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Abstract

In this paper, we present the development and application of a technical feasibility model used in preliminary design to
determine whether a set of desired product specifications obtained from marketing is feasible in the engineering
domain. This model is developed by integrating the capabilities of a multiobjective design problem, a multicriteria
design optimization tool, a Pareto frontier gap analyzer, metamodeling methods, and use of the Pareto frontier as a
constraint for feasibility assessment. Although the tools are independent of the domain, their application is illustrated
using two examples: a simple three-objective mathematical problem and a five-objective passenger vehicle design
problem. The feasibility of the desired product specifications is determined with respect to the problem’s Pareto
frontier, which is considered to be the necessary constraint to satisfy.
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1. INTRODUCTION

The goal of this research is to develop analytical tools to
support the definition of a feasible and technically superior
set of product specifications in the preliminary stages of the
product development process. Ensuring that product speci-
fications are mutually compatible and feasible from an engi-
neering perspective is not a trivial task. It is, however, a
paramount task in effective execution of the product devel-
opment process. The approach developed and presented in
this paper occurs at the intersection of two technology areas:
the development and application of multidisciplinary design,
and optimization decision-support systems and the gen-
eration of Pareto frontiers to be used as constraints for
feasibility assessment within multiobjective optimization
problems.

Decision-support systems for the design of large, com-
plex engineering systems are critical to making accurate
and appropriate decisions in a timely fashion. These decision-
support systems are often embodied in software tools that
provide for substantial automation of the design process

and for the application of multidisciplinary and multiobjec-
tive optimization methods. The popularity of these frame-
works has given rise to a number of research programs
within various sectors of the engineering design community.

In the academic sector, the Center for Research in Com-
putation and its Applications has developed the Virtual Air-
plane Design and Optimization framework ~Alzubbi et al.,
2000!. In the government sector, Sandia National Labs has
developed the Design and Analysis Kit for Optimization
~Eldred et al., 2004!, and researchers at NASA Langley
have developed the Framework for Interdisciplinary Opti-
mization ~Townsend et al., 1998!. In the private sector, frame-
works have been developed both as commercial products
and as proprietary applications. Commercial products include
the GENESIS0SDRC I-DEAS solution ~Kosaka et al., 2000!
offered by Vanderplaats R&D and the commercial version
of the Federated Intelligent Product Environment ~Röhl et al.,
2000! being developed by Engineous software. Proprietary
corporate solutions include Ford Motor Company’s design
synthesis system based on the quantum leap adaptive opti-
mization engine ~Port, 1998! and the multidisciplinary design
frameworks developed within the General Motors ~GM!
R&D Center ~Bennett et al., 1995; Fenyes et al., 2002!. In
recent work, customer preferences have been gathered using
a Web-based framework and integrated into the design and
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manufacturing process of a customized product ~Siddique
& Boddu, 2004!. All the different multidisciplinary frame-
works discussed here provide tools to incorporate system
constraints and determine solutions that are feasible with
respect to these constraints.

These frameworks provide powerful engineering analy-
sis environments with substantial improvements in opera-
tional efficiency; however, they are often computationally
very expensive, especially when they include finite element
analyses. One means of further improving computational
speed is to employ surrogate models in place of the com-
putationally expensive models. Surrogate models have been
applied successfully within the automotive industry in robust
engineering applications ~Lee et al., 2001! and in the Multi-
function Optimization Visual Environment ~Longacre et al.,
1996!. The approach in the latter is to employ a series of
discipline-specific surrogate models with a coordinated
schema of design variables and responses. In contrast, the
approach outlined in this paper is to exercise a multidisci-
plinary design framework to generate a single surrogate
model. This surrogate model is a representation of the Pareto
frontier for a problem with multiple desired performance
attributes. This representation of the Pareto frontier also
forms the constraint against which feasibility of new designs
is evaluated.

Developing design frameworks using constraints is not
new to engineering design. Constraints have been devel-
oped from decision-maker preferences and used to deter-
mine attribute weights in multiattribute selection problems
~See et al., 2004!. In addition, robust design alternatives
have been obtained for multiattribute selection problems
through the use of intelligent sampling of the design space
and incorporating preference based constraints in the selec-
tion methodology ~Gurnani & Lewis, 2005!. Constraint sat-
isfaction problems have been formulated and used in design,
integrating a function-based design generation algorithm to
a geometric modeler ~Schmidt et al., 2005!. A formalism
for operational representation of constraints for feature-
based design has been proposed by Fu and de Pennington
~1993!, and Marinescu and Dechter ~2005! have presented
advanced approaches for investigation of the design space
in discrete variable constraint optimization problems.

In addition to the use of constraints in developing design
frameworks, this work uses constraints within surface fit-
ting techniques to determine a representation of the Pareto
surface. Goel et al. ~2004! have used a response surface
method along with an evolutionary algorithm and con-
straint strategy to approximate the Pareto optimal front and
apply it to rocket injector design. Kasprzak and Lewis ~2000!
have also used curve-fitting techniques to determine a Pareto
front and use it to aid designers in making trade-offs in
decisions pertaining to solutions along the Pareto frontier.
Although constraints have been used in design and optimi-
zation in a number of effective ways including developing
approximations of Pareto frontiers, the use of an approxi-
mated Pareto frontier as a constraint in feasibility assess-

ment is the novel and primary development and contribution
of this paper. In addition, the developed methodology is for
the preliminary design stage within the design process.
Although multiobjective optimization techniques are used
to generate the Pareto surface, this paper does not prescribe
any type of optimization per se. The premise of this paper
is determining the engineering feasibility of new combina-
tions of objective functions known to maximize customer
satisfaction as obtained by marketing. Engineering feasibil-
ity refers to the ability of engineering to actually design a
product with the desired performance characteristics. The
feasibility is checked for yet to be developed products ~hence,
preliminary design! with respect to a preexisting analysis
system.

To create the surrogate model for the Pareto frontier in this
paper, we use a multiobjective genetic algorithm ~MOGA!
in conjunction with a multiobjective analyses system to gen-
erate a set of Pareto optimal points. A gap analyzer has also
been developed to identify and populate any gaps that might
exist within the Pareto set by tuning the MOGA to populate
these gaps. An effective representation of the Pareto frontier
is then determined using metamodeling techniques. Once a
complete representation of the Pareto frontier is developed,
it can be viewed as the constraint in order to determine if a
proposed vehicle is

• feasible, if the vehicle is inside the Pareto frontier;

• feasible and technically superior, if the vehicle is on
the Pareto frontier; or

• infeasible, if the vehicle is outside the Pareto frontier.

