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A multi-mode approximation to wave scattering
by ice sheets of varying thickness
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(Received 19 June 2006 and in revised form 8 December 2006)

The problem of linear wave scattering by an ice sheet of variable thickness floating
on water of variable quiescent depth is considered by applying the Rayleigh–Ritz
method in conjunction with a variational principle. By using a multi-mode expansion
to approximate the velocity potential that represents the fluid motion, Porter & Porter
(J. Fluid Mech. vol. 509, 2004, p. 145) is extended and the solution of the problem
may be obtained to any desired accuracy. Explicit solution methods are formulated
for waves that are obliquely incident on two-dimensional geometry, comparisons are
made with existing work and a range of new examples that includes both total and
partial ice-cover is considered.

1. Introduction
The ability to determine the scattering of water waves by a floating ice sheet of

varying thickness is both of physical importance and mathematically difficult. The
energy carried by water waves is capable of travelling for long distances through an
ice-covered region and is a factor in the fracturing of the ice. A thorough account of
the mathematical and physical phenomena surrounding this topic may be found in
Squire et al. (1995).

In this paper, the principal assumptions made are that linearized theory applies
and that thin-elastic-plate theory can be used to model the ice-sheet, which supposes
that it can be replaced by a homogeneous elastic plate whose physical parameters are
considered known. This idealization of the ice includes the key property of flexure,
but it ignores many others. Although, in the case of a floe of a semi-infinite extent,
Balmforth & Craster (1999) showed that factors inherent in a model of ‘non-thin’
elastic plates, such as energy dissipation, friction and compression, are limited in their
effect, it does not necessarily follow that a factor such as rotation, which is neglected
in the thin-elastic-plate model, would not be significant in the case of a finite floe. In
this work, we will retain the thin-elastic-plate model for simplicity; however, a model
of ‘non-thin’ plates could be approached by a method similar to that which is outlined
in this work. The question of the homogeneity of the ice also arises, particularly in
respect of the stiffness of ice sheets containing keels or sails (downwards or upwards
bulges) but, nonetheless, thin-plate theory is widely accepted as a good approximation.

The motion of the ‘thin’ elastic-plate is then taken in conjunction with the fluid
beneath it and the coupled motion considered under linear and time harmonic
conditions. The linear motion of a thin plate resting on fluid has also been investigated
from the different perspective of VLFSs (very large floating structures), with one
application to a proposed offshore runway (see, for example, Watanabe, Utsunomiya
& Wang 2004).
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An extensive catalogue of literature exists on the analysis of this form of wave
scattering, with many different models and refinements possible. The assumption of
uniformity of the plate’s properties allows its effect to be confined to the equilibrium
interface with the fluid, thus imposing a fourth-order condition to be satisfied at
this fluid boundary. This is the source of the most significant difficulty that arises,
in comparison to ordinary free-surface wave scattering. For this reason, many of the
investigations that have been carried out have assumed constant thickness of the
plate and a physically unrealistic zero draught, as the vertical fluid structure can then
easily be analysed. However, the addition of submerged edges creates an extra source
of scattering that may be of significance.

Currently, the analysis of two-dimensional problems has advanced to a stage at
which restricted variations in the ice and bed geometries may be dealt with. Both
Wang & Meylan (2002) and Belibassakis & Athanassoulis (2005) have allowed for
finite length, zero draught plates on an otherwise free fluid surface of infinite extent
over a bed that may vary its quiescent depth beneath the ice. Wang & Meylan (2002)
obtain a solution by reducing the problem to a finite domain enclosed by a boundary
(including the varying part of the bed and the lower surface of the plate) on which
the normal derivative of the potential is expressed as a function of the potential
itself. The problem is then solved numerically using a boundary-element method.
Belibassakis & Athanassoulis (2005), on the other hand, use a variational principle
and express the solution as an infinite series in the vertical eigenmodes, but add a
further mode to allow for a non-horizontal bed. The resulting set of equations is
then truncated and solved. Williams & Squire (2004) gave a solution procedure for
an infinite fluid domain of constant depth, with a surface that is fully covered by
ice whose upper surface is permitted to vary over a finite interval, although a zero
draught is maintained. Their method of solution used a Green’s function to produce
an integral equation along the underside of the plate on the finite interval over which
the upper surface varies, and this was solved numerically.

The study of three-dimensional problems has, thus far, been restricted to constant
fluid depth and plate thickness with zero draught, and with simplifying assumptions
about the horizontal shape of the ice. The case of a solitary circular plate resting
on an infinite fluid surface with infinite depth was solved by Meylan & Squire
(1996) by expressing the potential for the fluid motion as an integral posed on the
underside of the plate, with conditions coupling it to the vertical displacement of
the plate, and expanding the unknowns in terms of the horizontal eigenfunctions of
the plate taken in isolation. Meylan (2002) extended this procedure to more general
shapes of plate, although this extension requires the numerical determination of the
required eigenfunction–eigenvalue pairs. Using the theory of solitary plates, Peter
& Meylan (2004) have produced a study of the interaction of a finite number of
plates, by implementing the ideas of Kagemoto & Yue (1986). By using a modal
matching method, Peter, Meylan & Chung (2004) investigated the solitary circular
plate problem over a finite fluid depth.

In a series of papers, Evans & Porter (2003, 2006) and Porter (2004) have examined
the problem of cracks in ice sheets, determining the scattering properties of flexural–
gravity waves by an arbitrary number of infinite or finite straight-line cracks in an
otherwise uniform plate over a finite flat bed. This is achieved by deriving pairs of
‘source functions’ that act along the crack.

Other material on the general topic of water wave scattering by an elastic plate
may be found in Balmforth & Craster (1999) and Squire et al. (1995).

In this paper, the work of Porter & Porter (2004, hereinafter referred to as PP), which
is valid for ice and bed shapes restricted only by a requirement of slow variations, is
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extended to remove this restriction. The addition of undulating topography is made
with no extra algebraic or computational cost and its inclusion ensures that full
generality of the geometry is allowed for in the model. Fundamental to this work
was the derivation of a variational principle stating that the determination of the
stationary point of a given functional is equivalent to solving the governing equations
for linear scattering, in a three-dimensional setting and with full ice coverage. These
equations include the conditions to be satisfied at corners in the ice and bed, as
well as Laplace’s equation in the fluid domain and boundary conditions at the bed
and the water–ice interface. A further functional that allowed for partial ice covering
was also developed. Seeking a stationary point of the functionals is reduced to a
manageable level by an application of a form of the Rayleigh–Ritz method, in which
the vertical fluid motion is restricted to a finite-dimensional space. By this means, the
vertical spatial coordinate is removed by integration, a process which parallels
the averaging that leads to thin-plate theory and gives an overall consistency to the
model. The resulting simplified problem, involving only the horizontal coordinates,
generates an approximation to the full linear solution. It is noted that the evaluation
of particular quantities in PP overlooked certain terms and this is amended in this
paper.

The vertical dependence used by PP was restricted to a single mode corresponding
to the vertical eigenfunction that supports propagating waves when no variations in
the ice thickness and bed topography are present. This idea extends the modified
mild-slope approximation of Chamberlain & Porter (1995) for free-surface flows, and
requires slow variations in the geometry. A numerical procedure was given by PP
only in the case of two-dimensional motion.

The simple single-mode approximation of PP, with its unknown level of accuracy,
can be extended to a multi-mode approximation, by including a finite number of
the infinite set of eigenfunctions that support evanescent waves in the same way
that the single mode supports propagating waves, and this procedure is carried out
in the present work. The process of obtaining an approximation to the full linear
solution to any desired degree of accuracy follows, with the variational principle
generating increasingly improved approximations as more evanescent modes are
included. For free-surface flows, the multi-mode approximation has been reappraised
by Chamberlain & Porter (2006) in the light of the additional accuracy gained
through the inclusion of a ‘bed-mode’, which was first proposed by Belibassakis &
Athanassoulis (1999).

After summarizing the work covered by PP in § 2, including setting out the linear
equations of motion in three-dimensions, with varying ice thickness and bed shapes,
and reviewing the underlying theory, the full set of equations that govern the multi-
mode approximation are determined in § 3. In § 4, we turn to the specific choice of
modes suggested by PP and find that the evanescent modes have properties which
compromise their use in some circumstances. An alternative expansion is suggested
for situations in which the evanescent modes are not valid. In § § 5–6, the multi-mode
approximation is applied for two-dimensional geometry, but with obliquely incident
waves; an analytic solution is given for uniform geometry, and this is used to create a
numerical solution procedure for finite intervals of varying geometry surrounded by
semi-infinite uniform states, either ice-covered or free-surface. Results are presented
in § 7 to compare with the full linear solutions of previous authors, which act as a
check on accuracy, before geometrical configurations which could not be investigated
with previous methods are examined. Although the numerical work presented in this
paper covers only a selection of two-dimensional situations, by developing theory that
supports the approximation in a three-dimensional setting, we retain full generality of
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Figure 1. Two-dimensional cross-section of the geometry.

the model. This means that we will be able to deal with more complicated geometries
(to appear in future work) without the need to redevelop the theory.

2. Preliminaries
We begin by stating the boundary-value problem derived by PP.

2.1. The boundary-value problem

A typical two-dimensional cross-section (y = constant) of the geometry is shown in
figure 1. Fluid lies above a fixed impermeable bed located at z = −h(x, y), where
(x, y, z) are Cartesian coordinates with z directed vertically upwards and z = 0
coinciding with the equilibrium surface of the fluid in the absence of ice. Initially, we
consider the fluid surface to be wholly covered by ice, whose lower surface is located
at z = − d(x, y), and whose thickness is given by the function D(x, y).

The fluid is assumed to be inviscid, incompressible and homogeneous, and in
irrotational motion described by a velocity potential Φ̂ = Φ̂(x, y, z, t). Periodic time-
dependence of the form e−iωt , for given angular frequency ω, is assumed, so that the
reduced velocity potential φ, such that Φ̂(x, y, z, t)=Re{(g/iω)φ(x, y, z) e−iωt} where
g is the acceleration due to gravity, can be introduced. The fluid motion induces
periodic flexural oscillations in the ice sheet, and the position of its lower surface at
time t can be written as z = −d(x, y)+η(x, y) e−iωt . The amplitudes of the oscillations
are assumed to be sufficiently small for linear theory to apply. Following PP, the
reduced velocity potential φ and ice sheet elevation η then satisfy

∇2φ = 0 (−h < z < −d), (2.1a)

∂zφ + ∇hh · ∇hφ = 0 (z = −h), (2.1b)

(1 − α)η + L η − φ = 0, ∇hd · ∇hφ + ∂zφ = κη (z = −d), (2.1c)

where

L η ≡ ∇2
h

(
β∇2

hη
)

− (1 − ν)
{(

∂2
xβ
)(

∂2
yη
)

+
(
∂2

yβ
)(

∂2
xη
)

− 2(∂x∂yβ)(∂x∂yη)
}
,

∇ = (∂x, ∂y, ∂z), ∇h = (∂x, ∂y, 0),

and

α(x, y) = κρiD(x, y)/ρw, β(x, y) = ED3(x, y)/12ρwg(1 − ν2).

