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Abstract

In this paper we study general aggregation of stochastic arrangement increasing random
variables, including both the generalized linear combination and the standard aggregation
as special cases. In terms of monotonicity, supermodularity, and convexity of the kernel
function, we develop several sufficient conditions for the increasing convex order on the
generalized aggregations. Some applications in reliability and risks are also presented.
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1. Introduction

The linear combination of independent random variables has drawn much attention from
researchers and many interesting studies have been completed in the past twenty years, enriching
the literature on this topic quite considerably. For example, for independent and identically
distributed (i.i.d.) random variables X1, . . . , Xn with X

p
i having a log-concave density for

some p ∈ (0, 1), Karlin and Rinott (1983) showed that
∑n

i=1biXi ≤st
∑n

i=1aiXi whenever
(b

q
1 , . . . , b

q
n) �m (a

q
1 , . . . , a

q
n) for p−1 +q−1 with q < 0 (see Section 2 for the usual stochastic

order ‘≤st’ and majorization ‘�m’). Yu (2011) proved that, for X1, . . . , Xn nonnegative and
i.i.d., (ln b1, . . . , ln bn) �m (ln a1, . . . , ln an) implies that

∑n
i=1biXi ≤st

∑n
i=1aiXi whenever

ln Xi is of a log-concave density. Xu and Hu (2011) extended this ordering result to independent
but not necessarily identically distributed random variables with some regularity conditions. For
more on ordering properties of standard linear combinations of independent random variables,
we refer the reader to Bock et al. (1987), Kijima and Ohnishi (1996), Ma (2000), Hu and Lin
(2001), Khaledi and Kochar (2001), Korwar (2002), Khaledi and Kochar (2004), Nadarajah and
Kotz (2005), Manesh and Khaledi (2008), Amiri et al. (2011), Kochar and Xu (2010), (2011),
Zhao (2011), Zhao et al. (2011), Manesh and Khaledi (2015) and the references therein.

Due to the recurring interest in accumulation and aggregation in insurance, finance, opera-
tions research, reliability and many other areas, some authors have studied various generaliza-
tions of linear combinations of random variables. For example, for independent X1, . . . , Xn

ascendingly arrayed in the likelihood ratio order, twice continuously differentiable, and strictly
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monotone functions ξ, γ : R+ �→ R+ such that ξ ′′(x) ≥ 0 and ξ ′′(x)γ ′′(y)ξ(x)γ (y) ≥
[ξ ′(x)γ ′(y)]2 for all (x, y) ∈ R

2+, Pan et al. (2013) proved that the majorization (b1, . . . , bn) �m
(a1, . . . , an) implies that

(i)
∑n

i=1ξ(b(i))γ (Xi) ≤st
∑n

i=1ξ(a(i))γ (Xi) for decreasing ξ and increasing γ , and

(ii)
∑n

i=1ξ(b(n−i+1))γ (Xi) ≤st
∑n

i=1ξ(a(n−i+1))γ (Xi) for increasing ξ , γ , and the Xi

with log-concave densities, where a(1) ≤ · · · ≤ a(n) is the increasing rearrangement of
a1, . . . , an.

Also, Mao et al. (2013) obtained the result parallel to that of Pan et al. (2013) for X1, . . . , Xn

mutually independent and ascendingly arrayed in the hazard rate order.
On the other hand, some recent research has been devoted to ordering generalized linear

combinations of dependent random variables
∑n

i=1φ(Xi, di), where (X1, . . . , Xn) usually rep-
resents potential risks, (d1, . . . , dn) denotes the corresponding parameters such as deductibles,
coverage limits, allocated capitals, and so on, and φ(x, d) is a bivariate function measuring the
consequence of matching d to x; see, for example, Cheung and Yang (2004), Cheung (2006),
Li and You (2015), and Manesh and Khaledi (2015).

In reliability theory, for engineering systems subject to shocks arriving at random and
producing decay random damages, the engineer has to study the aggregated damage suffered
by all system components at time t > 0 so as to approximate system reliability. For example,
the accumulated damage

∑N(t)
i=1 Wie−δi (t−Si) of a system subject to shocks arriving according

to a renewal process N(t) with renewal times S1, S2, . . . and the sequence of corresponding
annealing damages W1, W2, . . . . Also, the weighted k-out-of-n system has the cumulative
weight

∑n
i=1 wi 1(Xi > t) at time t , where the Xi are component lifetimes and the wi are

corresponding weights. It is plain that the reliability of the above two systems is determined
by the stochastic behavior of the aggregated damage and the accumulated weight, respectively.
For more on these two systems, we refer the reader to Nakagawa (2007) and Li et al. (2016). On
the other hand, in the area of risk management, actuaries and financial engineers have to handle
the aggregated potential losses of risks covered by an insurance policy or are concerned with a
financial portfolio in order to control it at a satisfactory level. For example, following the work of
Cheung (2007) on optimization problems on

∑n
i=1(Xi −di)+e−δTi and

∑n
i=1(Xi ∧di)+e−δTi ,

where the Xi are random losses with corresponding occurrence frequencies Ti , the research was
further generalized by Hua and Cheung (2008b), Zhuang et al. (2009), Hu and Wang (2009),
Lu and Meng (2011), and Li and You (2012) for policy risks with comonotone distribution,
exchangeable distribution, and dependent distribution withArchimedean copulas. Remarkably,
Cai and Wei (2014), (2015) developed ordering results on the optimal deductibles for stochas-
tic arrangement increasing potential losses along with stochastically arrangement decreasing
and Li and You (2015) investigated such generalized linear combinations for stochastically
arrangement occurrence frequencies during their pioneering study on stochastic arrangement
increasing random vectors and some nice weak variants.

