximum (FWHM) in
the diffraction plane.

Conventional d vs. sin2(ψ) measurements were conducted
on a number of reflections for the three films. Twenty-one
points were taken in positive and negative ψ tilts corresponding
to a range of sin2(ψ) from 0 to 0.99. Lorentzian fits were per-
formed on the diffraction data to determine peak centers, from
which lattice spacing values were calculated using Bragg’s
law. Four reflections were used for the Ni films: (400),
(420), (331), (222); and (200), (220), (311), and (222) for
the Cu films, spanning the allowable range of Γ from 0 to 1/
3. Six reflections for the Ti films were used: (0004), (10�14),
(20�22), (20�22), (11�20), and (20�20), which span the compara-
ble range of orientation for hexagonal crystals. XEC values
were calculated using single crystal stiffness tensor compo-
nents from Simmons and Wang (1971) and lattice parameter
values from Wood (1962) for the case of the hexagonal Ti
film. A secondary piece of the Ti film was thermally cycled
to 400 °C for 30 s to assess the effects of heat treatment.

IV. RESULTS AND DISCUSSION

The curves corresponding to in-plane stress values, calcu-
lated as a function of the weighting fraction, x, are depicted
in Figures 2(a), 2(b), and 3 for the Ni, Ti, and Cu films, respec-
tively, along with the least-squares fitted values among all of the
measured reflections. Figure 2(a) indicates that the Ni film

TABLE II. Single-crystal stiffness tensor coefficients (SCijkl), corresponding Kröner compliance (SBijkl), and susceptibility tensor (tijkl) components, Zener
anisotropy ratios, A, and corresponding xKr values for a variety of materials (units for Sijkl and tijkl are in TPa−1, A and xKr are unitless).

SC1111 SC1122 SC1212 SB1212 t1212 t0 A xKr

Cu 15.0 −6.28 3.32 5.19 −1.08 5.39 3.20 0.368
Ni 7.34 −2.74 2.00 2.87 −0.50 2.48 2.52 0.408
Fe 7.59 −2.83 2.16 3.05 −0.50 2.51 2.41 0.411
Al 15.7 −5.66 8.77 9.49 −0.35 1.73 1.22 0.452
W 2.57 −0.73 1.65 1.65 0 0 1 0.48
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exhibits an optimal weighting fraction value, x* = 0.56 ± 0.01,
that is closer to the Neerfeld limit (0.5) than that corresponding
to the Kröner limit (xKr = 0.408) in Table II. This value of x*
results in an effective value of ½ S2 for the Ni (420) reflection
(6.338 TPa−1) that closely matches the experimental value of
6.32 TPa−1 as determined by Macherauch (1966). In contrast,
Figure 2(b) indicates that the Ti film possesses an optimal
weighting fraction of 0.24 ± 0.05, which is significantly
below the Neerfeld limit (0.5) as well as those corresponding
to the Kröner limit, which are not constant for hexagonal crys-
tals but vary from 0.43 to 0.5 depending on the reflection
(Murray, 2013). However, the fact that the curves nearly coin-
cide for the (11�20) and (20�20) reflections confirms that the Ti
film behaves as a quasi-isotropic, polycrystalline aggregate.
For the Ti film subject to the 400 °C anneal, a weighting frac-
tion of 0.27 ± 0.05 was obtained, overlapping the x* value for
the unannealed Ti film within experimental error.

The optimal XEC weighting fraction for the Cu film (0.62
± 0.06), as shown in Figure 3(a), is greater than the Kröner

value (xKr = 0.368) and consequently closer to the Neerfeld
fraction (0.5). Figure 3(b) illustrates that the use of x* to ascer-
tain in-plane stress clearly produces values that are more con-
sistent (198 ± 8 MPa) than either those associated with Kröner
limit (199 ± 11 MPa) or Neerfeld limit (207 ± 24 MPa) XEC.
Measurements conducted on multiple Cu thin-film samples
exhibit x* values that range from approximately 0.5–0.7
(Murray et al., 2013) with no clear trend with respect to thick-
ness. Since these films experienced different thermal treat-
ments, it is possible that the degree of plastic relaxation
within the Cu sample is responsible for this variation.

In fact, plastic deformation has been noted to have a large
impact on XEC weighting fraction values (Macherauch,
1966). Since the Ti unit cell has fewer available slip systems
than the FCC unit cells associated with Ni and Cu, the
minor change in x* observed due to thermal cycling of the
Ti film may be an effect of the limited plastic deformation dur-
ing a thermal excursion to 400 °C. These experiments also
demonstrate that film thickness does not correlate with x*,

Figure 3. (Color online) (a) Plot of in-plane stress as calculated from four different X-ray diffraction reflections of a 0.9 μm thick Cu film as a function of x, the
Voigt-Reuss weighting fraction. The circles correspond to values computed using XEC under the Kröner limit, xKr, and the square value determined by
least-squares fitting, x*. (b) Comparison of in-plane stress values determined from XEC calculated under the Kröner limit, Neerfeld limit and using x*, where
the dotted red line represents the optimized in-plane stress (198 MPa).

Figure 2. (Color online) Plot of in-plane stress as calculated fromX-ray diffraction reflections of a (a) 6 μm thick Ni film and (b) 0.5 μm thick Ti film as a function
of x, the Voigt–Reuss weighting fraction. The circles correspond to values computed using XEC under the Kröner limit, xKr, and the square value determined by
least-squares fitting, x*.

102 Powder Diffr., Vol. 30, No. 2, June 2015 Murray et al. 102

https://doi.org/10.1017/S0885715615000238 Published online by Cambridge University Press

https://doi.org/10.1017/S0885715615000238


since the Cu film (0.9 μm) exhibits x* values that are larger
than those of the Ti films (0.5 μm) as well as the Ni film (6
μm), so that many factors may be responsible in dictating
the XEC weighting fraction.

V. CONCLUSIONS

In comparing grain interaction models necessary to con-
vert X-ray diffraction data into stress values, the effects of
strain anisotropy necessitate the use of XEC that depend on
the X-ray reflection under investigation and are not equal to
the bulk elastic constants of the material. The Kröner limit
XEC were found to be equivalent to a weighted Voigt/Reuss
approach for polycrystalline aggregates displaying cubic sym-
metry. However, experimental results frommeasurements per-
formed on Cu, Ni, and Ti thin films reveal that the optimal
Voigt/Reuss weighting fractions, x*, as determined from
least-squares fitting over multiple X-ray reflections, can sub-
stantially differ from both the Neerfeld model (x = 0.5) and
the Kröner model. The use of x* results in residual, in-plane
stress values that are more consistent than those produced
using either Neerfeld or Kröner XEC.
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