The notation ∂x = ∂/∂x, and so on, is used throughout.
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Here κ = ω2/g, ρw is the density of the fluid, ρi is the density of the ice, ν is Poisson’s
ratio, and E is Young’s modulus. Unless otherwise stated, the parameters take the
values E = 5 × 109 Pa, ρi = 922.5 kg m−3, ρw = 1025 kg m−3, ν =0.3 and g =9.81 m s−2

(see, for example, Squire et al. 1995).
The mathematical description of the problem also requires some lateral conditions.

In § 5, we will define radiation conditions for the two-dimensional problems for which
we provide a numerical formulation in § 6 and results in § 7. However, as our initial
concern is with the vertical structure of the motion, specific lateral conditions will not
concern us for the present.

2.2. Approximation of the vertical structure

In order to solve the problem outlined in § 2.1, a Rayleigh–Ritz approximation is
introduced so that the vertical structure of the motion is restricted to lie in a particular
finite-dimensional set of functions. Taken in conjunction with a variational principle
that will be described in § 2.3, this procedure provides a hierarchy of approximations
to the solution of the boundary-value problem (2.1a–c) as the finite-dimensional
set of functions is expanded. The functions that comprise the basis of this set are
described as vertical modes, and the resulting approximation is termed a multi-mode
approximation (MMA). This process provides a natural extension to the single-mode
approximation of PP, in which the solitary mode is based on the vertical mode of
the corresponding uniform geometry problem that supports wave propagation in the
horizontal direction (see § 4 below). Thus, the PP approximation is

φ(x, y, z) ≈ ψ0(x, y, z) = ϕ0(x, y) cosh k0(z + h),

where k0 = k0(x, y) is the unique positive, real root of the dispersion relation

(1 − α + βk4)k tanh kH = κ, (2.2)

with H (x, y) = h(x, y) − d(x, y) (see figure 1) appearing for brevity.
The single-mode approximation of PP is based on an underlying assumption of

the ice thickness and the bed topography varying slowly, and parallels the modified
mild-slope approximation for free-surface fluid motions derived by Chamberlain &
Porter (1995). Our objective is to extend the single-mode approximation to a multi-
mode approximation, so that the full linear solution of the boundary-value problem
may be obtained to any required degree of accuracy by taking a suitably large finite
dimensional approximation in the vertical coordinate. This process corresponds to the
extension to multiple modes for the free-surface problem described in, for example,
Porter & Staziker (1995).

We introduce the MMA of dimension N + 1 defined by

φ(x, y, z) ≈ ψN (x, y, z) =

N∑
i=0

ϕi(x, y)wi(x, y, z), (2.3)

where the natural modes are given by

wi(x, y, z) = cosh ki(z + h), (2.4)

and the ki are roots of the dispersion relation (2.2), taken in some logical order
that will be described later. These roots may be regarded as functions of either the
horizontal Cartesian coordinates x and y or the geometrical variables D, h and d .
An alternative notation wi(x, y, z) ≡ Wi(D, h, d, z) will be used, when convenient,
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to make explicit the dependence of the roots (and hence the vertical modes) on
the geometrical variables. In intervals of uniform bed elevation and ice depth, the
extra modes (i = 1, . . . , N) support waves which decay in the horizontal direction.
To complete the MMA it is necessary to calculate the amplitude functions ϕi(x, y)
(i = 0, . . . , N).

2.3. Variational principle

Our approximation (2.3) has created the possibility of the inclusion of complex modes,
so an amended version of the functional used in PP is required. We introduce the
simply connected and bounded domain Ω in the plane z = 0, with boundary δΩ , and
suppose that the functions ψ = ψ(x, y, z) and χ =χ(x, y) are sufficiently differentiable
for what follows. A simple modification of the argument of PP then shows that the

required functional is LΩ =LΩ (ψ, χ) = 2 Re (L̃Ω (ψ, χ)), where

2L̃Ω (ψ, χ) =

∫ ∫
Ω

∫ −d

−h

(∇ψ) · (∇ ψ) dz dx dy + κ

∫ ∫
Ω

(1 − α)χχ − 2χ[ψ]z=−d dx dy

+ κ

∫ ∫
Ω

β
{(

∇2
hχ
)(

∇2
hχ
)

− 2(1 − ν)
((

∂2
xχ
)(

∂2
yχ
)

− (∂x∂yχ)(∂x∂yχ )
)}

dx dy,

with first variation δLΩ = 2 Re (δHΩ ), where

δHΩ = −
∫ ∫

Ω

∫ −d

−h

δψ(∇2ψ) dz dx dy −
∫ ∫

Ω

[δψ(∇hz · ∇hψ − ∂zψ)]−d
z=−h dx dy

+ κ

∫ ∫
Ω

{(1 − α)χ + L χ − [ψ]z=−d} δχ − χ[δψ]z=−d dx dy,

and where the variations are assumed to satisfy

δψ = 0 on δΩ × [−h, −d], δχ = δχx = δχy = 0 on δΩ. (2.5)

Hence, δLΩ = 0 at ψ = φ, χ = η for any variations δψ and δχ satisfying (2.5) if and
only if φ and η satisfy (2.1 a–c). (For details of the derivation of the original version
of this result, see PP.) The solution of (2.1 a–c) can thus be found by locating the
stationary point (φ, η) of LΩ (ψ, χ), and approximate solutions can be sought by
approximating the stationary point of LΩ .

2.3.1. Ice-free regions

If the ice only partially covers the surface of the fluid, then in ice-free regions
the boundary-value problem (2.1a–c) and the associated variational principle LΩ are
modified accordingly. Suppose that D =0 for (x, y) ∈ Ω , then the first of the ice-sheet
equations (2.1c) reduces to the condition η = [φ]z=0, and the functional LΩ can be
correspondingly amended to L

(0)
Ω (ψ) ≡ LΩ (ψ, [ψ]z=0). (On occasion, for clarity, the

superscript (0) will be used to signify a quantity associated with the free surface.) The
natural conditions of δL

(0)
Ω =0 with δψ = 0 on δΩ × [−h, 0] may then be deduced

from (2.1a–c) to be

∇2φ(0) = 0 (−h < z < 0), ∂zφ
(0) + ∇hh · ∇hφ

(0) = 0 (z = −h), ∂φ(0)
z = κφ(0) (z = 0).

As expected, these are the familiar equations describing linearized free-surface motions
(see, for example, Porter & Staziker 1995).

2.4. Jump conditions

The set of equations (2.1a–c) apply only when the surrounding physical structure is
suitably smooth. For instance, the first condition of (2.1c) requires the variation in the
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ice thickness to be twice differentiable. At isolated locations where the geometry is
not sufficiently differentiable, equivalent jump conditions replace the boundary-value
problem. In fact, these jump conditions apply at all points in the domain Ω , regardless
of whether the geometry is smooth or not and they may also be used for algebraic
convenience (see, for example, § 6.1). The jump conditions are closely related to the
interfacial conditions that are required to link ice-covered and ice-free regions.

Consider a curve Γ , say, which divides Ω into two domains Ω+ and Ω−. Assuming
again that variations vanish on the lateral boundary of Ω+ ∪ Ω−, there is a non-trivial

contribution to δ(LΩ+
+ LΩ−) on Γ , denoted by GΓ = 2 Re (G̃Γ ), where

G̃Γ =

∫
Γ

n ·
〈∫ −d

−h

δψ(∇hψ) dz + κ
(
β∇2

hχ
)
(∇hδχ ) − κδχ∇h

(
β∇2

hχ
)

− κ(1 − ν)g
〉

ds,

(2.6)
and

g =
{
β
[(

∂2
yχ
)
(∂xδχ ) − (∂x∂yχ)(∂yδχ )

]
− δχ

[
(∂xβ)

(
∂2

yχ
)

− (∂yβ)(∂x∂yχ)
]}

i

+
{
β
[(

∂2
xχ
)
(∂yδχ ) − (∂x∂yχ)(∂xδχ )

]
− δχ

[
(∂yβ)

(
∂2

xχ
)

− (∂xβ)(∂x∂yχ)
]}

j .

Here, 〈χ〉 = χ+ − χ− denotes the jump in χ across Γ , with χ± denoting the limiting
value from Ω±, s denotes arclength on Γ , n is the unit normal to Γ (oriented from Ω+

into Ω− for definiteness), and i and j are the unit vectors in the x- and y-directions,

respectively. In order that δ(LΩ+
+ LΩ−) = 0, G̃Γ is required to vanish at a stationary

point.

2.4.1. Connected ice boundary

If the domains Ω± are both completely ice-covered, then the essential conditions

〈〈ψ〉〉 = 〈χ〉 = 〈n · ∇hχ〉 = 0

are imposed, where 〈〈ψ〉〉 =ψ+ − ψ− denotes the jump across Γ × [−h, −d].
These conditions represent continuity of fluid pressure, and continuity of ice-sheet
displacement and velocity across Γ , respectively. From (2.6), we then deduce the set
of natural conditions

〈〈n · ∇hφ〉〉 = 〈Mη〉 = 〈Sη〉 = 0 (2.7)

which must hold for stationary points ψ = φ and χ = η of δ(LD+
+ LD−) = 0, where

Mη ≡ β∇2
hη − (1 − ν)β(∂2

s η + Θ ′(∂nη)),

Sη ≡ ∂n(β∇2
hη) − (1 − ν){(∂2

s η + Θ ′(∂nη))(∂nβ)

−2((∂s∂nη) − Θ ′(∂sη))(∂sβ) − β∂s((∂s∂nη) − Θ ′(∂sη))}.
Here ∂n = n · ∇h, ∂s = s · ∇h with s a unit vector tangential to Γ , and n has direction
cosines (cos Θ(s), sinΘ(s), 0) with respect to the Cartesian frame.

Finally, the derivation of (2.7) also introduces the point condition

(∂s∂nη) − Θ ′(∂sη) ≡ ∂n∂sη = 0,

which holds at the ends of Γ (see PP).
The natural conditions (2.7) ensure continuity of horizontal fluid velocity, and

bending moment and shearing stress of the ice sheet across Γ , respectively.