In this paper we deal with the generalized linear combination
∑n

i=1 Wiφ(Xi, di), where
(W1, . . . , Wn) and (X1, . . . , Xn) are mutually independent random vectors, and (d1, . . . , dn)

is a response vector from engineers, actuaries, investors, and so on. The paper is organized as
follows. In Section 2 we review some basic concepts and several important facts to be used in
formulating our main theoretical results. In Section 3 we build several technical lemmas, which
are useful in developing our main theoretical results. The main results on the increasing convex
order of the generalized aggregations are presented in Section 4. In Section 5 we present several
applications of the ordering results in reliability and actuarial risk management as illustrations.
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Throughout this paper, the terms increasing and decreasing stand for nondecreasing and
nonincreasing, respectively, and all expectations are implicitly assumed to be finite.

2. Some preliminaries

For ease of reference, in this section we recall some important notions concerned with
our study on the generalized aggregation, including majorization, Schur-convexity, Schur-
concavity, submodular function and supermodular function, some stochastic orders, the arr-
angement increasing function, and the stochastic arrangement increasing random vectors.

Definition 2.1. For two real vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), y is said to

(i) majorize x, denoted by x �m y, if
∑n

i=1xi = ∑n
i=1yi and

∑j
i=1x(i) ≥ ∑j

i=1y(i) for
j = 1, . . . , n − 1;

(ii) weakly submajorize x, denoted by x �w y, if
∑j

i=1x(i) ≥ ∑j
i=1y(i) for j = 1, . . . , n.

For two nonnegative real vectors x and y, it is clear that y �m x implies that y �w x, but
the reverse is not necessarily true. As partial orders on the diversity of the components of real
vectors, the notions of majorization are useful in risk management, operations research, and
reliability theory.

A real function φ on a set A ⊆ R
n is called Schur-concave (Schur-convex) on A if x �m y

implies that φ(x)(≤ (≥))φ(y) for any x, y ∈ A, and φ is called log-concave on A ⊂ R
n if A

is a convex set and φ(αx + (1 − α)y) ≥ [φ(x)]α[φ(y)]1−α for any x, y ∈ A and α ∈ [0, 1].
For a comprehensive review on majorization and Schur-convexity with applications, we refer
the reader to Marshall et al. (2011).

Definition 2.2. A real-valued function ϕ : R
n → R is said to be supermodular (submodular)

if ϕ(x ∨ y) + ϕ(x ∧ y)(≥ (≤))ϕ(x) + ϕ(y) for any x, y ∈ R
n, where ∨ and ∧ denote the

componentwise maximum and the componentwise minimum, respectively.

A function ϕ with finite second partial derivatives on R
n is supermodular (submodular) if

and only if ∂2/(∂xi∂xj )ϕ(x)(≥ (≤))0 for all 1 ≤ i �= j ≤ n and x ∈ R
n. Here are some

supermodular or submodular functions:

(i) ϕ(x, a) = ∑n
i=1 max{ai, xi} is submodular,

(ii) ϕ(x, a) = ∑n
i=1 sup{c1ai + c2xi : (c1, c2) ∈ C} is submodular for C ⊆ R

2,

(iii) ϕ(x, a) = ∑n
i=1φ(xi − ai) is submodular (supermodular) if φ is convex (concave), and

(iv) ϕ(x, a) = ∑n
i=1φ1(ai)φ2(xi) is submodular (supermodular) if φ1 is increasing (decreas-

ing) and φ2 is increasing.

For other such functions, we refer the reader to Marshall et al. (2011).
Let X and Y be two random variables with probability density functions f and g (when they

are absolutely continuous).

Definition 2.3. We say that X is smaller than Y in the

(i) likelihood ratio order, denoted by X ≤lr Y , if g(t)/f (t) increases in t ;

(ii) hazard rate order, denoted by X ≤hr Y , if P(Y > t)/P(X > t) is increasing in t ;

(iii) usual stochastic order, denoted by X ≤st Y , if P(X > t) ≤ P(Y > t) for all t ;
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(iv) increasing convex order, denoted by X ≤icx Y , if
∫ ∞
t

P(X > x) dx ≤ ∫ ∞
t

P(Y > x) dx

for all t .

For more on stochastic orders, we refer the reader to Müller and Stoyan (2002), Shaked and
Shanthikumar (2007), and Li and Li (2013).

For 1 ≤ i �= j ≤ n, let the permutation πij (x) = (πij (x1), . . . , πij (xn)) such that πij (xi) =
xj , πij (xj ) = xi , and πij (xk) = xk for k �∈ {i, j}. A real-valued function g on R

n is said to
be symmetric if g(x) = g(πij (x)) for any x and (i, j) with 1 ≤ i < j ≤ n. The g is said to
be arrangement increasing (AI) on R

n if (xi − xj )[g(x) − g(πij (x))] ≤ 0 for any x and (i, j)

with 1 ≤ i < j ≤ n, and g is said to be arrangement decreasing (AD) when the inequality is
reversed.

AI functions and some related versions were utilized to introduce bivariate characterizations
for stochastic orders of two independent random variables in Shanthikumar andYao (1991) and
Righter and Shanthikumar (1992). Recently, Belzunce et al. (2013) proposed the joint stochastic
orders for dependent random variables and successfully applied them to redundant component
allocation in reliability. In addition, Cai and Wei (2014), (2015) independently introduced the
following notion characterizing the monotonicity of dependent random variables and discussed
its application in deductible and limit allocations for actuarial risks.

Definition 2.4. A random vector X = (X1, . . . , Xn) is said to be stochastic arrangement
increasing (SAI) if E[g(X)] ≥ E[g(πij (X))] for any AI function g and (i, j) such that 1 ≤
i < j ≤ n.

As a dual, X is said to be stochastic arrangement decreasing (SAD) if (Xn, . . . , X1) is SAI.