This information may then be used by engineers to identify
compatible combinations of performance targets and design
parameters. Some fundamentals of multiobjective optimi-
zation are presented in the next section. Section 3 presents
a detailed discussion on the development of the different
stages needed in the construction of a constraint-based tech-
nical feasibility model ~TFM!, building upon the concepts
presented in Section 2. Section 4 discusses the develop-
ment of a TFM for a three-objective mathematical problem
and a passenger car design problem and also presents the
results of the process. The final section of this paper covers
the conclusions of the results as well as recommendations
for future work in this area.

2. PARETO FRONTIER GENERATION

Multiobjective optimization includes a set of formal tools
aimed at providing designers with accurate, complete, and
rational information to make effective decisions in engi-
neering. Fundamental to multiobjective optimization in gen-
eral and to this paper in particular is the concept of Pareto
optimality. When multiple competing objectives or criteria
exist, the optimum is no longer a single design point but an
entire set of nondominated design points. This is commonly
known as the Pareto set ~Pareto, 1896, 190601971!. The
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Pareto set is composed of Pareto optimal solutions. In sim-
ple terms, a Pareto optimal solution is one for which any
improvement in one objective must result in the degrada-
tion of at least one other objective. Mathematically, a fea-
sible design variable vector ~ Sx '! is Pareto optimal if and
only if there is no feasible design variable vector ~ Sx!, with
the characteristics,

fi ~ Sx! � fi ~ Sx ' ! �i, i � 1, . . . , n

fi ~ Sx! � fi ~ Sx ' ! for at least one i, i � 1, . . . , n ~1!

where n is the number of objectives and the use of the less
than symbol indicates an improvement in the objective func-
tion ~assuming minimization of objectives is desired!. The
Pareto set can be used to generate a Pareto frontier, a con-
tinuous mathematical function representing all of the pos-
sible Pareto optimal solutions.

Traditional methods of generating Pareto frontiers employ
repeated conversion of multiobjective problems into single
objective problems. However, these methods are contradic-
tory to the spirit of Pareto optimality, and have been proven
to perform poorly when attempting to populate Pareto fron-
tiers under many circumstances ~Koski, 1985; Das & Den-
nis, 1997; Messac et al., 2000!. To avoid these problems,
many researchers have turned to other methods for gener-
ating Pareto frontiers. Messac and Sundararaj ~2000! have
applied physical programming to generate Pareto frontiers
without relying on weights, instead using designer prefer-
ences in the form of metric classes in the optimization pro-
cess. Narayanan and Azarm ~1999! have developed the
interactive sequential hybrid optimization technique, solving
a multiobjective problem through the repeated application
of a simple genetic algorithm. A discussion of the trade-offs
in multiobjective optimization when using operators with
and within genetic algorithms can be found in ~Azarm et al.,
1999!. Fitness and ranking schemes for uses in genetic pro-
gramming are developed by Balling ~2000!, Goldberg ~1989!,
and Fonseca and Fleming ~1998!, whereas the development
of genetic programming to efficiently generate a thorough
spread of points along a Pareto frontier is found in the paper
by Eddy and Lewis ~2001!. Genetic programming has also
been used as a tool for invention and creativity in auto-
mated design ~Koza et al., 2004! and applied to the design
of combinational logic circuits ~Coello & Aguirre, 2002!.

Given this background, the approach taken in this paper
for solving multiobjective continuous problems involves

the use of genetic programming. A MOGA can be used to
populate the entire Pareto frontier in a single optimization
run without repeated conversion from a multiobjective to a
single objective problem. In a multiobjective problem, there
is not a single measure of performance and a simple greater
than0less than comparison is no longer sufficient. The fit-
ness evaluation in a MOGA incorporates the concept of
Pareto optimality such that a design that exhibits dominant
performance characteristics is favored over one that does
not and is therefore more likely to proliferate. In addition,
MOGAs typically require far fewer function evaluations to
converge to a set of solutions than other methods ~e.g., grid
searches, iterative weighted sums; Goldberg, 1989; Davis,
1991; Miller & Goldberg, 1996!. Another advantage is that
the MOGA is very robust to ill-conditioned problems ~multi-
modal, discontinuous, discrete, etc.; Deb & Kumar, 1995!.
Because of this, the MOGA is more likely than other meth-
ods to yield a dense and uniformly populated Pareto fron-
tier ~Fonseca & Fleming, 1995; Kurapati et al., 2002!.
Furthermore, because the MOGA is of zero order, the form
of the evaluation function is irrelevant to the workings of
the algorithm and the method therefore lends itself well to
use with other analysis codes for which there is no analyt-
ical evaluation function. Also of importance, a MOGA can
be tailored for specific problems with computational com-
plexity and parallel computing issues in mind ~Stender, 1993;
Lee & Hajela, 1996!. The MOGA used in this paper is one
adapted from Eddy and Lewis ~2001!, and is currently also
being used in the Design and Analysis Kit for Optimization
tool for optimization and analysis developed at Sandia
National Laboratories ~Eldred et al., 2004!.

Having introduced the key technology areas that provide
the background of this paper, it is now possible to begin
tying them together into an effective framework. The frame-
work used is constraint based in that it uses the Pareto fron-
tier as a constraint in order to determine feasibility of new
test designs. The next section discusses the development of
such a framework and the background behind each block.

3. TECHNICAL FEASIBILITY MODEL
FRAMEWORK

The framework of the TFM is shown in Figure 1. The first
step is the identification and formulation of the engineering
system that is being investigated. For this system, an effec-
tive and efficient MOGA is then developed and tuned to

Fig. 1. The technical feasibility model development process.
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populate the Pareto frontier. Once the Pareto set has been
sufficiently populated, a mathematical representation of it
is developed using metamodeling techniques to create the
Pareto frontier. Validation techniques are then applied to
the fit surface to ensure that the correct behavior of the
system is being modeled. This forms the third step of the
TFM. The final step in the TFM development is the inte-
gration of different feasibility assessment tools using the
fitted Pareto surface as a constraint, in turn providing the
user with feasibility information of given test points.