2.4.2. Water–ice interface

If a portion of the domain Ω is free of ice, then jump conditions between the
ice-covered and ice-free regions must be imposed at the interface. As before, we
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write Ω =Ω− ∪ Ω+, but now suppose that the region Ω− is ice-free. The contribution

along Γ to δ(L(0)
Ω−

+ LΩ+
), where as before L

(0)
Ω−

(ψ) ≡ LΩ−(ψ, [ψ]z=0), is denoted by

2Re (G̃(0)
Γ ), where

G̃
(0)
Γ =

∫
Γ

n ·
{∫ −d+

−h

δψ+(∇hψ+)dz −
∫ 0

−h

δψ
(0)

−
(
∇hψ

(0)
−
)
dz

+ κ
(
β∇2

hχ+

)
(∇hδχ+) − κ δχ+∇h

(
β∇2

hχ+

)
− κ(1 − ν)g

}
ds.

Although it is possible to derive the correct jump conditions by setting G̃
(0)
Γ =0,

with the essential condition 〈〈ψ〉〉 = 0, we will rather make a modification as it is
anticipated that this essential continuity is precluded by the jump in the natural
modes across the interface Γ , caused by the discontinuity in D in moving from free-
surface to ice-covered states (assuming that D 
= 0 at the edge of the floe). Following
PP, the problematic essential condition, 〈〈ψ〉〉 =0, which requires continuity of the
modes across Γ , is removed by the introduction of the functional

IΓ (ψ, u) =
1

2

∫
Γ

∫ −d+

−h

{(
ψ+ − ψ (0)

−
)
u +

(
ψ+ − ψ

(0)

−
)
u
}

dz ds,

where u is an auxiliary function. The functional IΓ ensures coupling of the fluid
motion between the free-surface and ice-covered states, which is lost by the removal
of 〈〈ψ〉〉 =0. Now, enforcing δ(L(0)

Ω−
+LΩ+

−IΓ ) = 0, and assuming that χ and n · (∇hχ)
are bounded at the ice-edge, results in natural conditions:

Mη+ = Sη+ = 0 (x, y ∈ Γ ),

n · ∇hφ+ = n · ∇hφ
(0)
− = u

φ+ = φ
(0)
−

}
(x, y ∈ Γ, −h < z < d+), (2.8)

and

n · ∇hφ
(0)
− = 0 (x, y ∈ Γ, −d+ < z < 0), (2.9)

to be satisfied by the stationary point. The transferral of 〈〈φ〉〉 =0 from an essential
to a natural condition ensures that a consistent natural MMA may be applied
throughout a domain of only partial ice-cover. The natural conditions that we have
derived are generalizations of the matching conditions used, for example, in the
eigenfunction matching methods employed by Fox & Squire (1994) and Peter et al.
(2004).

Slightly modified versions of IΓ may be used to deal with more general
discontinuities in the trial space, caused by discontinuities in the surrounding geometry
or otherwise. In particular, this modification will be required in § 7, where a situation
arises in which the MMA is applied over point discontinuities in the ice thickness.
It is noted, however, that the validity of all essential conditions applied should be
carefully considered in the context of the problem, wherever discontinuities exist.

For the sake of algebraic clarity, throughout § § 3–6, it will be assumed that the
only discontinuities in the geometry are caused by the edge of an ice floe.

3. The multi-mode approximation
We now examine the effect of inserting the approximation (2.3), for the reduced

velocity potential, into the variational principle introduced in § 2. In contrast, the
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displacement function is only indirectly approximated. To retain full generality, we
only assume the form of the approximation (2.3), leaving the specific choice of the
vertical modes wi until a later stage.

Substituting the expansion ψN from (2.3) into the functional LΩ and enforcing the
stationary condition δLΩ (ψN, χ) = 0 gives

−
N∑

j=0

∫ ∫
Ω

δϕj

{∫ −d

−h

wj

N∑
i=0

∇2(ϕiwi) dz + κχ[wj ]z=−d

+

[
wj

N∑
i=0

{∇hz · ∇h(ϕiwi) − ϕi(∂zwi)}
]−d

z=−h

⎫⎬⎭ dx dy

+ κ

∫ ∫
Ω

δχ

{
(1 − α)χ + L χ −

N∑
i=0

ϕi[wi]z=−d

}
dx dy = 0.

It follows that the functional LΩ (ψ, χ) is stationary with respect to variations δψ and
δχ satisfying (2.5) provided that∫ −d

−h

wj

N∑
i=0

∇2(ϕiwi) dz + κχ[wj ]z=−d +

[
wj

N∑
i=0

{∇hz · ∇h(ϕiwi) − ϕi(∂zwi)}
]−d

z=−h

= 0

(3.1)
for j = 0, . . . , N , and

(1 − α)χ + L χ −
N∑

i=0

ϕi[wi]z=−d = 0. (3.2)

Equation (3.1) may be simplified, by using the identity∫ −d

−h

wj ∇2
h(wiϕi) dz =

∫ −d

−h

wj (∇hwi) · (∇hϕi) − (∇hwj ) · (wi∇hϕi + ϕi∇hwi) dz

−
[
wj ∇hz · ∇h(wiϕi)

]−d

z=−h
+ ∇h ·

{∫ −d

−h

wjwi dz

}
∇hϕi +

{
∇h ·

∫ −d

−h

wj (∇hwi) dz

}
ϕi,

to
N∑

i=0

{∇h · (aj,i∇hϕi) + d̃j,i · (∇hϕi) + bj,iϕi} + κχ[wj ]z=−d = 0, (3.3)

where

aj,i =

∫ −d

−h

wjwi dz, d̃j,i =

∫ −d

−h

wj (∇hwi) − wi(∇hwj ) dz,

and

bj,i =

∫ −d

−h

wj

(
∂2

z wi

)
dz− [wj (∂zwi)]

−d
z=−h +∇h ·

∫ −d

−h

wj (∇hwi) dz−
∫ −d

−h

(∇hwj ) · (∇hwi) dz.

Equations (3.2) and (3.3) thus govern the MMA. For convenience, the system of
equations (3.3) will often be written as the more compact matrix equation

∇h · (A∇hΦN ) + D̃ · (∇hΦN ) + BΦN + κχC f = 0, (3.4)
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where ΦN = (ϕ0, . . . , ϕN )T , C =diag{[w0]z=−d, . . . , [wN ]z=−d}, and f =(1, . . . , 1)T ,

while Aj,i = aj−1,i−1, Bj,i = bj−1,i−1 and D̃j,i = d̃j−1,i−1 for i, j =1, . . . , N + 1. Note

that d̃ i,j = − d̃j,i and hence that d̃ i,i = 0 for real-valued modes.
For practical purposes, the coefficients can be written as

d̃j,i =
(
P

(D)
j,i − P

(D)

i,j

)
∇hD +

(
P

(h)
j,i − P

(h)

i,j

)
∇hh +

(
P

(d)
j,i − P

(d)

i,j

)
∇hd, (3.5)

where, in terms of the inner-product notation

(u, v) =

∫ −d

−h

uv dz,

we have written

P
(X)
j,i = (∂XWi, Wj ) for X = D, h, d,

and

bj,i =

∫ −d

−h

wj

(
∂2

z wi

)
dz − [wj (∂zwi)]

−d
z=−h + P

(D)
j,i ∇2

hD + P
(h)
j,i ∇2

hh + P
(d)
j,i ∇2

hd

+Q
(D,D)
j,i (∇hD)2 + Q

(h,h)
j,i (∇hh)2 + Q

(d,d)
j,i (∇hd)2

+
(
Q

(D,h)
j,i + Q

(h,D)
j,i

)
(∇hD) · (∇hh) +

(
Q

(D,d)
j,i + Q

(d,D)
j,i

)
(∇hD) · (∇hd)

+
(
Q

(d,h)
j,i + Q

(h,d)
j,i

)
(∇hd) · (∇hh), (3.6)

with

Q
(X,Y )
j,i = ∂Y (∂XWi, Wj ) − (∂Y Wi, ∂XWj ) for X, Y = D, h, d.

We note here that the evaluation of the coefficients in PP omitted certain terms in
(3.5)–(3.6) relating to d . The approximation of PP thus unwittingly created equivalence
classes of geometries, related by a shared ice thickness D(x) and fluid depth H (x).
In particular, this led to spurious results for non-constant d . The introduction of the
missing terms establishes the position of the horizontal water–ice interface d , so that
the approximation is uniquely defined by the chosen geometry.

Equations (3.2) and (3.3) only hold in regions where h, d and D are differentiable.
Where this is not the case, these equations are replaced by equivalent jump conditions.

3.1. Jump conditions at a connected ice boundary

Making the assumption that, across a contour Γ that separates the two ice-covered
domains Ω±, the ice and fluid boundaries are continuous and that the ice is connected,
the contribution to δ(LΩ− + LΩ+

) is twice the real part of

N∑
j=0

N∑
i=0

∫
Γ

〈
δϕj

∫ −d

−h

wj n · ∇h(ϕiwi) dz

〉
ds. (3.7)

Taking the essential condition

〈〈ΦN〉〉 = 0, ((x, y) ∈ Γ, z ∈ (−h, −d)), (3.8)

which implies 〈〈ψN〉〉 = 0, and setting (3.7) to zero, leads to the jump condition

〈(n · A(∇hΦN )+ + JΦN )〉 = 0, (3.9)

in which

Jm+1,n+1 =

∫ −d

−h

wmn · ∇hwn dz (m, n = 0, . . . , N).
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Notice that Jm+1,n+1 =P (D)
m,nn · ∇hD + P (h)

m,nn · ∇hh + P (D)
m,nn · ∇hd . The conditions on the

indirectly approximated vertical displacement of the ice remain as 〈Mχ〉 = 〈Sχ〉 = 0,
where the essential conditions 〈χ〉 = 〈n · ∇hχ〉 = 0 are applied.

3.2. Jump conditions at an ice–water boundary

Following the discussion of § 2.4.2, for contours Γ that define an ice–water boundary,
we drop the requirement that 〈〈ψN〉〉 =0, and instead set δ(L(0)

Ω−
+LΩ+

− IΓ ) = 0 along
Γ .

It is necessary to approximate the auxiliary function u in a manner consistent with
the MMA ψN . We write

u ≈
N∑

i=0

ui(x, y)vi(x, y, z),

where the modes vi will be left unspecified for the present.
The contribution to the first variation of the functional L

(0)
Ω−

+ LΩ+
− IΓ along Γ

of the directly approximated functions is twice the real part of

N∑
j=0

N∑
i=0

∫
Γ

{∫ −d

−h

(δϕjwj )+{n · ∇h(wiϕi)+ − uivi} − δujvj (wiϕi)+ dz

−
∫ 0

−h

(δϕjwj )
(0)
− n · (∇hwiϕi)

(0)
− dz +

∫ −d

−h

{
(δϕjwj )

(0)
− uivi + δujvj (wiϕi)

(0)
−
}

dz

}
ds.