The following sufficient conditions for a SAI random vector (X1, . . . , Xn) were summarized
in Marshall et al. (2011):

(i) they are i.i.d.,

(ii) they are exchangeable, and

(iii) they are independent and Xi has probability density h(λi, xi) TP2 (total positivity of
order two) in λi and xi , i = 1, . . . , n.

The following characterization was pointed out in Shanthikumar andYao (1991) and further
remarked upon in Cai and Wei (2014) and Pan et al. (2015).

Lemma 2.1. An absolutely continuous X is SAI (SAD) if and only if it has AI (AD) probability
density.

The next technical lemma can be proved in a similar manner to Proposition 3.3(iii) of Cai
and Wei (2014), and, thus, for brevity it is stated below without the proof.

Lemma 2.2. It holds that (h(X1), . . . , h(Xn)) is SAI if (X1, . . . , Xn) is SAD and h(x) is
decreasing.

3. Technical lemmas

For a univariate function g(x), a bivariate function φ(x, d), and real vectors x = (x, y), w =
(w1, w2), a = (a1, a2), b = (b1, b2) on R

2, set permutation τ(x, y) = (y, x). Let ηi(x, a) =
wiφ(x, a2) + w2/iφ(y, a1) for i = 1, 2, g1(x, a) = g(η1(x, a)) − g(η1(x, τ (a))), and
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gi(x, a, b) = g(ηi−1(x, a)) − g(ηi−1(x, b)) for i = 2, 3. Denote

G1 = {r(x, a, b) : r(x, a, b) ≥ 0 for all y ≥ x, a �m b},
G2 = {r(x, a, b) : r(x, a, b) + r(τ (x), a, b) ≥ 0 for all y ≥ x, a �m b},
G+

1 = {r(x, a, b) : r(x, a, b) ≥ 0 for all y ≥ x ≥ 0, a �m b},
G+

2 = {r(x, a, b) : r(x, a, b) + r(τ (x), a, b) ≥ 0 for all y ≥ x ≥ 0, a �m b}.
Let us first develop several lemmas on inequalities concerned with gi on the area above the
main diagonal, i = 1, 2, 3. The proofs are relegated to Appendix A.

Lemma 3.1. Both g(η1(x, a)) and g(η1(x, a))+ g(η1(τ (x), a)) are AI in a for w2 ≥ w1 ≥ 0
and x ≤ y if g(x) is increasing and convex, and φ(x, d) is submodular, decreasing in d for
any x and increasing in x for any d .

Lemma 3.2. We have g2(x, a, b) ∈ G1 ∩ G2 for w2 ≥ w1 ≥ 0 if g(x) is increasing and
convex, and φ(x, d) is submodular, decreasing and convex in d for any x and increasing in x

for any d.

Lemma 3.3. We have g2(x, a, b) + g3(x, a, b) ∈ G1 ∩ G2 for w2 ≥ w1 ≥ 0 if g(x) is
increasing and convex, and φ(x, d) is submodular, decreasing and convex in d for any x and
increasing in x for any d .

For the aforementioned functions g(x) and φ(x, d), a random vector (X1, X2), and real
vectors w, a, b on R

2, let ζ(w, a) = E[g(w1φ(X1, a2) + w2φ(X2, a1))] and denote

ζ1(w, a) = ζ(w, a) − ζ(w, τ (a)), ζ2(w, a, b) = ζ(w, a) − ζ(w, b).

Lemma 3.4. Both ζ1(w, a) and ζ1(w, a) + ζ1(τ (w), a) are AI in a for any w2 ≥ w1 ≥ 0 if
(X1, X2) is SAI and absolutely continuous, g(x) is increasing and convex, and submodular
φ(x, d) is decreasing in d for any x and increasing in x for any d.

Lemma 3.5. We have ζ2(w, a, b) ∈ G+
1 ∩ G+

2 if (X1, X2) is SAI and absolutely continuous,
g(x) is increasing and convex, and submodular φ(x, d) is decreasing and convex in d for any x

and increasing in x for any d .

4. Main results

The theoretical results to be developed here are sufficient conditions for the increasing
convex orders on the generalized aggregation of SAI random variables and they are based on
the convexity, supermodularity, and monotonicity of the kernel function φ(x, d). We treat the
sufficient conditions as the matched allocations of parameters (d1, . . . , dn) and the majorized
ones in two subsections.

4.1. Matched allocations

To investigate how the AI parameters (d1, . . . , dn) play a role in forming the increasing
convex order on the generalized aggregation, we state two theorems.

Theorem 4.1. Suppose that (X1, . . . , Xn) and nonnegative (W1, . . . , Wn) are both SAI and
independent of each other. For any (d1, . . . , dn) ∈ R

n and φ(x, d) increasing in x for any d,

(i)
∑n

i=1Wiφ(Xi, d(n−i+1)) ≥icx
∑n

i=1Wiφ(Xi, di) if φ(x, d) is submodular and decreas-
ing in d for any x, and
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(ii)
∑n

i=1Wiφ(Xi, d(i)) ≥icx
∑n

i=1Wiφ(Xi, di) if φ(x, d) is supermodular and increasing
in d for any x.

Proof. We will only prove (i) as the proof of (ii) is similar.
Due to the transitivity of the increasing convex order, it suffices to show that

Wiφ(Xi, di ∨ dj ) + Wjφ(Xj , di ∧ dj ) + Li,j

≥icx Wiφ(Xi, di ∧ dj ) + Wjφ(Xj , di ∨ dj ) + Li,j (4.1)

for any (d1, . . . , dn) and (i, j) with 1 ≤ i < j ≤ n, where Li,j = ∑n
k �=i,jWkφ(Xk, dk).

According to Proposition 3.4 of Cai and Wei (2014), (X1, . . . , Xn) is SAI if and only if
[(Xi, Xj ) | Xk = xk, k �= i, j ] is SAI for any xk with k �= i, j and any 1 ≤ i < j ≤ n.
So we can prove (4.1) through achieving the following two steps.