The following sections detail the different blocks of the
TFM and illustrate the solution for each step using a simple
three-objective problem. Section 4 provides results of a
benchmarking feasibility analysis on a cross-section of pas-
senger vehicles currently on the market. The results of this
feasibility assessment are based upon the problem formu-
lated by GM R&D.

3.1. Problem formulation

For the purpose of illustration, the approach to determine
technical feasibility is applied to a multiobjective problem
adapted from Viennet et al. ~1996!. This problem consists
of three-objective functions and two design variables, suit-
ing both the needs for an illustrative example and in the
ability to visualize the results. The problem statement is
given in Eq. ~2!.

minimize: F1 � x 2 � ~ y � 1!2,

F2 � x 2 � ~ y � 1!2 � 1,

F3 � ~x � 1!2 � y2 � 2;

subject to: �2 � x, y � 2. ~2!

Once the problem is identified, the Pareto set is obtained
using a MOGA. This is discussed in the next section.

3.2. Frontier generation and gap analyzer

Although a MOGA is very efficient at populating a Pareto
set, it may not always cover the entire performance space.
This is most likely to occur when exercising systems in
which an evaluation of a design point is either computation-
ally or time expensive. In these cases, parts of the Pareto
frontier have been identified as seen in Figure 2, but there
exist significant gaps in the frontier that may decrease the
fidelity of the surface fit to the frontier. To obtain a com-
plete representation of the Pareto frontier, further system
analyses are required, which significantly increases the com-
putational expense. The utopia point, which represents the
individual best values for each objective, is also marked in
Figure 2. ~Note: the identified parts of the Pareto frontier in
Fig. 2 have hashed marks on one side to indicate that the
Pareto frontier is used as a constraint for feasibility assess-
ment. Feasibility assessment is discussed later in the paper.!

To overcome running a large number of system analyses
to achieve a gap free Pareto surface, a gap analyzer has
been developed to work with the MOGA in populating these
gaps and ensuring the integrity of the surface fit. The cen-
tral concept of the gap analyzer is to identify gaps in the
Pareto set and then run localized MOGAs in these gaps to
populate them. For the gap analyzer, the performance space
is discretized into a series of discrete boxes, with step sizes
specified by the designer. This allows the designer to select
meaningful sizes for the gaps in the Pareto frontier that will
be identified. For example, consider the objective of 0– 60
mph acceleration time. A step size of 1020 of a second
would be too fine; it would result in identification of a large
number of gaps, along with a dramatic increase in either
computational or run-time expense, but this increment is
practically imperceptible by most customers. Likewise, a
step size of 2 s would be too coarse; it would substantially
reduce the number of gaps identified and the computational
expense associated with filling them, but this increment is
far beyond the threshold of customer perception. The selec-
tion of step size for an objective therefore involves a trade-
off between gap identification and the time and resources
needed to evaluate populations of points. For the GM prob-
lem, designer preferences obtained from GM are used to
determine the appropriate step size in this paper.

The discretization of the performance space results in a
set of hyperboxes. ~The discretized regions are called hyper-
boxes because the performance space can have more than
three-objective functions, representing each edge of the dis-
cretized region!. This set of hyperboxes contains populated
~populated with Pareto optimal points! and nonpopulated
hyperboxes ~containing no points!. All hyperboxes ~both
populated and nonpopulated! are stored in an array, and
each hyperbox is labeled by the index number of its corre-
sponding discretized unit along each objective. For exam-
ple, in a two-objective problem, if a hyperbox is the third
discretized unit along one objective and the second discret-
ized unit along the second objective, it is stored as ~3, 2! in
the array of all hyperboxes. The gap analyzer methodology

Fig. 2. The initial Pareto frontier from multiobjective genetic algorithm
results.
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uses these indices to determine weak and strong domination
between these hyperboxes in determining gaps in the Pareto
set. Before explaining the details of the gap analyzer, defi-
nitions of weak and strong domination are presented.

Consider two hyperboxes B and C, where fBmax, i
is the

maximum objective function index of hyperbox B for
the ith objective, fCmax, i

is the maximum objective function
index of hyperbox C for the ith objective, and n is the
number of objective functions.

Assuming minimization of objective functions, hyper-
box B is said to weakly dominate hyperbox C if all condi-
tions in Eqs. ~3!–~5! are satisfied.

fBmax, i
� fCmax, i

, �i � 1, . . . , n; ~3!

fBmax, i
� fCmax, i

, for at least one i; ~4!

fBmax, i
� fCmax, i

, for at least one i. ~5!

Note that if maximization of objective functions is required,
the conditions are simply inverted.

For strong domination, hyperbox B is said to strongly
dominate hyperbox C if Eq. ~6! holds true.

fBmax, i
� fCmax, i

, �i � 1, . . . , n. ~6!

Given these definitions for weak and strong domination,
the gap analyzer methodology is now presented. The gap
analyzer begins with an array representing all hyperboxes
that form the performance space and the knowledge of hyper-
boxes representing the Pareto set ~populated hyperboxes!.
There are four steps for the gap analyzer.

Step 1. Eliminate all hyperboxes that do not weakly or
strongly dominate a populated hyperbox. As seen in Fig-
ure 3, the regions shaded in gray correspond to the hyper-
boxes that do not dominate a populated or Pareto hyperbox.
By eliminating these hyperboxes, a large portion of the
performance space is eliminated from further consideration
effectively reducing the gap search space.

Step 2. Eliminate all hyperboxes from the discretized
performance space that strongly dominate the Pareto hyper-
boxes. These represent the hyperboxes that form the infea-
sible region of the performance space and lie below the
Pareto set. Figure 4 shows the dominating hyperboxes for a
two-dimensional ~2-D! problem.

Step 3. The remaining hyperboxes in the performance
space that are not populated correspond to gaps in the fron-
tier. Figure 5 shows the identification of gaps in the frontier
from the remaining hyperboxes. To identify the size of each
gap, adjacent gap hyperboxes are combined into clusters.
Clusters with the largest number of hyperboxes correspond
to the largest gaps in the frontier and are selected first for
investigation.