From this, we deduce the natural conditions

(V
T
ΦN )+ = (V

T
ΦN )−, (3.10)

and

n · (A∇hΦN )± + (JΦN )± = V±u, (3.11)

where

Vj+1,i+1 =

∫ −d

−h

wjvi dz (i, j = 0, . . . , N),

and u = (u0, . . . , uN )T . It is now clear that u, which is superfluous to the final
approximation, may be eliminated from (3.11) to leave the condition

(V+)−1((n · A∇hΦN )+ + (JΦN )+) = (V−)−1(n · (A∇hΦN )− + (JΦN )−), (3.12)

where we have assumed the matrices V± to be invertible.
Basing our selection on (2.8), we choose to set the modes vi(x, y, z) =

[wi(x, y, z)](x,y)∈Γ+
for the computation of results in this paper. It is noted that

there may exist a more judicious choice. It should also be noted that this choice
differs in the N = 0 case from that of PP, who based their selection of v0 on an
average across the interface. However, this produced an approximation that could
not be expected to span the appropriate space if extended to an MMA.

The conditions on the vertical displacement again are not changed from the exact
conditions, so that Mχ+ = Sχ+ = 0 holds at Γ .
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4. Choice of approximation
The solution of the full linear problem, when D, h and d are all constant, has the

form

φ(x, y, z) =

∞∑
i=0

φi(x, y) cosh ki(z + h) (4.1)

(for details see Evans & Porter 2003). This leads us to conjecture that the finite sum

ψN (x, y, z) =

N∑
i=0

ϕi(x, y) cosh{ki(x, y)(z + h(x, y))}

will provide a good approximation to the exact solution φ in regions where all fluid
and ice boundaries are fully variable.

It is expected that a relatively small number of the most significant modes will
provide a good approximation. However, the nature of the roots ki , as D, h and d

vary, is not always conducive to such an approximation.
We remark here that we do not non-dimensionalize the variables, which would

obscure the significance of the various quantities in the ice thickness. Appropriate
non-dimensionalizations are given by other authors, for example Fox (2001) and
Williams & Squire (2004).

4.1. Roots of the dispersion relation

It has already been stated that there is only one positive real root of the dispersion
relation (2.2) and it can be shown that this root lies in the interval (0, U), where
U = max{κ coth(κ), κH −1, (αβ−1)1/4}, and it is therefore easily found numerically.

Note at this point that, for any root k of the dispersion relation, there always
exists another root −k. As each ±k pair contribute the same vertical mode we can
concentrate our search for roots to the complex domain k = Reiθ ∈ � such that R > 0,
and 0 � θ < π. It is also obvious that, as the coefficients involved in the dispersion
relation are real, if we find a complex root then its conjugate is also a root.

Let us now consider the possibility of purely imaginary roots. If we choose to write
the roots as k = iσ , such that σ > 0, then the dispersion relation may be written

(1 − α + βσ 4)σ = −κ cot(σH ). (4.2)

This expression makes it clear that at least one root lies on each branch of cot(σH ),
that is, in the interval (ln−1, ln), such that ln = nπ/H , and that σn → ln as n → ∞.

Application of the principle of the argument (see Evans & Davies 1968) proves that
there exist two further roots, for which there are two possibilities: the combination
of the various parameters may produce complex roots that are symmetric about the
imaginary axis or two extra purely imaginary roots that occupy the same branch
of cot(σH ), so that, on that branch only, there are three roots. If the ice thickness
and fluid depth are allowed to vary continuously between states where these roots
bifurcate from complex to purely imaginary or vice versa, then there is inevitably a
point at which the roots coalesce, forming a double (or, possibly, a treble) root.

The creation of a multiple root is controlled by the value C = 28(1 − α)5/κ4β and
the fluid depth H . There exist values Cn (n= 0, . . .) of C, such that Cn+1 <Cn (n � 0)
and with C0 ≈ 1.3 × 10−3, such that for C � Cn, multiple roots will exist in the interval
(ln, ln+1) for some values of H . This information is also deduced by Williams (2006)
and the above value of C0 is consistent with the value given in that work. We may
therefore select, for example, ω = 3.00 rad s−1, D = 1.21 m and H = 22.9 m as physically
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realistic parameters (see Balmforth & Craster 1999) for which a multiple root occurs
in (l0, l1), where l0 = 0. The possibility of creating multiple roots in subsequent intervals
would require the use of unrealistic parameter values, that is, extremely thick ice and
small wave period. Further discussion on the behaviour of the roots of the dispersion
relation can be found in Williams (2006). It is further noted that the dispersion
relation (2.2) has appeared in the work of other authors who did not detect (or, at
least, report) the possibility of a configuration of the roots other than one in which a
complex symmetric pair exist.

At the point at which a multiple root is created, it can be shown that the paths of
the constituent roots are non-differentiable functions (with respect to all independent
variables). In fact, it can be shown that, in the neighbourhood of a bifurcation,
the derivative (with respect to all independent variables) of a bifurcating root is
unbounded. However, in order to implement the MMA, we must differentiate the
natural modes wi , which implicitly requires the differentiability of the roots ki . The
problem created by bifurcations can, to some extent, be offset by the linear dependence
of the natural modes that will be discussed in § 4.2. However, there remain situations
in which we are unable to use the natural MMA as it stands. Although there
exist avenues through which the bifurcating modes may be modified to allow their
retention, these methods are cumbersome, and the problem is rather avoided simply
by approximating the solution using a different expansion set; an example of this is
given in § 7. We note that the complication presented by bifurcating roots is simply
an artifice of the method and does not represent a physical process.

The roots of the dispersion relation will be denoted: k0 for the unique positive, real
root; ki = iσi (i � 1) for the purely imaginary roots, where σi+1 > σi > 0 and k−i = µi

(i = 1, 2) will refer to the complex roots. Correspondingly, the natural approximation
(2.3) is rewritten as

ψN (x, y, z) =

N∑
i=−2

ϕi(x, y)wi(x, y, z). (4.3)

4.2. Linear dependence

The primary reason that we require the roots of the dispersion relation is to construct
the modes (2.4) on which the natural approximation is built. Here we mimic a result
that can be found in the Appendix of Evans & Porter (2003), but make explicit an
important implication of the result concerning the linear dependence of our trial
functions.

Consider the integral

1

2πi

∮
fa(τ )

K(τ )
cosh τ (z + h) dτ,

integrated about a circle centred at the origin, of radius R, where

K(τ ) = (1 − α + βτ 4)τ sinh(τH ) − κ cosh(τH ),

is an even function, and fa is a currently unspecified odd function that is holomorphic
in the circle about which we are integrating.

Assuming that the parameter set used does not give rise to a double root (i.e. a
point at which the µi (i =1, 2) coalese) application of the residue theorem gives

2

N∑
n=−2

fa(kn)

K′(kn)
cosh kn(z + h) = BR,
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where BR is the contribution from the boundary, and we are supposing that only the
roots ±kn (n= −2, . . . , N) are contained in the circle.

Now, suppose that τ = Reiθ , and fa is selected such that the contribution from the
boundary decays as R → ∞, then

2

∞∑
n=−2

fa(kn)

K′(kn)
cosh kn(z + h) = 0. (4.4)

This result tells us that there exists a subset of the natural modes

{cosh kn(z + h)} (n = −2, −1, 0, 1, . . .) (4.5)

that spans the same space. The degree by which we may reduce the natural set (4.5)
depends on how many linearly independent ways we may select the function fa .

It may easily be deduced that the only admissable fa are such that fa(τ ) = a1τ+a3τ
3,

for constants a1 and a3. Therefore, fa(kn) = kn and fa(kn) = k3
n are the only two linearly

independent possibilities.
In terms of the uniform problem, we have shown that for any distribution of

the roots of (2.2), in which the roots do not coincide, the vertical motion may be
expressed by any subset of (4.5) with two members removed. The horizontal waves
corresponding to the vertical modes that are no longer present are then redistributed
amongst those remaining vertical modes. In situations in which any of the roots of
(2.2) coincide, extra functions will arise in (4.4) in place of the repeated modes.

Note that, the coefficients fa(kn)/K
′(kn) decay as n → ∞, and hence only a few of

the natural modes are important in this linear-dependence issue. Although we work
only with a finite number, N , of vertical modes, it can therefore be expected that
numerical problems will be experienced for small N , if the natural approximation is
applied in its current form (4.3), but that nothing will be lost from the approximation
if two of the significant modes are removed.

4.3. The natural approximation

As indicated in § 4.2, it is possible to use our two degrees of freedom to reduce the
problems created by possible bifurcations. That is, if only two roots bifurcate as the
parameters vary, then these roots may be discarded, leaving a viable approximation.
However, if any more than two roots bifurcate then the natural MMA must be
abandoned. If no bifurcations occur, and complex roots are present, then we choose
to remove the modes corresponding to these roots as this affords the advantage
that the remaining trial functions are real-valued. When no complex roots exist, we
arbitrarily select our purely imaginary roots such that only one from each interval
(ln−1, ln) is used.

Given what has just been said, the natural approximation is redefined as

ψN (x, y, z) =

N∑
i=0

ϕi(x, y)wi(x, y, z).

It is clear that the degenerate case N =0 coincides with the approximation employed
by PP, except where there are water–ice junctions for which we have modified the
jump conditions used in the earlier paper.

4.4. Coefficients for the natural modes

Having chosen a suitable expansion set, we can evaluate the coefficients arising in the
equations that govern the approximation, which were defined at the beginning of § 3.
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We find that

aj,i =

{
(ki sinh(kiH ) cosh(kjH ) − kj sinh(kjH ) cosh(kiH ))

/(
k2

i − k2
j

)
(i 
= j ),

(sinh(2kiH ) + 2kiH )/4ki (i = j ).
(4.6)

Some simplification of the bj,i is afforded by the properties [∂zwi]z=−h = 0 and
∂2

z wi = k2
i wi of the natural modes, so that

bj,i = k2
i aj,i − ki sinh(kiH ) cosh(kjH ) + P

(D)
j,i ∇2

hD + P
(h)
j,i ∇2

hh + P
(d)
j,i ∇2

hd

+Q
(D,D)
j,i (∇hD)2 + Q

(h,h)
j,i (∇hh)2 + Q

(d,d)
j,i (∇hd)2 +

(
Q

(d,h)
j,i + Q

(h,d)
j,i

)
(∇hd) · (∇hh)

+
(
Q

(D,h)
j,i + Q

(h,D)
j,i

)
(∇hD) · (∇hh) +

(
Q

(D,d)
j,i + Q

(d,D)
j,i

)
(∇hD) · (∇hd).

Explicit expressions for the inner-products that appear in the coefficients bj,i , d̃j,i

and jj,i are lengthy and may be found in the Appendix.