• Prove the bivariate case of [(Xi, Xj ) | Xk = xk, k �= i, j ] and [(Wi, Wj ) | Wk =
wk, k �= i, j ] for any xk, wk with k �= i, j .

• Apply the total expectation to obtain (4.1).

Since the second step is routine, in the following we only detail the first step, which is just
equivalent to the n = 2 case.

Set d1 ≤ d2. Evidently, it is sufficient to show that, for any increasing and convex function g,

E[ζ1(W1, W2; d1, d2)]
= E[g(W1φ(X1, d2) + W2φ(X2, d1))] − E[g(W1φ(X1, d1) + W2φ(X2, d2))]
≥ 0.

Denote by h(w1, w2) the probability density of (W1, W2). Since (W1, W2) is SAI, using the
notation of Lemma 3.1 and Lemma 3.4, we have

E[ζ1(W1, W2; d1, d2)]
=

∫∫
0≤w1≤w2

ζ1(w1, w2; d1, d2)h(w) dw1 dw2

+
∫∫

0≤w2≤w1

ζ1(w1, w2; d1, d2)h(w) dw1 dw2

=
∫∫

0≤w1≤w2

[ζ1(w1, w2; d1, d2)h(w) + ζ1(w2, w1; d1, d2)h(τ (w))] dw1 dw2

≥
∫∫

0≤w1≤w2

[ζ1(w1, w2; d1, d2) + ζ1(w2, w1; d1, d2)]h(τ(w)) dw1 dw2

≥ 0,

where the last two inequalities are due to Lemma 2.1 and Lemma 3.4, respectively. �
4.2. Majorized allocations

In the following two theorems we are concerned with how the majorization of parameters
(d1, . . . , dn) impacts the increasing convex order on the generalized aggregation.

Theorem 4.2. Suppose that (X1, . . . , Xn) and nonnegative (W1, . . . , Wn) are SAI and inde-
pendent of each other. For (a1, . . . , an) �m (b1, . . . , bn) and φ(x, d) increasing in x for
any d,
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(i)
∑n

i=1Wiφ(Xi, a(n−i+1)) ≥icx
∑n

i=1Wiφ(Xi, b(n−i+1)) if φ(x, d) is submodular, and
decreasing and convex in d for any x, and

(ii)
∑n

i=1Wiφ(Xi, a(i)) ≥icx
∑n

i=1Wiφ(Xi, b(i)) if φ(x, d) is supermodular, and increasing
and convex in d for any x.

Proof. We only prove (i) for n = 2. The proofs for n > 2 and (ii) are similar to the proof
of Theorem 4.1 and, hence, are omitted.

Assume that a1 ≤ b1 ≤ b2 ≤ a2. Then it is sufficient to show that, for any increasing and
convex function g,

E[ζ2(W1, W2; a, b)]
= E[g(W1φ(X1, a2) + W2φ(X2, a1))] − E[g(W1φ(X1, b2) + W2φ(X2, b1))]
≥ 0.

Denote by h the density of (W1, W2). By using the notation of Lemmas 3.2, 3.3, and 3.5,
we have

E[ζ2(W1, W2; a, b)]
=

∫∫
0≤w1≤w2

ζ2(w, a, b)h(w) dw1 dw2 +
∫∫

0≤w2≤w1

ζ2(w, a, b)h(w) dw1 dw2

=
∫∫

0≤w1≤w2

[ζ2(w, a, b)h(w) + ζ2(τ (w), a, b)h(τ (w))] dw1 dw2

≥
∫∫

0≤w1≤w2

[ζ2(w, a, b) + ζ2(τ (w), a, b)]h(τ(w)) dw1 dw2

≥ 0,

where the last two inequalities stem from Lemma 2.1 and Lemma 3.5, respectively. �

As a direct consequence of Theorems 4.1 and 4.2, one can easily derive the following result.

Theorem 4.3. Suppose that (X1, . . . , Xn) and nonnegative (W1, . . . , Wn) are SAI and inde-
pendent of each other. For (a1, . . . , an) �m (b1, . . . , bn) and φ(x, d) increasing in x for
any d,

(i)
∑n

i=1Wiφ(Xi, a(n−i+1)) ≥icx
∑n

i=1Wiφ(Xi, bi) if φ(x, d) is submodular, and decreas-
ing and convex in d for any x, and

(ii)
∑n

i=1Wiφ(Xi, a(i)) ≥icx
∑n

i=1Wiφ(Xi, bi) if φ(x, d) is supermodular, and increasing
and convex in d for any x.

5. Some applications in reliability and risk management

To illustrate the main results developed in Section 4, we present here several applications.

5.1. Degenerate weighted k-out-of-n systems

As a fault tolerant structure, the k-out-of-n system is widely used in reliability engineering.
In the past two decades, the binary k-out-of-n structure was generalized to the weighted k-out-
of-n system, in which the ith component with lifetime Xi contributes its own weight ωi ≥ 0
to the entire system while functioning (i = 1, . . . , n) and the system itself functions if and
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only if the total weight due to operational components is above some predetermined threshold
k ≥ 0. For more on weighted k-out-of-n systems, we refer the reader to Xie and Pham (2005),
Samaniego and Shaked (2008), Eryilmaz (2013), and Li et al. (2016) and references therein.

In this subsection we introduce the random decay coefficient �i for the weight di of the
operational component Xi , i = 1, . . . , n. Denote d = (d1, . . . , dn) and � = (�1, . . . , �n).
At time t ≥ 0 the system retains the weight Vt (d, X, �) = ∑n

i=1di 1(Xi > t)e−�it and, thus,
the system failure time is represented as

Tk(d, X, �) = inf{t : Vt (d, X, �) < k}.
So, the system reliability is

P(Tk(d, X, �) > t) = P(Vt (d, X, �) ≥ k) for any t ≥ 0.