Step 4. Run localized MOGA within each identified and
clustered gap. The initial population of the MOGA com-
prises points from the populated hyperboxes adjacent to the
gaps. Constraints corresponding to the gap boundaries are
placed on the selectors within the MOGA, which drive the
process into the gaps and populate points. These new points
serve to fill in the gaps in the frontier, ensuring integrity in
surface fitting and feasibility assessment.

Note that the figures used in this section to illustrate the
gap analyzer algorithm are for a 2-D problem. The imple-
mentation of the gap analyzer, however, is not restricted to
2-D problems. The gap analyzer algorithm uses concepts
from multiobjective optimization that may be applied for
any number of objectives. It is inherently a numerical,
iteration-based method that navigates through the perfor-
mance space, incrementing along one objective at a time.

The gap analyzer is illustrated with the aid of the three-
objective example problem next. The initial Pareto frontier
is obtained by running a MOGA for 58 generations, result-
ing in a total evaluation of 10,000 unique designs. These
evaluations result in a Pareto frontier composed of 6829
Pareto optimal designs. A large number of designs are cho-
sen to allow for an exhaustive, but not entirely complete

Fig. 3. The elimination of nonpopulated, dominated hyperboxes. Fig. 4. The identification of nonpopulated, dominating hyperboxes.
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representation of the frontier. The overall shape of the Pareto
frontier is studied by plotting the Pareto frontier in the per-
formance space, as shown in Figure 6. The Pareto points
appear to be dispersed over the range of the frontier, as
there exist no clusters of Pareto points. As stated earlier, the
size of the discretization selected for each objective will
have a dramatic effect on the number of potential gaps iden-
tified in the frontier. For this problem, a discretization size
of 0.2 is selected for all objectives. This value is chosen to
allow for the identification of gaps that would be of a sig-
nificant size to warrant further investigation.

Table 1 lists the minimum and maximum values on the
Pareto frontier for each objective. Using this information
along with the discretization size, the performance space is
partitioned into 4831 unique hyperboxes. These correspond
to the initial set of hyperboxes representing the perfor-
mance space required initially for the gap analyzer. Each

hyperbox contains an index for its location in each objec-
tive, with index 1 corresponding to the hyperbox index clos-
est to the minimum of that objective. Next, the populated
hyperboxes must be identified. As stated in this section, a
filled hyperbox is one that has at least one Pareto frontier
design located within its bounds. Figure 7 is a plot of the
Pareto points in the discretized performance space. The axes
relate to the indices of the hyperboxes, and the points cor-
respond to the centroid of each filled hyperbox. In this fron-
tier, there are currently 250 points composing the frontier.
However, there still are 4581 hyperboxes remaining in the
performance space for the gap analyzer analysis, the results
of which are discussed next. The results for the three-
objective problem are provided for each step of the gap
analyzer.

Step 1. Execution of the gap analyzer on the discretized
performance space begins with the identification of hyper-
boxes that are not populated and dominated by Pareto points.
Of the 4581 hyperboxes to be accounted for in the perfor-
mance space, it is found that 3237 of the hyperboxes are

Fig. 5. The identification of gaps in the Pareto surface.

Fig. 6. The Pareto frontier for the three-objective problem from multiobjective genetic algorithm results.

Table 1. Maximum and minimum values on the
Pareto frontier for each objective

Objective
Min.
Value

Max.
Value

Discret.
Size

F1 0.0041 4.0243 0.2
F2 1.0007 5.1950 0.2
F3 2.0001 4.0794 0.2
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strongly dominated by Pareto points. In addition, 764 hyper-
boxes are found to be weakly dominated by the hyperboxes
containing Pareto points.

Step 2. Next, the hyperboxes that strongly dominate pop-
ulated hyperboxes are removed, as they comprise the infea-
sible region of the performance space. There are 370
hyperboxes identified in the performance space that strongly
dominate hyperboxes containing Pareto frontier points.

Step 3. This analysis leaves 230 unique hyperboxes in
the performance space that correspond to gaps in the Pareto
frontier. The breakdown of the original 4831 hyperboxes
into their separate categories is shown in Table 2. As
expected, the majority of hyperboxes in the performance
space are strongly dominated by filled hyperboxes. The num-
ber of hyperboxes needing investigation as potential gaps

~230 in this problem! relate to only 4.6% of the entire per-
formance space, greatly narrowing the region of space that
must be investigated.

Clustering of the gaps is completed by combining hyper-
boxes that are adjacent to each other in the performance
space. For this work, adjacency is defined as having an
index number a maximum of one increment away in any
objective. Also implemented in this clustering procedure is
the constraint that a cluster is stopped after it begins to
contain more than 10% of the total number of hyperboxes
identified as potential gaps ~10% of 230 hyperboxes in this
example!. This is done in order to prevent combining all
hyperboxes identified as gaps into a single cluster. Using
this constraint, 19 different clusters were identified in the
performance space. The number of hyperboxes found in
each cluster is shown in Figure 8.

Step 4. Next, instances of the MOGA are created to
attempt to place designs within the 19 clusters. As this prob-
lem is a minimization problem, the upper index along every
objective function of each cluster is used to constrain the
upper bound of each objective function. This ensures that
the MOGA will attempt to populate only the region of inter-
est as defined by each cluster. As an example, two clusters
are used in the following discussion. Clusters 1 and 4 have
been selected, and the upper bound of the indices for each
cluster is shown in Table 3. Each instance of the MOGA is
initialized and allowed to run for 1000 evaluations for the
gap clusters. This number is arbitrarily selected because the
goal of this exercise is not computational efficiency, but
instead determining if a selected gap can be filled. Gap 1 is

Fig. 7. The distribution of hyperboxes per gap cluster.

Table 2. Analysis of hyperbox type and percentage composition
in the performance space

Hyperbox Type
No. of

Hyperboxes

Perform.
Space
~%!