4.5. The hybrid approximation

As an alternative to the natural approximation, for use in situations in which
bifurcations invalidate the use of the natural-evanescent modes, we introduce the
hybrid MMA, defined as

φ(x, y, z) ≈ ψ̂N (x, y, z) = ϕ̂0(x, y) cosh k0(z + h) +

N∑
n=1

ϕ̂n(x, y) cos ln(z + h),

where ln = nπ/H (n= 1, . . .).
Although, throughout § § 5–6, it will be assumed that the MMA uses the natural

modes, unless otherwise stated, algebraic manipulations hold for the hybrid modes;
applications of the hybrid approximation are made in § 7.

5. Two-dimensional problems and oblique incidence
We now consider the application of the MMA specifically to two-dimensional

problems in which the bed-shape and ice-shape are independent of y; this is the situa-
tion shown in figure 1, now assumed to represent every cross-section. The geometry is
permitted to vary over a finite interval with semi-infinite intervals of uniform geometry
at both ends of this finite interval that are either ice-covered and run on continuously
from the varying geometry (see figure 1) or are ice-free. Obliquely incident plane
waves propagate from the far fields and have crests that meet the x-axis at a given
angle. This situation has been considered by previous authors and comparative results
are therefore available for some geometries.

This is an appropriate juncture at which to introduce the lateral conditions attached
to the problem. For the two-dimensional problem described, the exact solution must
satisfy the radiation conditions

φ(x, y, z) ∼
{
A(±) exp

(
±iλ(±)

0 x
)
+ B (±) exp

(
∓iλ(±)

0 x
)}

× exp(imy) cosh k
(±)
0

(
z + h(±)

)
(x → ±∞), (5.1)

in which k
(±)
0 are the incident wavenumbers, m = k

(±)
0 sin θ (±), where θ (±) are the angles

made by the incident waves with the x-axis, (λ(±)
0 )2 = (k(±)

0 )2 − m2, A(±) are prescribed
incoming amplitudes and B (±) are unknown outgoing amplitudes that must be
determined as part of the solution process.
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As a periodic variation has been assumed, it is pertinent to retain this in our
approximation by setting:

ϕi(x, y) = ϕ̃i(x)eimy (i = 0, . . . , N); χ(x, y) = χ̃(x)eimy.

The unknown functions are relabelled ϕ̃(x) ≡ ϕ(x) and χ̃ (x) ≡ χ(x). They, along with
the functions that define the surrounding ice and bed shape, are now functions of the
variable x only, and wi =wi(x, z).

It is then straightforward to reduce the partial differential system (3.4) to

∂x(A∂xΦN ) + D̃∂xΦN + (B − m2A)ΦN + κχC f = 0, (5.2)

and (3.2) to

{(
∂2

x − m2
)
β
(
∂2

x − m2
)

+ (1 − ν)
(
∂2

xβ
)
m2 + 1 − α

}
χ −

N∑
i=0

[wi]z=−dϕi = 0, (5.3)

where all of the matrices are defined in § 3. From here on, the notation ∂x represents
the full derivative d/dx. The following, more compact, version of this system of
differential equations

∂x(A∂xΨ N ) + D̃∂xΨ N + BΨ N = 0, (5.4)

will be used, where

Ψ N =
(
ΦT

N, χ (1), χ (2)
)T

,

which is such that χ (1) = χ , and χ (2) = β(∂2
x − m2)χ , and

Ai,j = Ai,j , Bi,j = Bi,j − m2Ai,j , D̃i,j = D̃i,j (i, j = 1, . . . , N + 1),

AN+2,N+2 = AN+3,N+3 = 1, Bi,N+2 = κ IT
i C f (i = 1, . . . , N + 1),

BN+2,N+3 = −β−1, BN+3,j = − f T CI j (j = 1, . . . , N + 1),

BN+2,N+2 = BN+3,N+3 = −m2, BN+3,N+2 = (1 − ν)
(
∂2

xβ
)
m2 + 1 − α,

with all unspecified values equal to zero and where I= [I1, . . . , IN+1], is the identity
matrix of size N + 1.

The accompanying jump conditions must also be calculated. Given the restrictions
of the problem, the contour Γ , over which the jump conditions are implemented,
must be parallel to the y-axis and hence the normal to this contour is parallel to the
x-axis. All conditions are assumed now to hold at the point x = x0.

The two-dimensional versions of jump conditions (3.8), (3.9), (3.10) and (3.12) are

〈ΦN〉 = 0, 〈A∂xΦN + JΦN〉 = 0, (5.5)

and

〈VT
ΦN〉 = 0, 〈V−1{A∂xΦN + JΦN}〉 = 0, (5.6)

respectively, where V is defined in § 3.2.
The bending moment and shearing stress reduce to

Mχ = χ̂ (2) + β(1 − ν)m2χ̂ (1)

and

Sχ = ∂xχ̂
(2) − (1 − ν)m2(β∂x − (∂xβ))χ̂ (1).

For continuous ice-cover, the essential conditions to be applied are 〈ϕi〉 = 0
(i = 0, . . . , N) and 〈χ̂ (1)〉 = 〈∂xχ̂

(1)〉 = 0. The latter may be used to simplify the
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conditions of continuity of bending moment and shearing stress to〈
χ̂ (2)

〉
= 0,

and 〈
∂xχ̂

(2) + (1 − ν)m2(∂xβ)χ̂ (1)
〉

= 0,

respectively.
The full set of jump conditions at a point at which two intervals of connected ice

meet may then be expressed as

〈Ψ N〉 = 0, (5.7)

and

〈A∂xΨ N + JΨ N〉 = 0, (5.8)

where Jn,m = Jn,m (n, m = 1, . . . , N + 1) and JN+3,N+2 = (1 − ν)m2(∂xβ), with all un-
specified entries being zero.

If, however, the jump conditions are to be applied at a point separating ice-covered
and free-surface fluid intervals, then no essential conditions are applied, and the jump
conditions are given by (5.6) as

χ̂
(2)
+ + β+(1 − ν)m2χ̂

(1)
+ = 0 (5.9)

and

∂xχ̂
(2)
+ − (1 − ν)m2(β+∂x − (∂xβ+))χ̂ (1)

+ = 0. (5.10)

5.1. Uniform geometry

In a situation in which the geometric variables D, h and d take constant values, it
is possible to give an analytic expression for the natural MMA, as (5.4) reduces to
a constant-coefficient ordinary differential system that may be solved by standard
methods.

Therefore, take Ψ N (x) = ĉ(λ)eiλx , such that ĉT (λ) = (cT (λ), γ (1)(λ), γ (2)(λ)), where λ is
a constant and ĉ(λ) is a constant vector, representing eigenvalues and eigenvectors
of the system, respectively. Substituting these expressions into (5.2) and (5.3), and
making use of

d̃j,i = 0, bj,i = aj,ik
2
i − ki sinh(kiH ) cosh(kjH ),

which apply on intervals of constant D, h and d , leaves the eigensystem defined by

(A(K2 − (λ2 + m2)I) − C f f T KS)c + κγ (1)C f = 0, (5.11)

and

(β(λ2 + m2)2 + 1 − α)γ (1) − f T Cc = 0, (5.12)

where C =diag{cosh(k0H ), . . . , cosh(kNH )}, S = diag{sinh(k0H ), . . . , sinh(kNH )} and
K = diag{k0, . . . , kN}, which is to be solved for eigenvalues λ and corresponding
eigenvector entries c(λ) and γ (1)(λ). (The constant γ (2)(λ) is not required; its value is
easily recovered from γ (1)(λ).)

Manipulations, using (4.6) and (5.12), reduce (5.11) to

(K2 − (λ2 + m2)I)Ac + βγ (1)(K2 − (λ2 + m2)I)(K2 + (λ2 + m2)I)KS f = 0. (5.13)

At this point, it may be noted that the 2N + 2 pairs

(λ2, c) =
(
λ2

i , I i+1

)
≡
(
k2

i − m2, I i+1

)
(i = 0, . . . , N),
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satisfy (5.13), and hence provide our first set of eigenvalue–eigenvector pairs. The
values γ (1)(λi) = κ−1ki sinh(kiH ) (i = 0, . . . , N), may be recovered from (5.12). To find
the remaining four eigenvector–eigenvalue pairs, we return to (5.13) and note that for
λ 
= λi (i = 0, . . . , N), the matrix K2 − (λ2 + m2)I is non-singular, and hence

Ac + βγ (1)(K2 + (λ2 + m2)I)KS f = 0, (5.14)

and (using (5.12))

(β(λ2 + m2)2 + 1 − α) + β f T CA−1(K2 + (λ2 + m2)I)KS f = 0. (5.15)

Equation (5.15) is a quartic which defines the remaining four eigenvalues

λ2 = λ2
−i ≡ µ2

N,(i) − m2 (i = 1, 2).

The corresponding eigenvectors are then recovered from (5.14). Note that the choice
of γ (1)(λ−i) (i = 1, 2) is free, and will be set as 1 for simplicity.

For the vertical modes used in the approximation, the eigenvalue–eigenvector pairs
(λi , I i) (i = 0, . . . , N) provide the horizontal waves attached to each of the modes in
the full linear solution of the uniform problem, when all of the vertical modes are
included. The role played by the eigenvalue–eigenvector pairs (λ−i , c(λ−i)) (i = 1, 2)
mirrors that of the waves belonging to the vertical modes that are removed from the
vertical expansion of the full linear solution, which become redistributed amongst
the remaining vertical modes. As we have truncated the vertical motion to a finite
dimension, these eigenvalue–eigenvector pairs attempt to compensate for all of the
modes missing from the approximation and are sensitive to the addition of further
modes to the approximation. In the limit N → ∞, the eigenvalues will converge to
the exact horizontal waves of the omitted vertical modes and the eigenvectors to the
weightings that they are given on redistribution to the remaining modes.

On intervals of constant D, h and d the approximation may therefore be written as

Ψ N (x) = C{exp(iΛx)A + exp(−iΛx)B},

where

Λ = diag{λ0, . . . , λN, λ−1, λ−2}, exp(±iΛx) = diag{exp(±iλ0x), . . . , exp(±iλNx),

exp(±iλ−1x), exp(±iλ−2x)},
C = [ĉ(λ0), · · · ĉ(λN ), ĉ(λ−1), ĉ(λ−2)],

and A and B are constant vectors of length N +3. In an interval of free-surface fluid,
the above expression degenerates to

ΦN (x) = exp(iΛx)A + exp(−iΛx)B,

in which Λ = diag{λ0, . . . , λn}, where λ2
i = (k(0)

i )2 − m2 (i = 0, . . . , N), and A and B
are now of length N + 1. We note that a benefit of the natural approximation is that
the exact radiation conditions, equation (5.1), are retained.