Obviously, the degenerate weighted k-out-of-n system with �i ≡ 0 for i = 1, . . . , n is
equivalent to the classical version.

Note that d 1(x > t) is supermodular, increasing in x for any d, and increasing in d for
any x. Directly from Theorem 4.1(ii) we have the following proposition.

Proposition 5.1. Suppose that (X1, . . . , Xn) is SAI and (�1, . . . , �n) is SAD and independent
of (X1, . . . , Xn). Then

∑n
i=1d(i) 1(Xi > t)e−�it ≥icx

∑n
i=1di 1(Xi > t)e−�it for t ≥ 0 and

d ∈ R
n+.

From Proposition 5.1, it follows that the system with a larger weight assigned to a more
reliable component has a longer lifetime in the sense of the increasing and convex order, and
this conforms in spirit with Theorem 3.1 of Li et al. (2016).

5.2. Reliability systems subject to shocks with dependent damages

In industrial engineering, it is of practical interest to study systems subject to shocks
generating a random amount of damage while arriving according to some renewal process.
On the other hand, statisticians also employ such a shock and damage model to generate
lifetime distributions with various ageing properties. For an overview of shock and damage
models, we refer the reader to Bogdanoff and Kozin (1985) and Nakagawa (2007).

Assume that a reliability system subject to shocks arriving in succession with interarrival
times T1, T2, . . . , and at Xi = T1 + · · · + Ti , the arrival of the ith shock produces a random
damage Wi decaying at a rate di > 0 for i = 1, 2 . . . . To avoid unexpected failures, the
engineer considers to repair the system at Xn+1—the arrival time of the (n + 1)th shock. Then
the total accumulated damage until repair is

∑n
i=1Wie−di (t−Xi)+ . Assume that the system

fails whenever the aggregated damage reaches a predetermined threshold c > 0. Then the
probability for the system to survive time t before the repair is P(

∑n
i=1Wie−di (t−Xi)+ < c).

It is routine to verify that φ(x, d) = e−d(t−x)+ is submodular, decreasing and convex in d

for any x, and increasing in x for any d . The next proposition follows from Theorem 4.3(ii)
directly.

Proposition 5.2. Suppose that (W1, . . . , Wn) is SAI and T1, . . . , Tn are mutually independent.
Then (d1, . . . , dn) �m (b1, . . . , bn) implies that

n∑
i=1

Wie
−d(i)(t−Xi)+ ≥icx

n∑
i=1

Wie
−bi (t−Xi)+ .
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Intuitively, the slower decay of the damage due to an earlier shock incurs a larger aggregated
damage and tends to a weaker system. In fact, Proposition 5.2 confirms this intuition as
follows: the system with increasing decay rates gains larger aggregated damage and, hence,
is less reliable in the sense of the increasing and convex order.

5.3. Deductibles and coverage limits for insurance risks

In the insurance industry, deductibles and coverage limits are often applied to multiple risks.
Sometimes the insurer grants a total amount of deductible h̄ or coverage limit � and allows the
policyholder to allocate deductibles d = (d1, . . . , dn) or coverage limits l = (l1, . . . , ln) to risks
X = (X1, . . . , Xn) covered by a policy. Let δ > 0 be the discount rate and T = (T1, . . . , Tn)

be the vector of the corresponding occurrence times of those risks. Denote by Ah̄ all admissible
allocation vectors such that

∑n
i=1di = h̄ and di ≥ 0 for all i = 1, . . . , n. Then the policyholder

retains the total potential loss
∑n

i=1e−δTi (Xi − (Xi −di)+) = ∑n
i=1e−δTi (Xi ∧di) for d ∈ Ah̄

and
∑n

i=1e−δTi [Xi − (Xi ∧ li )] = ∑n
i=1e−δTi (Xi − li )+ for any l ∈ A�. So it is of interest for

the policyholder to consider the following two optimization problems based on utility theory:

min
l∈A�

E

[
u

( n∑
i=1

e−δTi (Xi − li )+
)]

(5.1)

subject to increasing and convex u, and X independent of T ,

min
d∈Ah̄

E

[
u

( n∑
i=1

e−δTi (Xi ∧ di)

)]
(5.2)

subject to increasing and convex u, and X independent of T .
Denote by l∗ = (l∗1 , . . . , l∗n) and d∗ = (d∗

1 , . . . , d∗
n) the solutions to the above problems (5.1)

and (5.2), respectively. Hua and Cheung (2008a) were among the first to study the above two
problems, and they showed, in the context of comonotone X with mutually independent T ,
that l∗i ≤ l∗j and d∗

i ≥ d∗
j if Tj ≤lr Ti and Xi ≤st Xj for any 1 ≤ i �= j ≤ n. Following this,

in the context of the comonotone severity X with T having some Archimedean copula, Li and
You (2012) proved that it is least favorable for the risk-averse policyholder to allocate a smaller
coverage limit and a larger deductible to the loss with higher severity and frequency.

According to Lemma 2.2, (e−δT1 , . . . , e−δTn) is SAI whenever T is SAD. Note that (x −d)+
is submodular, decreasing in d for any x and increasing in x for any d. As an immediate
consequence of Theorem 4.1(i), we obtain the proposition on deductibles.

Proposition 5.3. Suppose that (X1, . . . , Xn) is SAI and (T1, . . . , Tn) is SAD and independent
of (X1, . . . , Xn). Then

∑n
i=1(Xi − l(n−i+1))e−δTi ≥icx

∑n
i=1(Xi − li )e−δTi for any l ∈ R

n+.

Also, since x ∧ d is supermodular, increasing in d for any x, and increasing in x for any d,
by Theorem 4.1(ii), we also have the following result on coverage limits.

Proposition 5.4. Suppose that (X1, . . . , Xn) is SAI and (T1, . . . , Tn) is SAD and independent
of (X1, . . . , Xn). Then

∑n
i=1(Xi ∧ d(i))e−δTi ≥icx

∑n
i=1(Xi ∧ di)e−δTi for any d ∈ R

n+.

