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Abstract

Compressed sensing allows recovery of image signals using a portion of data – a technique that
has drastically revolutionized the field of through-the-wall radar imaging (TWRI). This tech-
nique can be accomplished through nonlinear methods, including convex programming and
greedy iterative algorithms. However, such (nonlinear) methods increase the computational
cost at the sensing and reconstruction stages, thus limiting the application of TWRI in delicate
practical tasks (e.g. military operations and rescue missions) that demand fast response times.
Motivated by this limitation, the current work introduces the use of a numerical optimization
algorithm, called Limited Memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS), to the TWRI
framework to lower image reconstruction time. LBFGS, a well-known Quasi-Newton algorithm,
has traditionally been applied to solve large scale optimization problems. Despite its potential
applications, this algorithm has not been extensively applied in TWRI. Therefore, guided by
LBFGS and using the Euclidean norm, we employed the regularized least square method to
solve the cost function of the TWRI problem. Simulation results show that our method reduces
the computational time by 87% relative to the classical method, even under situations of
increased number of targets or large data volume. Moreover, the results show that the proposed
method remains robust when applied to noisy environment.

Introduction

Recently, through-the-wall radar imaging (TWRI) has found wide applications in searching
and rescuing missions of civilian: earthquake, hostage, and fire, among others [1–4]. TWRI
facilitates detection, localization, and classification of objects behind opaque structures
[5–8]. Because of their massive applications in delicate tasks, current studies in TWRI focus
on producing highly resolved radar images of the scenes of interest. Large radar apertures
and wide signal bandwidths are required to achieve highly resolved images in crossrange
and downrange, respectively. These requirements translate to large sensing measurements
that limit the applications of TWRI [9, 10]. Therefore, researchers in TWRI applied compres-
sive sensing (CS) technique to compresses the sensed signal during data acquisition. Thus,
compressed sensing enables image reconstruction using fewer measurements than those dic-
tated by the Nyquist sampling theorem, provided that the signal of interest is sparse or exhibits
sparsity in some transform domain [11–13].

Three major approaches exist to solve the CS reconstruction problem, namely convex opti-
mization, greedy, and Bayesian [5, 14].Optimization-based approaches usually use ℓ1-norm
[15], and, given the noisy through-the-wall measurements, researchers find the Basis Pursuit
De-Noising as a more suitable convex optimization method [13]. Under particular situations,
ℓ1/ℓ2-norm may be employed to achieve better reconstruction [7]. Greedy approaches solve
the reconstruction problem iteratively until a stopping criterion is attained. Greedy algorithms,
such as Orthogonal Matching Pursuit [16] and Subspace Pursuit give lower execution times. But
such algorithms dictate stricter sparsity conditions, and hence are non-optimal [17, 18]. While
the previous methods use signal sparsity as the only prior information, Bayesian approaches
improve signal recovery through noise statistics (when available). In Bayesian algorithms, the
unknown signal is modelled as Bernoulli–Gaussian or Bernoulli–Laplacian [19, 20].

Although CS uses fewer measurements to reconstruct a signal, the downside of CS is that it
lifts the computational burden from the sensing stage while reinvigorate burden on recovery
stage, which results in highly computationally expensive recovery of signals. This limitation
obscures practical applications of CS in TWRI. Therefore, faster algorithms are needed to
ensure that we elevate the capabilities of TWRI in real-world sensitive applications.

This work proposes the use of numerical optimization method, Limited-memory Broyden–
Fletcher–Goldfarb–Shanno (LBGFS) in conjunction with Tikhonov regularization, to recover an
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unknown image vector from compressed TWRI measurements.
Limited Memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
offers affordable computational cost, demands lessmemory, and pro-
vides faster convergence time, but these potential advantages have
not been fairly utilized in complex TWRI applications [21, 22].
In [22], the authors proposed an interesting image reconstruction
method based on LBFGS and Particle Swarm Optimization algo-
rithm (LBFGS_PSO) to reconstruct image under wall parameters
uncertainties. The focus of the paper was to determine wall para-
meters while reconstructing stationary and moving targets. The
reconstruction time, however, was not studied. Further, their model
does not consider target-to-target interaction making it ineffective
in multiple targets scenarios that is inevitable in TWRI applications.
Our work, therefore, gives a promising future for the realization
of TWRI in critical applications that could otherwise not be
accomplished using traditional approaches.