In this section we have ignored the possibility of the approximate roots µN,(i)

(i = 1, 2) coinciding, which could occur even though a double root of the dispersion
relation is not present. This situation is easily dealt with by standard methods. It is
also noted that, in the neighbourhood of a true bifurcation, it is not unlikely that
the properties of the µN,(i) (i =1, 2) differ from those of the µi (i =1, 2). That is, for
certain N , the µN,(i) (i = 1, 2) may be purely imaginary, whilst the µi (i =1, 2) are
complex and vice versa.
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6. Numerical formulation
Two specific versions of the two-dimensional problem will be considered. In both,

fluid occupies the domain (x, z) ∈ (−∞, ∞) × (−h, −d), with the fluid and ice
boundaries only varying over the finite interval x ∈ (0, l), and uniform states in
the semi-infinite intervals to either side.

The following account assumes the use of natural modes throughout −∞ <x < ∞;
however, if bifurcations occur and prevent this approach then we revert to the hybrid
modes (see § 4.5) in the interval x ∈ (0, l) making the appropriate adjustments to the
following formulation.

6.1. Continuous ice-cover

For the first problem, it is assumed that D(x) 
= 0 for all x and that all geometrical
variables are continuous functions of x and we apply the natural approximation
throughout the fluid region.

In the two semi-infinite intervals of constant ice thickness and fluid depth, the
approximation is given by

Ψ
(−)
N (x) = C(−)

{
exp

(
iΛ(−)x

)
A(−) + exp

(
−iΛ(−)x

)
B(−)

}
(x < 0), (6.1a)

Ψ
(+)
N (x) = C(+)

{
exp

(
iΛ(+)(l − x)

)
A(+) + exp

(
−iΛ(+)(l − x)

)
B(+)

}
(x > l), (6.1b)

where vectors A(±) = (A(±)
0 , 0, . . . , 0, 0, 0)T contain the known incoming amplitudes

and B(±) = (B (±)
N,0, . . . , B

(±)
N,N , B

(±)
N,−1, B

(±)
N,−2)

T contain unknown outgoing amplitudes. The

superscripts (±) are used to denote that the function belongs to the corresponding
interval of uniform geometry. The approximation therefore mirrors the exact radiation
conditions (5.1), so that in the far fields

ψN ∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
A

(−)
0 exp

(
iλ(−)

0 x
)

+ B
(−)
N,0 exp

(
−iλ(−)

0 x
)}

exp(imy) cosh
{
k

(−)
0

(
z + h(−)

)}
(x → −∞),{

A
(+)
0 exp

(
iλ(+)

0 (l − x)
)

+ B
(+)
N,0 exp

(
−iλ(+)

0 (l − x)
)}

exp(imy) cosh
{
k

(+)
0

(
z + h(+)

)}
(x → ∞),

and thus the only approximation is to the outgoing amplitudes B
(±)
N,0.

It is computationally efficient to suppress as many unknowns as possible. With this
in mind, the jump conditions (5.7)–(5.8), applied at x =0, l with (6.1a,b) used in the
intervals of uniform geometry, are reformulated as

B±Ψ N (x(±)) = ∓iλ0

(
A

(±)
0 − B

(±)
N,0

)
A(±)C(±)I1

where I1 = (1, 0 . . . , 0)T is of length N + 3, and

b±Ψ N

(
x(±)

)
= A

(±)
0 + B

(±)
N,0, (6.2)

where x(±) = (l ± l)/2,

B±v(x) ≡ (A(x∓)∂x + J̃±(x))v(x∓),

and

b±v(x) ≡ IT
1 C−1(x±)v(x∓),

where

J̃±(x) = J(x∓) ∓ iA(x±)C(x±)Λ(x±)ĨC−1(x±),
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with Ĩ = diag{0, 1, . . . , 1}. Note that the only unknown amplitudes appearing in
these new conditions are those of the outgoing amplitudes that appear in the far field,
namely B

±
N,0.

The approximation is expressed over the interval x ∈ (0, l) as a linear combination
of numerically determinable functions

Ψ N (x) = i
(
A

(−)
0 − B

(−)
N,0

)
L−(x) + i

(
A

(+)
0 − B

(+)
N,0

)
L+(x),

where L± satisfy (5.4), with

B−L−(0) = λ
(−)
0 A(−)C(−)I1, B+L+(l) = −λ

(+)
0 A(+)C(+)I1,

and

B+L−(l) = B−L+(0) = 0.

Application of the remaining conditions (6.2) leads to(
B

(−)
N,0

B
(+)
N,0

)
= S

(
A

(−)
0

A
(+)
0

)
, (6.3)

where the scattering matrix is

S = −(I2 + iP)−1(I2 − iP),

with I2 representing the two-dimensional identity matrix, and

P =

(
b−L−(0) b−L+(0)

b+L−(l) b+L+(l)

)
. (6.4)

The unknown outgoing amplitudes B
(±)
N,0 are thereby determined directly.

6.2. Partial ice-cover

In the second situation considered, the ice-cover is restricted to the finite interval
x ∈ (0, l). This interval also represents the only interval in which the bed geometry is
permitted to vary. The constant intervals to either side are occupied by free surface
fluid (D = 0).

The analytic expressions for the MMA in the free-surface intervals are

Φ
(−)
N (x) = exp

(
iΛ(−)x

)
A(−) + exp

(
−iΛ(−)x

)
B(−) (x < 0),

Φ
(+)
N (x) = exp

(
iΛ(+)(l − x)

)
A(+) + exp

(
−iΛ(+)(l − x)

)
B(+) (x > l),

with all arrays having degenerated to their free-surface equivalent (see § 5.1). The
radiation conditions again dictate that the only non-zero incoming amplitudes are
A

(±)
0 , belonging to the propagating waves.
The reformulated versions of (5.6) and (5.9)–(5.10), applied at x = 0, l are

B±Ψ N

(
x(±)

)
= ∓iλ(±)

0

(
A

(±)
0 − B

(±)
N,0

)(
V(±)

)−1A(±)I1

and

b±ΦN (x(±)) = A
(±)
0 + B

(±)
N,0,

where we have redefined B± and b± as

B±v(x) ≡ (Â(x∓)∂x + J̃±(x))v(x∓)

and

b±v(x) ≡ IT
1 V−T (x±)VT (x∓)v(x∓).
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Where

(Â(x))j,i = (V −1(x)A(x))j,i (i, j = 1, . . . , N +1), (Â(x))N+3,N+2 = −β(x)(1−ν)m2,

ÂN+3,N+3 = 1 and J± is now defined by

(J̃±(x))n,m = (V−1(x∓)J(x∓) ∓ iV −1(x±)A(x±)Λ(x±)̃IV−T (x±)VT (x∓))n,m,

with Ĩ =diag{0, 1, . . . , 1}, for n, m =1, . . . , N + 1 and

J̃±(x)N+2,N+3 = 1, (J̃±(x))N+2,N+2 = (1 − ν)m2β(x∓),

(J̃±(x))N+3,N+2 = (1 − ν)m2∂xβ(x∓).

Again, all unspecified entries are zero.
Solving using linearity, we have

Ψ N (x) = i
(
A

(−)
0 − B

(−)
N,0

)
L−(x) + i

(
A

(+)
0 + B

(+)
N,0

)
L+(x),

for 0 < x < l, where the numerically determined functions L± satisfy (5.4), and the
boundary conditions

B−L−(0) = λ
(−)
0 V−1(0−)A(0−)I1,

B+L+(l) = −λ
(+)
0 V−1(l+)A(l+)I1,

and

B−L+(0) = B+L−(l) = 0.

The unknown outgoing amplitudes B
(±)
N,0 are again determined using (6.3)–(6.4).

7. Results
Results presented in this section have been calculated using a central finite-difference

numerical solver for the ODEs that arise in the intervals of varying geometry.
This simple method is sufficient for the problems considered here although it can
be expected that difficulties would be experienced for problems in which rapidly
decaying/growing modes are present. This may be caused by a particularly small
value of D, for which µ becomes large, or a large value of N as kN = O(N). When
intervals of uniform geometry are present in x ∈ (0, l), the analytic form of the natural
approximation may act as a check on the numerical solver.

To confirm the validity of the MMA as well as examine its convergence properties,
it is pertinent to compare solutions obtained by the present method with those of
previous authors, before producing new results using geometrical configurations that
fully exploit the MMA. For the purposes of this paper, the results will be considered
to have converged when consecutive computational approximations, of dimensions
N and N +1, have a relative difference, εN < 5 × 10−2, although it must be noted that
this is an arbitrary choice.

Belibassakis & Athanassoulis (2005) used a variational approach to solve the two-
dimensional problem for an ice sheet of constant thickness and with zero draught.
Noting that the natural modes satisfy [∂zwi]z = −h = 0 and building on their earlier
work for free-surface motions (Belibassakis & Athanassoulis 1999), they included an
extra expansion mode, ˜̃w say, satisfying [∂z

˜̃w]z=−h 
= 0, and thereby accelerated the
convergence of the approximation.

In the particular problem chosen for comparison, α = 0, β = 105 Pa m5 s2 kg−1 and
l = 500 m, with

h(x) =
h0 + h1

2
− h0 − h1

2
tanh 3π(x/l − 1/2) (0 < x < l). (7.1)
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Figure 2. Comparison with figures 10–11 of Belibassakis & Athanassoulis (2005). Partial
ice-cover; bed shape (7.1) and floe length l =500 m. Symbols are single-mode approximations
(N = 0) and solid lines are two-mode approximations (N = 1). (a) θ =0: �, h0 = 12 m, h1 = 8 m;
×, h0 = 15 m, h1 = 5 m, (b) h0 = 15 m, h1 = 5 m: �, θ = π/6, × θ = π/3.

Using the parameter values given in § 2, β = 105 Pa m5 s2 kg−1 corresponds to an ice
thickness D0 ≈ 1.3 m; however, although, from an algebraic point of view, the present
theory admits the value α =0, this has no physical interpretation in our model.
Figures 2(a) and 2(b) are the counterparts of figures 10 and 11 of Belibassakis &
Athanassoulis (2005). Both figures plot the convergence of natural approximations
to the magnitude of non-dimensionalized sheet elevation |η̃| =sech(k0H )(−)|η|/A(−)

0

across the ice floe; the single incoming wave has angular frequency ω = 0.4 rad s−1.
Only the most significant two sets of data are plotted on each graph to keep them
uncluttered. The four parameter sets each demonstrate extremely rapid convergence
with ε0 ≈ 1 × 10−3 in all cases. The converged curves of figure 2 appear identical to
their counterparts in Belibassakis & Athanassoulis (2005).

A restricted case of varying ice thickness in two-dimensions was solved by Williams
& Squire (2004), who considered variations in the upper surface of the ice (sail
heterogeneities) in infinite intervals of complete ice-cover. Their method of solution
used a Green’s function that allowed the vertical displacement of the underside of
the ice to be obtained from an integral equation, which leads to a knowledge of the
reduced velocity potential everywhere.