Based on Propositions 5.3 and 5.4, we can draw the following conclusions for SAI severi-
ties X with SAD occurrence frequencies T :

(i) the optimal allocation of coverage limits l∗ must satisfy l∗1 ≤ · · · ≤ l∗n , and

(ii) the optimal allocation of deductibles d∗ must satisfy d∗
1 ≥ · · · ≥ d∗

n .
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According to Propositions 5.2 and 5.5 of Cai and Wei (2014), X with comonotone coordinates
is SAI if and only if Xi ≤st Xi+1 for i = 1, . . . , n − 1, and T with mutually independent
coordinates is SAI if and only if Ti ≤lr Ti+1 for i = 1, . . . , n − 1. Therefore, the above two
conclusions serve as substantial extensions to the corresponding ones due to Hua and Cheung
(2008a).

5.4. Generalized linear combinations of dependent random variables

Linear combinations of independent random variables have been extensively studied in the
literature; see, for example, Xu and Hu (2011) and Yu (2011). In the past several years,
some authors have investigated the various generalized weighted sum

∑n
i=1φ(Xi, ai). For

instance, Pan et al. (2013) considered the case of φ(X, a) = α(a)β(X) with twice continuously
differentiable and strictly monotone α and β, and Mao et al. (2013) discussed the case of
supermodular and submodular φ(x, a). Recently, You and Li (2015) studied the generalized
weighted sum with SAI random variables and proved the following proposition.

Proposition 5.5. (You and Li (2015, Proposition 4.2).) Suppose that X is SAI and φ(x, d)

is convex with respect to d for any x. Then b �m a implies that
∑n

i=1φ(Xi, a(n−i+1)) ≥icx∑n
i=1φ(Xi, bi) for submodular φ(x, d) and

∑n
i=1φ(Xi, a(i)) ≥icx

∑n
i=1φ(Xi, bi) for super-

modular φ(x, d).

Clearly, as a natural extension of the above proposition, Theorem 4.3 introduces the random
weights W1, . . . , Wn at the cost of assuming monotone properties for φ(x, d).

Appendix A

Proof of Lemma 3.1. (i) Due to the submodularity of φ, it holds that φ(y, a1) − φ(y, a2) ≥
φ(x, a1)−φ(x, a2) for any a1 ≤ a2 and x ≤ y. Since φ(x, d) is decreasing in d for any fixed x,
we have φ(x, a1) − φ(x, a2) ≥ 0 and, hence, w1φ(x, a2) + w2φ(y, a1) ≥ w1φ(x, a1) +
w2φ(y, a2) for any 0 ≤ w1 ≤ w2, i.e. η1(x, a) ≥ η1(x, τ (a)). Taking the increasing g into
account, we reach g1(x, a) ≥ 0 for any x ≤ y.

(ii) Since φ(x, d) is decreasing in d for any fixed x, we have

η1(x, a) + η1(τ (x), a) − η1(τ (x), τ (a)) − η1(x, τ (a))

= (w2 − w1)[φ(y, a1) − φ(y, a2) + φ(x, a1) − φ(x, a2)]
≥ 0,

yielding η1(τ (x), a) + η1(x, a) ≥ η1(x, τ (a)) + η1(τ (x), τ (a)). On the other hand, one may
verify

η1(x, a) − η1(τ (x), τ (a)) = (w2 − w1)[φ(y, a1) − φ(x, a2)]
= (w2 − w1)[φ(y, a1) − φ(y, a2) + φ(y, a2) − φ(x, a2)]
≥ 0.

By (i), we have η1(x, a) ≥ η1(x, τ (a)) and, hence,

η1(x, a) ≥ max{η1(x, τ (a)), η1(τ (x), τ (a))}.
Consequently, we obtain (η1(x, τ (a)), η1(τ (x), τ (a))) �w (η1(x, a), η1(τ (x), a)). As for
increasing and convex g(x), it follows from Theorem C.1.b of Marshall et al. (2011) that,
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for x ≤ y,
g1(x, a) + g1(τ (x), a)

= g(η1(x, a)) − g(η1(x, τ (a))) + g(η1(τ (x), a)) − g(η1(τ (x), τ (a)))

≥ 0. �

Proof of Lemma 3.2. Noting that a �m b, we assume that a1 ≤ b1 ≤ b2 ≤ a2.
(i) Since φ(x, d) is submodular and convex with respect to d for fixed x, it holds that

φ(y, a1) − φ(y, b1) + φ(x, a2) − φ(x, b2)

= [φ(x, a2) − φ(x, b2)] − [φ(x, b1) − φ(x, a1)]
+ [φ(y, a1) − φ(x, a1)] − [φ(y, b1) − φ(x, b1)]

≥ 0 for any x ≤ y.

Since φ(x, d) is decreasing in d for any x, it holds that φ(x, b2) − φ(x, a2) ≥ 0 and, hence,
w2[φ(y, a1) − φ(y, b1)] ≥ w1[φ(x, b2) − φ(x, a2)] for any w2 ≥ w1 ≥ 0. Then we have

η1(x, a) = w1φ(x, a2) + w2φ(y, a1) ≥ w1φ(x, b2) + w2φ(y, b1) = η1(x, b).

Owing to the increasing g, we obtain g2(x, a, b) = g(η1(x, a)) − g(η1(x, b)) ≥ 0 for any
x ≤ y.

(ii) Since φ(x, d) is decreasing in d for any x, we have φ(x, b2) − φ(x, a2) + φ(y, b2) −
φ(y, a2) ≥ 0. Due to the fact that φ(x, d) is convex with respect to d for fixed x, we have

[φ(y, a1) − φ(y, b1) + φ(x, a1) − φ(x, b1)] − [φ(x, b2) + φ(y, b2) − φ(x, a2) − φ(y, a2)]
= [φ(y, a1) + φ(y, a2) − φ(y, b1) − φ(y, b2)]

+ [φ(x, a1) + φ(x, a2) − φ(x, b1) − φ(x, b2)]
≥ 0.