Filled ~Pareto! 250 5.0
Strongly dominated by filled hyperboxes 3237 67.0
Strongly dominating filled hyperboxes 370 7.6
Weakly dominated hyperboxes not adjacent

to filled hyperboxes 764 15.8
Remaining hyperboxes adjacent to filled

hyperboxes ~gaps! 230 4.6
Total 4831 100.0
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known to consist of 24 clustered hyperboxes in the perfor-
mance space, and after evaluating the feasible designs found
from the local MOGA run, two of those hyperboxes are
filled with designs. Gap 4 is composed of only two hyper-
boxes, and the separate instance of the MOGA is unable to
find any designs that would fill those hyperboxes. This data
is summarized in Table 4. The filling of gaps 1 and 4 is for
illustration purposes, and the additional points do not sig-
nificantly impact the developed Pareto frontier. This is
because for this problem, the function evaluations are cheap
and an exhaustive MOGA provides a sufficiently populated
Pareto set.

Having filled hyperboxes while studying gap 1, those
hyperboxes need to be made a part of the Pareto frontier.
Modifying Figure 7, the two black circles in the perfor-
mance space shown in Figure 9 represent the location of the

two hyperboxes filled when studying gap 1. Thus, studying
each of the gaps in this manner will provide a complete
representation of the Pareto frontier.

An important issue that arises in the Pareto set genera-
tion is determining how many points will be sufficient for
surface fitting. This is because, for the three-objective exam-
ple problem presented in this section, function evaluations
are cheap ~in terms of computational time! and it is possible
to run an exhaustive MOGA to determine the entire Pareto
set. However, as function evaluations get complicated, the
computational time required for an exhaustive MOGA rap-
idly increases. Therefore, it is necessary to determine the
minimum number of Pareto optimal points that would be
needed to effectively perform surface fitting and feasibility
assessment, which is the focus of Ferguson et al. ~2005!.

Given a sufficient set of Pareto points, the next step of
the TFM is fitting a surface and developing a mathematical
representation of the Pareto frontier. This is discussed next
in Section 3.3.

Fig. 8. A hyperbox index representation of the Pareto frontier. @A color version of this figure can be viewed online at www.
journals.cambridge.org#

Table 3. Upper bound indices for
selected clusters

Index for

Cluster F1 F2 F3

1 2 19 11
4 3 11 5

Table 4. Results of gap study

Cluster
Hyperboxes
in Cluster

Filled
Hyperboxes

1 24 2
4 2 0
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3.3. Surface fitting and validation

Once the sufficient set of Pareto optimal points has been
created, the next step is to develop a means of using it as a
constraint in determining whether a given test point is fea-
sible, feasible and Pareto optimal, or infeasible. A test point
refers to a particular combination of performance measures
that are desired from the product and specified by the mar-
keting domain. The TFM is developed for preliminary design
because it determines whether a design with performance
measures requested by marketing is even feasible in the
engineering domain. Because we are using the Pareto set as
a constraint for feasibility assessment, the Pareto frontier is
henceforth referred to as the Pareto frontier constraint. Fea-
sibility determination is accomplished by formulating the
Pareto frontier constraint as a continuous mathematical func-
tion representing the discrete points in the Pareto set. It is
known that for any given point in the performance space, a
test point is feasible if it lies above this frontier constraint
~assuming minimization of all objectives!; it is feasible and
Pareto optimal if it lies on the frontier constraint; and it is
infeasible if it lies below the frontier constraint.

The region below the frontier constraint is said to be
infeasible because the multiobjective nature of the problem
does not let the region to be populated. It is important to
note that for any multiobjective problem, the Pareto set is
the best possible solution set, as mentioned previously, and
no design can exist beyond the region constrained by this
set. Given the mathematical representation of the Pareto
frontier constraint and a single test point, it is possible to
determine if the point is feasible with respect to the objec-
tives and system constraints within the engineering domain.

In addition, it is noted that because the analyses are per-
formed by a black box, the system constraints are not directly
available for evaluation. Figure 10 depicts the problem state-
ment in two dimensions. As mentioned previously, one side
of the Pareto frontier in Figure 10 is hashed to represent the
infeasible region of the performance space.

To generate a mathematical representation of the frontier
constraint, different model forms are used as bases for fit-
ting the Pareto set to continuous functions against which
feasibility of new designs can be tested. The two models
investigated in this work are the following:

a. Unconstrained quadratic function: a second-order equa-
tion with no interaction terms is used as the basis func-

Fig. 9. Filled hyperboxes from the gap 1 study.

Fig. 10. The identification of potential points for feasibility testing.
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tion for fitting the Pareto points. The generalized equa-
tion for this model is shown in Eq. ~7!.

a0 � (
i�1

n�1

ai fi � (
i�1

n�1

bi fi
2 � fn , ~7!

in which fi represents the ith objective in our multi-
objective performance space. The coefficients ao, ai ,
and bi are determined using the method of least squares
with no side constraints on them.

b. Constrained quadratic function: with no side con-
straints in place, the representation of the frontier con-
straint developed using Eq. ~7! may not necessarily
exhibit the inverse relationships between objectives
inherent in the definition of Pareto optimality. The
Pareto function could also “fold over” upon itself
within the bounds of the objectives, causing some fea-
sible design points to lie below the representation of
the Pareto frontier in the infeasible region. To prevent
this from occurring, the coefficients in Eq. ~7! are
determined using the method of least squares but with
additional side constraints imposed on the coefficient
values. If the coefficients are constrained such that
the surface always has a nonpositive gradient, it will
necessarily exhibit inverse relationships between objec-
tives and the folding over of the surface will also be
prevented. The generalized partial gradient for the ith
objective is given in Eq. ~8!.

]fn

]fi
� ai � 2bi fi . ~8!

When all objectives are being minimized, the slope of
the Pareto set is always negative. Therefore, the par-
tial derivatives of Eq. ~8! need to be negative, as shown
in Eq. ~9!.

]fn

]fi
� ai � 2bi fi � 0. ~9!

Further, let fi be normalized between 0 and 1, with 0
being the most desired value and 1 being the least
desired objective value ~because minimization of all
objectives is sought!. The largest ~worst case! value
that ]fn0]fi can take is ai � 2bi . Hence, it is sufficient
to ensure that these worst case values are less than or
equal to zero.

Therefore, this model may be expressed mathematically
as given in Eq. ~10!.

a0 � (
i�1

n�1

ai fi � (
i�1

n�1

bi fi
2 � fn ,

ai � 2bi � 0 i � 1, . . . , n. ~10!