Here, two examples of sail heterogeneities used by Williams & Squire have been
chosen to provide comparison with the MMA. The first, described as type 1 by
Williams & Squire, is defined by

D(x) =

⎧⎪⎨⎪⎩
1 (x < 0),
1 + 2x/15 (0 < x < 15/2),
3 − 2x/15 (15/2 < x < 15),
1 (x > 15).

The second, described as type 2 by Williams & Squire, is defined by

D(x) =

⎧⎨⎩1 (x < 0),
2 (0 < x < 15),
1 (x > 15).

In both problems, d = 0 and h = 70 m. For the type 2 sail, we encounter the problem of
discontinuities in the ice thickness. As indicated in § 2.4.2, the ability to use a consistent
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Figure 3. Comparison with figures 4(e) and 4(i) of Williams & Squire (2004). Complete
ice-cover: (a) sail of type 1; (b) sail of type 2. Symbols are single-mode approximations
(N = 0), solid lines are converged approximations ((a) N = 2, (b) N = 1). (a) θ =0; (b) ×,
(ω = π rad s−1); �, (ω = 2π/5 rad s−1); �, (ω = π/5 rad s−1); �, (ω = 2π/15 rad s−1).

MMA rests on the removal of the essential condition 〈〈ψN〉〉 =0, and insertion of the
functional IΓ , which, as the fluid depth is continuous, requires no modification. This
effectively replaces (5.5) with (5.6), with (5.7)–(5.8) amended accordingly.

Figures 3(a) and 3(b) are for comparison to figures 4(e) and 4(i) of Williams
& Squire (2004). Both plot converged natural approximations to the magnitude of
the reflected amplitude against incoming wave period (figure 3a) or incident angle
(figure 3b), along with the corresponding single-mode approximations. The graphs of
the transmitted amplitudes have been omitted for clarity. Again the converged curves
compare well with the original curves of Williams & Squire (2004). In figure 3(a), three
natural modes are required for convergence. The single-mode approximation and fully
converged approximation have a relative difference of approximately 1.2 × 10−1, that
is produced mainly by quantitative inaccuracies that occur in the middle of the wide
interval of incoming wave periods. For figure 3(b), the single-mode approximations
provide suitably accurate approximations, with the double-mode approximations
virtually overlapping them. Furthermore, the shift between the single- and double-
mode approximations appear insensitive to the angle of incidence. There is no evidence
in figure 3(b) that the jump in the trial functions produced by the discontinuity in the
ice thickness D has caused the approximation any difficulties.

For the remainder of the results, we turn to geometrical configurations that are
unsolvable by existing, alternative methods. Specifically, we are now at liberty to
allow for variations in d , which includes the possibility of a non-zero draught. We
begin with cases of continuous ice-cover. From here on, only normally incident waves
(θ = 0) are taken.

The problems considered by PP for cases of complete ice-cover do not provide an
adequate test of the MMA as they were restricted by the need for slowly varying
geometry. For example, in the problems considered for figure 2(a) of PP, increments to
the dimension of the approximation make at most O(10−2) differences. Moreover, the
PP results for geometrical configurations involving variations in d are complicated by
the issue of missing terms discussed at the end of § 3. The results shown in figure 4(a)
involve keels defined by D(x) = D0 + d(x) and d(x) = u(x), where

u(x) =

{
0 (x < 0, x > l),

Au(1 − cos(2πx/l))/2 (0 < x < l),
(7.2)
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Figure 4. Continuous ice-cover: D0 = 1 m, h0 = 20 m. (a) D(x) = D0 + u(x) and d(x) = u(x):
Au = 10 m. Dotted lines are single-mode approximations (N = 0), solid lines are converged
hybrid approximations (N = 4 for l = 20 m, N =3 for l =40m); (b) Converged hybrid
approximations. Amplitude Au = 5 m and length l = 20 m. D(x) = D0 + u(x) and d(x) =u(x),
N = 2 (solid); D(x) =D0 + u(x) and d(x)= 0, N = 2 (dotted); h(x) =h0 − u(x), N = 1
(dot-dash).

which are generalized versions of the geometry used by PP for their figure 2(a).
Here, the – clearly non-slowly varying – amplitude Au = 10 m is used and a
constant bed depth, h = 20 m, is taken. For the interval of incoming wavelengths
2π/k0D0 ∈ (20, 200), the natural-evanescent modes are unavailable for all values less
than 2π/k0D0 ≈ 56.7 owing to bifurcations on the first purely imaginary branch. We
take this opportunity to use the hybrid approximation that was introduced in § 4.5.
Figure 4(a) displays converged hybrid approximations for the problem described
using the keel lengths l = 20 m and l = 40 m alongside the corresponding single-mode
approximations. It can be seen here that, even for these rapidly varying keels, a single
mode provides a good approximation; in both cases shown, it manages to represent
accurately the shape and magnitude of the full linear solution. The convergence of
the approximation to the smoother impediment, the 40 m keel, is more rapid than
that of the 20 m keel, with εn = O(10−4) for n= 3 when l = 40 m compared to n= 4 for
l =40 m. Moreover, the single-mode approximation for the 40 m keel is more accurate
than its counterpart for the 20 m keel by an order of magnitude. In the interval
2π/k0D0 ∈ (56.7, 200) the natural approximations are at most of O(10−4) different
from their hybrid counterparts and for this reason it is not necessary to include this
data in the figure.

In figure 4(b), we investigate the effect that the positions of an impediment has
on the amount of energy it reflects, in the context of continuous ice-cover. The three
curves displayed represent converged hybrid approximations to |R| for a sail, a keel
and a protrusion on the bed, all of the shape u(x) such that Au = 5 m. It is evident that
the bed protrusion reflects significantly less energy than the equivalent variations to
the thickness of the ice, for all the short- and mid-range wavelengths shown. A further
phenomenon is that the sail and keel problems produce similar results, especially for
shorter wavelengths. This similarity supports a conjecture made in Vaughan & Squire
(2007). Across the range of incoming wavelenths, the keel reflects a greater amount
of energy than the sail. Extensive numerical tests have shown the behaviour exhibited
in figure 4(b) to be true generally.
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Figure 5. Comparison with figures 8(a) and 9(a) of PP. Partial ice-cover; D0 = 38 mm,
l =10m, H0 = 1.1 m. Dotted line (PP single-mode approximation), dot-dash line (single-mode
approximation, N = 0), solid line (converged MMA: (a) N = 3; (b) N = 2). (a)
ω = 2π/0.7 rad s−1; (b) ω = 2π/1.429 rad s−1.

The results are concluded with cases of partial ice-cover. In all of the partial
ice-cover situations we present in this paper, the parameter ranges are such that no
bifurcations occur and the natural modes may be used.

In figure 5, the effect of the reformulation of the matching conditions given in PP are
investigated. The figures display convergence of the natural approximation to the non-
dimensional sheet elevation, |η̃|, of a uniform floe of zero draught, length l = 10 m and
thickness 38 mm over a uniform bed of depth 1.1m for two incoming wavelengths. The
corresponding single-mode approximations of PP (originally appearing in figures 8a

and 9a of PP) are also shown. For the incoming wave of angular frequency
ω =2π/0.7 rad s−1 (figure 5a), there is negligible difference between the accuracies
of the single-mode approximations; however, for the incoming wave of angular
frequency ω = 2π/1.429 rad s−1 (figure 5b), the reformulated matching conditions lead
to a clear improvement in accuracy. The convergence of the natural approximation
for the longer incoming wave is far more rapid than that of the shorter incoming
wave, with ε1 ≈ 7.2 × 10−3 for the longer wave compared to ε2 ≈ 3.7 × 10−2 for the
shorter wave. Furthermore, the single-mode approximation for the longer wave is an
order of magnitude more accurate than that corresponding to the shorter wave.

It was anticipated in PP that a single-mode approximation may struggle to represent
accurately the scattering process that occurs at the edges of an ice floe in a partial
ice-cover setting. This hypothesis is examined in figure 6(a) using a uniform floe
of zero draught, length 10 m and thickness 1 m over a uniform bed depth of 20 m.
Here, three curves display the convergence of the natural approximation to the
reflected energy, |R|, for this problem, over a range of incoming wavelengths. The
convergence takes until N =7 to produce a relative error of less than 5 × 10−2

and thus we accept the eight-mode approximation as converged. It is evident that
the single-mode approximation is deficient in a number of ways: it is inaccurate
both quantitatively and qualitatively, creating spurious characteristics, particularly for
shorter wavenumbers. The only correct property retained is a decreasing tendency in
|R| as the incoming wavenumber decreases. However, by the four-mode approximation
the spurious behaviour has been eliminated and the inaccuracies are mainly of a
quantitative nature. The problems suffered by the single-mode approximation are
attributed to the large jump that results from moving between free-surface and
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Figure 6. Partial ice-cover. No draught (d =0) with D0 = 1 m, l =10m and H0 = 20m.
(a) Convergence of MMA for a uniform floe. Dash-dot line (N = 0), dotted line (N = 3), solid
line (N =7); (b) Converged approximations (N = 7) for obstuctions of type (7.2) (Au = 1 m):
solid line (uniform floe); dashed line (keel); dotted line (bed); dot-dash line (sail).

ice-covered states; despite this problem, it has been shown, in investigations that do
not appear in this paper, that the convergence properties of the natural approximation
outweigh benefits gained from using an approximation that maintains continuity. We
must be aware that, unlike cases of continuous ice-cover, for partial ice-cover, a single
natural-mode may not provide an accurate approximation.

Figure 6(b) provides a partial ice-cover counterpart to figure 4(b). Here, converged
natural approximations to |R| are given for the problem considered for figure 6(a)
augmented by the addition of obstruction (7.2) where Au = 1 m, which takes three
different positions (a sail, a keel and a bed variation). The converged (N = 7) curve
of the uniform floe over a flat bed shown in figure 6(a) is also included. For all
three positions of the obstruction considered, eight modes are required to achieve
εn < 5 × 10−2, which indicates that the primary difficulty is derived from the scattering
at the vertical interfaces at the ends of the ice floe. This is corroborated by the shape
of the curves that are dominated by the behaviour of the uniform floe. The most
evident variations come in the sail and keel problems for π/5 < ω < 2π/3. The sail
impediment causes mainly quantitative changes, whereas the addition of a keel
eliminates the minima around ω = π/2 rad s−1. This qualitative difference between the
sail and keel problems contrasts with the findings for continuous ice-cover. Conversely,
similarly to what was shown in the continuous ice-cover problem, the existence of
a bed variation is of little consequence, here leading to a converged solution that is
virtually indistinguishable from that of the uniform problem.