So

φ(y, a1) − φ(y, b1) + φ(x, a1) − φ(x, b1) ≥ φ(x, b2) + φ(y, b2) − φ(x, a2) − φ(y, a2) ≥ 0

and, thus,

w2[φ(y, a1) − φ(y, b1) + φ(x, a1) − φ(x, b1)]
≥ w1[φ(x, b2) + φ(y, b2) − φ(x, a2) − φ(y, a2)] for any w2 ≥ w1 ≥ 0,

which yields

η1(τ (x), a) + η1(x, a) ≥ η1(x, b) + η1(τ (x), b) for any y ≥ x. (A.1)

On the other hand, since φ is submodular and convex with respect to d for fixed x, we have

φ(y, a1) − φ(x, b1) − φ(y, b2) + φ(x, a2)

= [φ(x, a2) + φ(x, a1) − φ(x, b1) − φ(x, b2)]
+ [φ(y, a1) + φ(x, b2) − φ(x, a1) − φ(y, b2)]

≥ 0 for x ≤ y.
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Since φ(x, d) is increasing in x for any d and decreasing in d for any x, we have φ(y, b2) −
φ(x, a2) = φ(y, b2) − φ(x, b2) + φ(x, b2) − φ(x, a2) ≥ 0. Thereby, it holds that φ(y, a1) −
φ(x, b1) ≥ φ(y, b2) − φ(x, a2) ≥ 0 and, thus, for any w2 ≥ w1 ≥ 0,

η1(x, a) − η1(τ (x), b) = w2[φ(y, a1) − φ(x, b1)] − w1[φ(y, b2) − φ(x, a2)]
≥ w1[φ(y, a1) − φ(x, b1) − φ(y, b2) + φ(x, a2)]
≥ 0.

Also, from (i), it follows that

η1(x, a) ≥ η1(x, b) and η1(x, a) ≥ max{η1(x, b), η1(τ (x), b)} for y ≥ x.

In combination with (A.1), we have

(η1(x, b), η1(τ (x), b)) �w (η1(x, a), η1(τ (x), a)).

As for increasing and convex g(x), from Theorem C.1.b of Marshall et al. (2011), it follows
that

g2(x, a, b) + g2(τ (x), a, b)

= g(η1(x, a)) − g(η1(x, b)) + g(η1(τ (x), a)) − g(η1(τ (x), b))

≥ 0 for any y ≥ x,

and this yields the desired inequality in (ii). �
Proof of Lemma 3.3. Assume that a1 ≤ b1 ≤ b2 ≤ a2 for (a1, a2) �m (b1, b2).
(i) Since φ(x, d) is submodular and convex with respect to d for any x,

φ(x, a2) + φ(y, a1) − φ(x, b2) − φ(y, b1)

= [φ(x, a2) + φ(x, a1) − φ(x, b1) − φ(x, b2)]
+ [φ(x, b1) + φ(y, a1) − φ(y, b1) − φ(x, a1)]

≥ 0 for y ≥ x, (A.2)

and, hence, for y ≥ x and w2 ≥ w1 ≥ 0,

η1(x, a) − η1(x, b) + η2(x, a) − η2(x, b)

= (w1 + w2)[φ(x, a2) + φ(y, a1) − φ(x, b2) − φ(y, b1)] (A.3)

is nonnegative. On the other hand, φ(x, d) is decreasing in d for any x and increasing in x for
any d, then, for y ≥ x, we also have φ(y, b1) − φ(x, a2) = φ(y, b1) − φ(y, a2) + φ(y, a2) −
φ(x, a2) ≥ 0 and, thus, φ(y, a1) − φ(x, b2) ≥ φ(y, b1) − φ(x, a2) ≥ 0 holds due to (A.2). As
a result, for w2 ≥ w1 ≥ 0 and y ≥ x, it holds that

η1(x, a) − η2(x, b) = w2[φ(y, a1) − φ(x, b2)] − w1[φ(y, b1) − φ(x, a2)] ≥ 0.

In combination with η1(x, a) ≥ η1(x, b) for y ≥ x, we reach

η1(x, a) ≥ max{η1(x, b), η2(x, b)} for y ≥ x. (A.4)

Based on (A.3), (A.4), and by Theorem C.1.b of Marshall et al. (2011), we conclude that, for
y ≥ x,

g2(x, a, b) + g3(x, a, b) = g(η1(x, a)) − g(η1(x, b)) + g(η2(x, a)) − g(η2(x, b)) ≥ 0.
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(ii) Due to φ(x, d) convex with respect to d for fixed x, it holds that

η1(x, a) + η1(τ (x), a) + η2(x, a) + η2(τ (x), a)

− η1(x, b) − η1(τ (x), b) − η2(x, b) − η2(τ (x), b)

= (w1 + w2)[φ(x, a2) + φ(x, a1) − φ(x, b1) − φ(x, b2)

+ φ(y, a2) + φ(y, a1) − φ(y, b1) − φ(y, b2)] (A.5)

is nonnegative. Also, the submodularity of φ(x, d) implies that φ(x, a1)−φ(x, b1)−φ(y, a2)+
φ(y, b2) ≥ 0 for y ≥ x. Therefore, we have η1(τ (x), a) − η1(τ (x), b) ≥ η2(τ (x), a) −
η2(τ (x), b) for y ≥ x.

• If η2(τ (x), a) ≥ η2(τ (x), b) for y ≥ x, from the above it follows that

η1(τ (x), a) − η1(τ (x), b) ≥ η2(τ (x), a) − η2(τ (x), b) ≥ 0.