Once again, the method of least squares is used to deter-
mine the value of the coefficients. Of the two surface-
fitting models described in this section, the one with the
higher R2 value is used to represent the Pareto set.

Before discussing how the mathematical representation
of the Pareto set is used for feasibility assessment, results
of surface fitting for the three-objective example problem
are presented.

Using the Pareto set generated by the MOGA, the two
methods presented in this section are applied to determine
mathematical expressions of the Pareto surface for the three-
objective problem. For both cases, a least-squares regres-
sion was applied to the data to develop the coefficients of
the polynomial surface in MATLAB. For the constrained
surface, the optimization toolbox within MATLAB was also
used to determine the coefficients while handling the con-
straints placed upon the model. The R2 values for the two
different models are given in Table 5.

As seen in Table 5, the unconstrained quadratic model
exhibits substantially less fitting error than the constrained
quadratic model. This result is as expected due to the con-
straints imposed on the allowable values of the coefficients.
All Pareto sets are required to have nonpositive gradients
because the objective functions forming the Pareto frontier
are assumed to be minimized, and are competing against
each other. Because the Pareto set for this problem has a
non positive gradient as seen in Figure 6, and the con-
strained model provides a low fit, the unconstrained model
is used for this example. In addition, for problems with
Pareto sets known to having nonpositive gradients, using a
constrained model would be unnecessary.

The coefficients of the unconstrained surface of Eq. ~7!
are given in Eq. ~11!.

a0 � 1.47922, b1 � 12.36493,

a1 � �2.87069, b2 � 2.52139,

a2 � �2.96181. ~11!

Thus, a mathematical representation of the Pareto frontier
is obtained. The final step of the TFM is to use this surface
for feasibility assessment. This is discussed in the next
section.

Table 5. R2 values for Pareto surface
models

Pareto Surface Model R2

Unconstrained quadratic @Eq. ~7!# 0.891
Constrained quadratic @Eq. ~10!# 0.376
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3.4. Feasibility assessment tool

The feasibility of a proposed vehicle is determined based
on the geometric location of the test point relative to the
Pareto frontier constraint and utopia point. The steps of the
method, termed the ray method, are as follows:

1. The equation of the line joining the utopia point and
the candidate test point is generated. The vector form
of an n-dimensional equation is given in Eq. ~12!.

Tr � r0 � t Ah, ~12!

where Tr is the N-dimensional variable vector, r0 is the
N-dimensional point ~corresponding to either the uto-
pia point or the test point!, Th is the slope vector ~deter-
mined using the utopia and test point!, and t is the
variable parameter ~representing a single degree of
freedom!.
Consider a design point ~P !, which is represented as

P � ~ f10, f20, f30, . . . , fn0 !,

and the utopia point ~U ! of the performance space
~assuming minimization of all objectives is desired!,
which is given as

U � ~ f1min, f2min, f3min, . . . , fn min!.

Then, the parametric form of Eq. ~12! is given as
Eq. ~13!:

f1 � f10 � t~ f1min � f10 !,

f2 � f20 � t~ f2min � f20 !,

f3 � f30 � t~ f3min � f30 !. ~13!

Equation ~13! is essentially the straight line equation
in n dimensions, with t representing the single degree
of freedom of a straight line.

2. Next, the point of intersection of the generated line
and the Pareto frontier constraint is determined. To do
so, Eq. ~13! is substituted into either Eqs. ~7! or ~10!
~depending on the model used!. This yields one equa-
tion with the single unknown t.

3. The equation determined in step 2 is solved for t. The
determined value of t is substituted into Eq. ~13!, pro-
ducing a single solution that is the point of intersec-
tion of the line joining the utopia point and the test
point with the Pareto frontier constraint @Eqs. ~7! or
~10!# .

4. Finally, the distances from the utopia point to the inter-
section point and from the utopia point to the test

point are evaluated. There are three possible cases
that could occur depending upon this distance.

• If the distance from the utopia point to the point of
intersection is greater than the distance from the
utopia point to the test point, then the test point is
infeasible ~below the Pareto frontier constraint!.
This is shown graphically using a 2-D example in
Figure 11.

• If the distance from the utopia point to the point of
intersection is less than the distance from the uto-
pia point to the test point, then the test point is
feasible and dominated by the Pareto set ~above the
Pareto frontier constraint!. This implies that the test
point is indeed feasible, but technically not as supe-
rior as it could be. This is shown for a 2-D example
in Figure 12.

• If the distance from the utopia point to the point of
intersection is equal to the distance from the utopia
point to the test point, then the test point is Pareto
optimal. This implies that the test point is at the
current limit of performance and is a potentially
superior design.

The developed feasibility assessment methodology is illus-
trated for the three-objective problem next. In this paper the
process of evaluating feasibility is illustrated using perfor-
mance values determined from the nature of the perfor-
mance space. Because the entire performance space is
known, data points from the regions that are known to be
feasible and infeasible are generated and used in the code
developed to determine feasibility. Note that when generat-
ing this data, only the objective function values are pro-
vided with no design variable information. Determining the
corresponding design variable values once a set of perfor-
mance measures are determined to be feasible is an area of
ongoing work and the methods developed for this are pre-
sented in Ferguson et al. ~2005!. Using this data set serves
two purposes: not only does it illustrate the feasibility assess-

Fig. 11. Infeasible point identification using the ray method.
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ment process, it also provides insight into the validity of the
model. The results of applying the ray method to test for
feasibility for the unconstrained function representation of
the Pareto frontier for the case study problem are shown in
Table 6.

Looking closely at the results shown in Table 6, test
points 1 and 2 lie above the Pareto set of points in the
performance space resulting in t values less than 1, thus
entitling them feasible. The third test point is out of bounds,
because the performance measure values are better than the
utopia point and the t value is negative, implying no inter-
section. Test point 4 is said to be feasible, although based
on the distance measures, the point lies precisely on the
Pareto set. This is also validated from the t value of 1. The
computational implementation of this method calls this point
feasible as opposed to Pareto optimal due to numerical error.
However, because the feasibility assessment tool is used to
only determine if a point is feasible from the engineering
domain, calling test point 4 feasible is sufficient. Finally,
test point 5 is said to be infeasible because it lies below the
Pareto set of points and has a t value greater than 1. The
performance values shown in Table 6 are plotted along with
the Pareto set of points and are shown in Figure 13. Thus, it
is seen that the feasibility assessment tool behaves exactly
as it is expected to for the three-objective case study problem.