The geometrical configurations considered thus far, for cases of partial ice covering,
have assumed no draught at the ends of the ice floes (d → 0 as x → 0, l) in order to
isolate other effects. However, this has meant that we have been examining physically
incorrect models of the ice floes. In figure 7, the effect of introducing a draught is
considered, for a uniform floe of thickness D = 1 m. The draught, d , must be calculated
using Archimedes’ principle, which implies that∫ l

0

{ρiD(x) − ρwd(x)} dx = 0.

For the uniform floe described, this dictates that d(x) = 0.9 m (0 < x < l). Figure 7
displays converged natural approximations to the magnitude of the reduced
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Figure 7. Partial ice-cover. Uniform floe (D =1 m) over a constant bed depth (H = 20 m).
Solid lines are for floes with no draught (d = 0) and broken lines are for floes including
an Archimedean draught (d = 0.9 m): ω = π rad s−1 (dot-dash); ω = π/3.449 rad s−1 (dashed);
ω = π/6 rad s−1 (dotted). (a) l = 10 m; (b) l = 50 m.

displacement of the ice, |η̃|, for three incident wavelengths and two differing floe
lengths. It is noticeable that for the shorter incident waves, the ice is displaced with a
smaller magnitude when an Archimedean draught is included but that as the incident
wavelength increases, this feature diminishes. In all cases, the corresponding curves are
qualitatively similar. We may also observe that as the incident wavelength decreases,
the displacement decreases, which coincides with greater reflection (see, for instance,
figure 6b). Finally, we note that, as we have previously found, a greater number of
modes is required to achieve convergence as the incident wavelength decreases and,
furthermore, the inclusion of an Archimedean draught also slightly slows convergence.

8. Conclusions
The formulation and implementation has been carried out of a general multi-

mode approximation to the linearized motion of fluid bounded above by a floating
elastic plate, which is currently used to describe ice floating on water, but has other
applications. The user-defined modes contain the only appearance of the vertical
coordinate in the approximation, and the application of a variational principle reduces
the problem to one involving only the horizontal variables and thereby significantly
reduces the difficulty to a level at which calculations involving varying ice thickness
and undulating beds are feasible. The approximation, which is generated by an
application of the Rayleigh–Ritz method, allows the solution of the full linear problem
to be obtained to any degree of accuracy by selecting a suitably large trial space.

A particular (natural) trial space was suggested by PP, who investigated the single-
mode version which the present MMA extends, in which modes corresponding to
evanescent waves supplement the solitary mode that supports propagating waves.
However, the inclusion of evanescent modes is compromised because the roots that
determine their structure may bifurcate as one or more physical parameters vary,
leading to the loss of required differentiability in the modes. It was noted that a two-
fold linear dependence in the natural modes partially alleviates the problem caused
by the bifurcations. In situations in which the problem presented by bifurcations
persists, an alternative (hybrid) trial space that incorporates the first mode of the
natural approximation, cosh k0(z + h), together with finitely many members of the
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Fourier modes cos ln(z + h) for n= 1, . . . , was used. This choice of hybrid modes is
motivated by a wish to retain the original single-mode (to model the exact radiation
conditions) and the fact that σn ≈ nπ/H . Of course, further alternative approximations
are available; for instance, where a finite ice floe is surrounded by a free surface, a
continuous expansion in the free-surface modes may be considered.

The jump conditions to be satisfied by the approximation, which are determined
by the variational principle, also required extension to the multi-mode case. For
partial ice-cover, this extension proved to be non-trivial as the matching conditions
implemented by PP included a bias that could lead to inconsistencies if it were
extended to multiple modes.

Results have been presented for a number of two-dimensional problems involving
both complete and partial ice covering. Comparisons have been made to two sets of
results obtained by previous authors using alternative methods. This helped to validate
the MMA and also demonstrated rapid convergence of the natural approximation
and excellent performance of single-mode approximations. Following this, problems
were considered that use the ability of the MMA to handle fully variable geometry.
A continuous ice-cover problem presented in PP was modified to include non-slow
variations and solved using the alternative (hybrid) trial space. Despite the extreme
variations in the geometry, the single-mode provided a good approximation and
convergence was rapid. Through an example, it was shown that for all but long
incoming waves, variations to the ice dominate over bed variations, in the sense that
a greater amount of energy is reflected. Furthermore, it was seen that there is a marked
similarity between solutions of keel and sail problems. For problems involving partial
ice-cover it was shown that, as expected, the extra source of scattering produces effects
that the MMA is required to resolve. Consequently, the single-mode cosh k0(z+h) may
produce an inaccurate approximation; however, on inclusion of evanescent modes
these inaccuracies are quickly eliminated. The results presented indicated that the
primary scattering effects may be attributed to the edges of the ice floe. Nevertheless,
it was shown that ice variations (rather than bed variations), particularly a non-zero
draught, can play a significant role.

There are many other problems involving varying ice thickness and undulating
bed shapes that may be tackled with an MMA. Currently, work on the effect of
ice with periodically varying thickness is in preparation, extending the free-surface
counterparts studied by Porter & Porter (2002) and Porter & Chamberlain (1995), for
which the existence of resonances is an issue. In three dimensions, investigations are
being conducted into axisymmetric ice sheets in the vein of Peter et al. (2004).

Appendix
Here we give explicit formulae that are required in order to calculate the inner

products appearing in the definition of the coefficients involved in the MMA (see § 4).
Let a general mode be defined as

wi(x, y, z) ≡ Wi(D, h, d, z) = cosh ki(z + h),

where ki (a root of the dispersion relation (2.2) if wi is a natural mode) will be
regarded as functions of the geometrical variables h, d and D. From now on, the
notation

si = si(z) = sinh ki(z + h), ci = ci(z) = cosh ki(z + h),

will be used for brevity.
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For X (and/or Y ) = D, h or d , (Wi, ∂XWj ) = (∂X(kjh))(ci , sj ) + (∂Xkj )(zci , sj ), from
which the expression

∂Y (Wi, ∂XWj ) = (∂Y ∂Xkj )(ci , z sj ) + (∂Xkj )∂Y (ci , z sj )

+ (∂Y ∂X(kjh))(ci , sj ) + (∂X(kjh))∂Y (ci , sj ),

is straightforward. Furthermore,

(∂Y Wi, ∂XWj ) = (∂Y ki)(∂Xkj )(z si , z sj ) + (∂Y (kih))(∂X(kjh))(si , sj )

+ {(∂Y (kih))(∂Xkj ) + (∂Y ki)(∂X(kjh))}(z si , sj ).

The required inner-products of the hyperbolic functions can be calculated directly
as

(ci , cj ) =

{
{kisi(−d)cj (−d) − kj sj (−d)ci(−d)}

/(
k2

i − k2
j

)
(i 
= j ),

{si(−d)ci(−d) + kiH}/2ki (i = j ),

(z ci , sj ) =

⎧⎨⎩
−{hkj + d(kisi(−d)sj (−d) − kjci(−d)cj (−d))

+ ki(si , sj ) − kj (ci , cj )}
/(

k2
i − k2

j

)
(i 
= j ),{

h − d
(
c2
i (−d) + s2

i (−d)
)

− (ci , ci) − (si , si)
}
/4ki (i = j ),

(z si , z sj ) = {d2(kici(−d)sj (−d) − kj si(−d)cj (−d))

− 2(ki(z ci , sj ) − kj (z si , cj ))}
/(

k2
i − k2

j

)
(i 
= j ),

(z si , z si) = {d2si(−d)ci(−d) − 2(z ci , si)}/2ki + (d3 − h3)/6,

with all other inner products following in a similar fashion. The derivitives required
to evaluate ∂Y (Wi, ∂XWj ) are

∂Y (ci , sj ) = (∂Y ki)(z si , sj ) + (∂Y (kih))(si , sj ) + (∂Y kj )(z ci , cj )

+ (∂Y (kjh))(ci , cj ) + [(∂Y z)cisj ]
−d
z=−h,

and

∂Y (z ci , sj ) = (∂Y ki)(z si , z sj ) + (∂Y (kih))(z si , sj )

+ (∂Y kj )(z ci , zcj ) + (∂Y (kjh))(z ci , cj ) + [(∂Y z)zcisj ]
−d
z=−h.

Finally, various derivatives of the ki = ki(D, h, d) appear in the expressions above.
From here on, it is assumed that the ki are roots of (2.2). (The derivatives of the li
(i = 1, . . .) for the hybrid approximation are trivial.) Having found the ki (see § 4.1),
analytic expressions for the derivatives may then be obtained in terms of the roots
themselves. To carry this out, let the dispersion relation be expressed as

f (k, D) tanh(kH ) = κ : f (k, D) = (1 − α(D) + β(D)k4)k.

The derivatives may then be deduced to be

Ei(∂Dki) = −(∂Dfi) sinh(2kiH ), Ei(∂dki) = 2fiki, Ei(∂hki) = −2fiki,

Ei(∂
2
Dki) = −(∂kEi)(∂Dki)

2 −
(
∂2

Dfi

)
sinh(2kiH )

− 2(∂Dki){(∂k∂Dfi) sinh(2kiH ) + 2H (∂Dfi) cosh2(kiH )},
Ei(∂

2
hki) = −(∂kEi)(∂hki)

2 − 4(∂hki){fi + ki(∂kfi) cosh2(kiH )},
Ei(∂

2
d ki) = −(∂kEi)(∂dki)

2 + 4(∂dki){fi + ki(∂kfi) cosh2(kiH )},
Ei(∂D∂hki) = −(∂kEi)(∂Dki)(∂hki) − 2ki(∂Dfi) − 2(∂Dki){fi + ki(∂kfi)}

− (∂hki){(∂k∂Dfi) sinh(2kiH ) + 2H (∂Dfi)},
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Ei(∂D∂dki) = −(∂kEi)(∂Dki)(∂dki) + 2ki(∂Dfi) + 2(∂Dki){fi + ki(∂kfi)}
− (∂dki){(∂k∂Dfi) sinh(2kiH ) + 2H (∂Dfi)},

and

Ei(∂d∂hki) = −(∂kEi)(∂dki)(∂hki) + 2(∂hki){fi + ki(∂kfi) cosh(2kiH )}
− 2(∂dki){fi + ki(∂kfi)},

where fi = f (ki) and Ei = E(ki) such that

E(k) = ∂kf (k) sinh(2kH ) + 2Hf (k),

with derivatives

∂kE = (∂2
k f ) sinh(2kH ) + 4H (∂kf ) cosh2(kH ),

∂kf = 1 − α + 5βk4, ∂Df = −D−1k(α − 3βk4),

and

∂2
k f = 20βk3, ∂2

Df = 6D−2βk5, ∂k∂Df = −D−1(α − 15βk4).

It is clear that the function E(k) vanishes only if k = ki is a multiple root of (2.2),
which supports the comment concerning unboundedness made in § 4.1.
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