Since g increases, we have

g2(τ (x), a, b) = g(η1(τ (x), a)) − g(η1(τ (x), b)) ≥ 0,

g3(τ (x), a, b) = g(η2(τ (x), a)) − g(η2(τ (x), b)) ≥ 0.

In view of (i), we have, for y ≥ x,

g2(x, a, b) + g3(x, a, b) + g2(τ (x), a, b) + g3(τ (x), a, b) ≥ 0. (A.6)

• If η2(τ (x), a) ≤ η2(τ (x), b) for y ≥ x, then, by (A.5) we have, for y ≥ x,

θ(x) ≡ η2(τ (x), a) − [η2(τ (x), b) + η1(x, b) + η1(τ (x), b)

− η1(x, a) − η1(τ (x), a) − η2(x, a)]
≥ η2(x, b). (A.7)

Note that symmetric convexity implies schur-convexity. For increasing, convex g(x),
and

(η1(x, a), η1(τ (x), a), η2(x, a), η2(τ (x), a))

�m (η2(τ (x), b), η1(x, a), η1(τ (x), a), θ(x)),

it holds that, for y ≥ x,

g(η1(x, a)) + g(η1(τ (x), a)) + g(η2(x, a)) + g(η2(τ (x), a))

≥ g(η1(x, b)) + g(η1(τ (x), b)) + g(η2(τ (x), b)) + g(θ(x))

≥ g(η1(x, b)) + g(η1(τ (x), b)) + g(η2(τ (x), b)) + g(η2(x, b)),

where the last inequality is due to (A.7). This invokes (A.6) again. �
Proof of Lemma 3.4. Denote by f (x) the probability density of (X1, X2). We proceed using

the notation of Lemma 3.1.
(i) For any a1 ≤ a2 and 0 ≤ w1 ≤ w2,

ζ1(w, a) =
∫∫

R2
g1(x, a)f (x) dx1 dx2

=
∫∫

x1≤x2

g1(x, a)f (x) dx1 dx2 +
∫∫

x2≤x1

g1(x, a)f (x) dx1 dx2

https://doi.org/10.1017/jpr.2017.27 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2017.27


698 X. PAN AND X. LI

=
∫∫

x1≤x2

[g1(x, a)f (x) + g1(x, a)f (τ (x))] dx1 dx2

≥
∫∫

x1≤x2

[g1(x, a) + g1(x, a)]f (τ(x)) dx1 dx2

≥ 0,

where the first inequality is due to Lemma 2.1 and the second one stems from Lemma 3.1.
(ii) Due to the submodular φ, it holds that φ(x2, a1) − φ(x1, a1) ≥ φ(x2, a2) − φ(x1, a2)

for any x1 ≤ x2 and a1 ≤ a2.

• Set x1 ≤ x2. Then we have η1(x, a) + η2(x, a) ≥ η1(x, τ (a)) + η2(x, τ (a)).

• Also, since φ(x, d) is increasing in x for any fixed d, φ(x2, a2) − φ(x1, a2) ≥ 0 and
then w2φ(x2, a1) + w1φ(x1, a2) ≥ w2φ(x1, a1) + w1φ(x2, a2) for any w2 ≥ w1 ≥ 0,
i.e. η1(x, a) ≥ η2(x, τ (a)). By Lemma 3.1, we obtain

η1(x, a) ≥ max{η2(x, τ (a)), η1(x, τ (a))}.

In combination with the above two inequalities, we further have, for x1 ≤ x2,

g(η1(x, a)) + g(η2(x, a)) ≥ g(η1(x, τ (a))) + g(η2(x, τ (a))).

Therefore, owing to Lemma 2.1, it holds that

ζ1(w, a) + ζ1(τ (w), a)

=
∫∫

R2
[g(η1(x, a)) + g(η2(x, a)) − g(η1(x, τ (a))) − g(η2(x, τ (a)))]f (x) dx1 dx2

=
∫∫

x1≤x2

[g(η1(x, a)) + g(η2(x, a)) − g(η1(x, τ (a))) − g(η2(x, τ (a)))]
× [f (a) − f (τ(x))] dx1 dx2

≥ 0 for w2 ≥ w1 ≥ 0. �

Proof of Lemma 3.5. Denote by f (x1, x2) the probability density of (X1, X2) and let us
proceed using the notation of Lemmas 3.2 and 3.3. Again, we assume that a1 ≤ b1 ≤ b2 ≤ a2
without loss of generality.

(i) For any (a1, a2) �m (b1, b2) and w2 ≥ w1 ≥ 0,

ζ2(w, a, b) =
∫∫

x1≤x2

g2(x, a, b)f (x) dx1 dx2 +
∫∫

x1≥x2

g2(x, a, b)f (x) dx1 dx2

=
∫∫

x1≤x2

[g2(x, a, b)f (x) + g2(τ (x), a, b)f (τ (x))] dx1 dx2

≥
∫∫

x1≤x2

[g2(x, a, b) + g2(τ (x), a, b)]f (τ(x)) dx1 dx2

≥ 0,

where the two inequalities follow from Lemma 2.1 and Lemma 3.2(ii), respectively.
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(ii) For any (a1, a2) �m (b1, b2) and w2 ≥ w1 ≥ 0,

ζ2(w, a, b) + ζ2(τ (x), a, b)

=
∫∫

x1≤x2

[g2(x, a, b) + g3(x, a, b)]f (x) dx1 dx2

+
∫∫

x1≥x2

[g2(x, a, b) + g3(x, a, b)]f (x) dx1 dx2

≥
∫∫

x1≤x2

[g2(x, a, b) + g2(τ (x), a, b) + g3(x, a, b) + g3(τ (x), a, b)]
× f (τ(x)) dx1 dx2

≥ 0,

where the two inequalities follow from Lemma 2.1 and Lemma 3.3, respectively. �
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