In concluding this section, it is seen that in three dimen-
sions, the application of the feasibility test is trivial. Deal-

ing with a three-dimensional performance space allows for
easy visualization and the feasibility of a test point can
clearly be seen. However, when dealing with problems of
greater than three objectives, using visualization tech-
niques no longer becomes a simple task. Application of the
ray method allows for quick and efficient testing of numer-
ous combinations of desired objective values with very lit-
tle computational expense. To demonstrate this for the GM
problem, feasibility is tested using specifications from 78
late-model sedans. This problem consists of five-objective
functions, 10 design variables, and three constraints. Because
of the large number of dimensions in this problem, the sur-
face that is created is not only difficult to understand, but
almost impossible to visually use when determining the
feasibility of a given test point. The next section describes
the application of the TFM to the GM problem, which was
the original motivation for this work.

4. RESULTS FOR GM PROBLEM

In this section, the developed TFM is applied to the GM
problem. Section 4.1 formulates the problem, Section 4.2
provides results from the gap analyzer, Section 4.3 describes
the results from fitting a surface to the Pareto set of points,
and finally, Section 4.4 provides the results of feasibility
assessment of 78 benchmark cars determined using the devel-
oped Pareto frontier constraint.

4.1. Problem formulation

For this study, a multidisciplinary vehicle design frame-
work developed within the GM R&D Center is used to
determine the values of the objectives for a vehicle design
given a vector of design variables. The design variables
used were a combination of 10 high-level vehicle geomet-
ric parameters and discrete design configuration choices.
The objectives were five vehicle attributes from several
engineering disciplines such as powertrain performance and
occupant packaging. The Pareto optimal data points are
obtained from the MOGA. This system of 10 design vari-
ables and five objectives forms the black box analysis rou-
tine. Although the details of this routine are not paramount
to this paper, more technical details can be found in Bennett
et al. ~1995!. In the next section, the gap analyzer method-
ology introduced in Section 3.2 is used to study the gaps in
this example problem.

4.2. Gap analyzer results

The final population produced by the MOGA initially applied
to a system does not necessarily guarantee a complete Pareto
set. As discussed in Section 3.2, there exist the possibilities
of gaps, or discontinuities, within the frontier that could
affect the fidelity of the representation of the Pareto fron-
tier. This can be seen in the 2-D projection of the Pareto set
generated in this project shown in Figure 14.

Fig. 12. Feasible point identification using the ray method.

Table 6. Feasibility results for test points

Number F1 F2 F3 t
Feasibility

Results

1 4.0 5.0 4.0 0.2759 Feasible
2 3.0 3.0 3.0 0.4704 Feasible
3 0.0 0.0 0.0 �10.68 Out of bounds
4 1.1059 2.1044 2.5518 1.0 Feasible
5 1.0 2.0 2.2 1.2994 Infeasible
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From Figure 14, it can be seen that for two of the objec-
tives the Pareto frontier is not a smooth curve, but instead is
composed of clusters of Pareto optimal points. The objec-
tives are referred to as objective A and objective B, because
the actual objective names are confidential information.
Analysis of these points with the gap analyzer developed in
this work identifies the regions between the clusters as poten-
tial gaps in the Pareto frontier. However, the objectives plot-

ted in Figure 14 are functions of the type of powertrain,
which is a discrete design variable. The discrete design vari-
able results in a Pareto surface that is discontinuous. That
is, the Pareto surface is comprised of both clustered and
nonclustered regions ~each cluster corresponds to an indi-
vidual powertrain type!. The gap analyzer operates in the
performance space and correctly identifies these nonpopu-
lated regions as gaps. In addition, the gap analyzer does not

Fig. 13. The feasibility of the test points in the performance space.

Fig. 14. The results of the gap analysis study for the GM problem.
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find any gaps within the clustered regions of the Pareto
frontier. This is because an exhaustive MOGA is used for
populating the Pareto surface. Because there cannot exist
any points between the clusters ~due to the discrete design
variable! and there exist no gaps within the clustered regions,
it is concluded that no gaps that can be filled exist. In the
next section, it is assumed that a continuous curve can be
used to fit the Pareto points. It is acknowledged that this
assumption might not be valid at all times because it is
already known that the Pareto set is not a continuous curve.
However, developing a surface representation of a mixed
discrete-continuous data set is outside the scope of this work,
and is a topic for future research. Section 4.3 presents the
results of fitting a continuous curve to the Pareto set of
points.

4.3. Surface fitting results

Using the Pareto set generated by the MOGA, the two meth-
ods presented in Section 3.3 are applied to determine math-
ematical expressions of the Pareto surface. The unconstrained
quadratic model with R2 � 0.842 exhibits substantially less
fitting error than the constrained quadratic model with R2 �
0.672. This result is as expected because of the constraints
imposed on the allowable values of the coefficients. The
coefficients corresponding to the fi term, namely aj are all

nonpositive based on the second constraint. In this applica-
tion, the side constraints applied to the constrained qua-
dratic model are active for two of the five linear terms
included in the model. It is noteworthy that although the
constrained model has a lower R2 value, it represents the
strictly nonpositive gradient region of the Pareto surface.

Having R2 values from both surfaces, the next step is to
examine the results for residuals from the Pareto frontier
fitting process. This examination is performed for the con-
strained quadratic model. These results are obtained using
the optimization toolbox in MATLAB. Optimization is used
to ensure the feasibility of the coefficient values with respect
to the constraints specified in Eq. ~10!.

As shown in Figure 15, it appears that there are at least
two distinct, discrete sections of the Pareto frontier repre-
sented by the quadratic response surface. The largest sec-
tion ~section with the most points! appears to have a normal
distribution centered on zero. There is also another small
section with a mean less than zero.

These results support our previous observation from appli-
cation of the gap analyzer that there do indeed seem to be
gaps in the Pareto frontier in which no feasible points exist.
As discussed earlier, these sections seem to be a function of
the discrete design configuration variables included in this
problem. When different design configuration settings are
selected, it appears to introduce breaks in the Pareto sur-

Fig. 15. A histogram of the constrained residuals.
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face. Investigation of the relative merits of fitting separate
response surfaces to each distinct section of the Pareto fron-
tier versus representing the entire performance space with a
single response surface is an area of future research. In the
next section, the feasibility assessment tool described in
Section 3.4 is used to determine the feasibility of some
existing passenger vehicles against the two Pareto surfaces
generated in this section.

4.4. Feasibility assessment results

Once the expressions for the Pareto surfaces are generated,
they may be used to evaluate new sets of objective func-
tions for feasibility. Typically, these sets would be desired
combinations of objectives specified by marketing. How-
ever, in this paper the process of evaluating feasibility is
illustrated using specifications from 78 late-model sedans.
Using data from production vehicles serves two purposes:
not only does it illustrate the feasibility assessment process,
it also provides insight into the validity of the model. When
evaluating data from production vehicles, the expected results
would be that some vehicles fall well within the feasible
region, some vehicles ~most likely the recently introduced
vehicles! will lie very close to the Pareto frontier con-
straint, and no vehicles will fall well within the infeasible
region. Observation of this type of result suggests that the
Pareto frontier constraint truly represents the efficient fron-
tier of vehicle design. On the other hand, if production vehi-
cles are observed to be within the infeasible region or if all
of the production vehicles are observed to be well within
the feasible region, then it is very likely that the Pareto
frontier constraint generated using the black box system
does not truly represent the efficient frontier for vehicle
design, and adjustments should therefore be made to better
correlate the analytical results with the observations of pro-
duction vehicles.

The results of applying the ray method to test for feasi-
bility for the two representations of the Pareto frontier are
shown in Table 7. Of the vehicles failing the feasibility test,
17 of them failed because they have a better value in at least
one objective than the best value found in the Pareto set. In
each case, this was because the vehicles employed technol-
ogies that were beyond the scope of the multidisciplinary
analysis system used to generate this Pareto surface. This is

not only an expected result, but also an encouraging one
because it demonstrates the consistency of the TFM: vehi-
cles employing technologies within the scope of the under-
lying black box analysis system pass the feasibility test as
expected whereas those employing technologies outside the
bounds of the underlying analysis system fail the feasibility
test, which was also expected.

The other infeasible vehicles ~two for the unconstrained
surface and one for the constrained surface! were found
because they each employed a 1.8-L engine, which was not
modeled in the black box vehicle model. The smallest engine
modeled in the analysis model was a 2.2-L engine. These
cars, therefore, have a better fuel economy than what the
model could predict but comparable values for the other
objectives, and hence, end up below the frontier constraint.
This information can be used by engineers to update the
vehicle model by including smaller engines in order to get a
more accurate representation of the bounds of current vehi-
cle performance.

The difference in the number of feasible cars using the
different surfaces is due to fidelity of the surface fit. Vehi-
cles very close to the frontier could be deemed feasible
using one method and infeasible using another simply based
on precisely how the regression surface passes through the
data points.

Thus, in this section, we determined a mathematical rep-
resentation of the Pareto surface, used it as a constraint to
assess the feasibility of 78 existing vehicle designs, and
analyzed the reasons for infeasibility of the benchmark vehi-
cles. In the next section, we provide final conclusions to
this paper and cite some avenues for future work.

5. CONCLUSIONS AND FUTURE WORK

In this work, we have successfully developed an approach
to determine whether or not a given set of objective func-
tions, actual or hypothetical, is feasible with respect to a
Pareto frontier obtained from a multiobjective analytical
vehicle model. The Pareto frontier serves as a constraint in
the determination of the engineering feasibility of these
desired performance measures. This method can be used to
effectively map the performance limits for a set of avail-
able technologies and to integrate gap analysis, meta-
modeling, and feasibility assessment algorithms to assess
the feasibility of a vector of vehicle objective functions.
By running a coarse MOGA on the entire problem and
using the gap analyzer, a computationally efficient sam-
pling of the performance space can result in a high fidelity
representation of the Pareto set. Application of the approach
using benchmarking data from 78 late-model sedans indi-
cates that at least 17 of them are not feasible in at least
one performance attribute given the vehicle technologies
considered in this project. These methods and tools pro-
vide vehicle engineers with critical information that allows
them to define product specifications while maintaining

Table 7. Feasibility results of GM
problem

No. of
Feasible
Vehicles

Unconstrained surface 59 of 78
Constrained surface 60 of 78
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high confidence for successful realization of the vehicle’s
design.

In this paper, the TFM is built around a Pareto frontier
obtained from the current technology developed. In addi-
tion, the Pareto set is unique to only a family of products.
For example, in this paper, the sedan class of automobiles is
only being considered. An important issue is related to deter-
mining feasibility with new technological developments,
because the Pareto frontier would change as new objectives
or new bounds to current objectives are considered in the
product design process. As part of future work, it is hypoth-
esized that for a single class of products, and for minor
technological advancements where the objectives remain
the same, a “fuzzy” Pareto set can be utilized. A fuzzy
Pareto set is one where the current frontier is shifted toward
improvement of the improved objectives by shifting the
bounds and curvature of the frontier. For major technical
advancements, however, an entirely new frontier, and hence
TFM would need to be developed. For example, a minor
technological advancement could be an improvement in
engine performance, thereby improving fuel economy. This
advancement can be easily incorporated into the current
TFM by shifting the Pareto frontier. However, a major tech-
nology improvement such as hydrogen fuel cells makes the
notion of fuel economy as a design objective totally irrele-
vant. For such an automobile, an entirely new TFM would
need to be set up.

Future work in this area also includes expanding the capa-
bilities of the analytical model to include additional vehicle
attributes as well as the additional degrees of design free-
dom required to support them. This expansion may require
the application of parallel processing techniques and the
development of a more sophisticated MOGA to reduce
the time necessary for sampling of the design space. As the
scope of the performance space expands, the gap analyzer
will play an increasingly important role in maintaining a
high level of efficiency when populating the Pareto set by
reducing the overall number of evaluations and generations
required by the MOGA. Additional information about the
relationships between performance space and design space
in the neighborhood of a given test point could also provide
additional benefit when considering trade-offs in this multi-
objective preliminary design process.
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