TWRI scene model

In this study, the interrogation of the TWRI scene involves a
stepped frequency radar (SFR). Among advantages of SFR is that,
it helps to maintain high energy of the transmitted ultra-wideband
(UWB) signal and hence improves signal-to-noise ratio (SNR) [23].

Consider SFR with N different radar positions; at each position
of the radar, M monochromatic signals, equally spaced in fre-
quency, are transmitted and received to realize an UWB signal.
Figure 1 shows a multiple-targets scene divided into Nx and Ny

pixels in crossrange and downrange, respectively. The target
reflectivity is denoted by σp, with p = 0, 1, …NxNy− 1, and wall
reflectivity is denoted by σw. If target returns and wall returns
are R and Rw, respectively, then the received signal, y[m, n], at
the nth radar location when the mth frequency is transmitted is
given as Muqaibel et al. [23, 24].

y[m, n]=
∑R−1

R=0

∑NxNy−1

p=0

s(r)
p exp(−jpfmt

(r)
pn+

∑Rw−1

rw=0

srw
w exp (−j2pfmt

rw
w )

+
∑R−1

r=0

∑NxNy−1

p=0

s(r)
pq exp (−j2pfmt

(r)
pqn)+ v(m, n)

(1)

Proposed reconstruction method

CS reconstruction algorithms

Several compressed sensing algorithms have been proposed in the
literature, but only a few were applied in TWRI. Among these algo-
rithms, Your Algorithm for ℓ1 optimization (YALL1) has become
popular to solve ill-posed systems. In [25], compressed sensing
algorithms in TWRI were tested under the F1-score, and YALL1
yielded the best performance in low SNR values. In addition,
YALL1 achieved higher quality values when the compression rate
was reduced to 50%. Consequently, researchers have declared that
YALL1 spans the widest region within the desired performance
values for the given SNR and compression ratio.

Despite its higher performance, YALL1 considers all elements
in the unknown vector to generate a solution. This operation adds
computational load of the algorithm unnecessarily, and hence
slows down the process of reconstructing an image. Recalling
large matrices in the TWRI problem, YALL1 may take a longer
reconstruction time.

LBFGS optimization method in TWRI

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is a
quasi-Newton algorithm known for its super-linear convergence
[18, 26]. The algorithm is well presented in [21] and [26]. The
function, J, to be minimized by BFGS is approximated with the
quadratic model (2):

mk(p) = Jk + ∇JTk p+
1
2
pTBkp, (2)

Where Bk is an n × n symmetric positive definite Hessian matrix
that is updated at every iteration, p denotes the minimizer, and T
denotes the transpose. The value of sk is then updated as:

sk+1 = sk + akpk, (3)

where pk = −B−1
k ∇J(s) is the direction vector, αk is the fixed step

length at iteration k. The choice of αk depends on the Wolfe
conditions:

J(sk + akpk) ≤ J(sk)+ c1a2∇JTk pk (4)

and

∇J(sk + akp
T )pk ≥ c2∇JTk pk, (5)

where (c1, c2)∈ℝ2; c1∈ (0, 1) and c2∈ (c1, 1). In practice, c1 is set
to a very small number; for example c1 = 10−4 [26]. On the other
hand, the value of the step length (line search parameter), αk, can
be computed using an exact line search method in [26].

The Hessian matrix can iteratively be approximated to give the
David–Fletcher–Powell equation

Bk+1 = (I − rkykr
T
k )Bk(I − rkykr

T
k )+ rkyky

T
k , (6)

where

rk =
1

yTk rk
, rk = sk+1 − sk, and yk = ∇J(k + 1)−∇J(sk).

Imposing a condition on the inverse Hessian matrix,
Hk = B−1

k , we obtain an update BFGS equation

Hk+1 = (I − pksky
T
k )Hk(I − pkyks

T
k )+ pksks

T
k . (7)

As a way of increasing the computational efficiency,
LBFGS approximates the Hessian matrix by storing the most
recent m vectors from k iterations [26]. Thus, setting
Vk = I − rksky

T
k gives

Hk = (VT
k−1 . . .Vk−m)H

0
k(Vk−m . . .Vk−1)

+ rk−m(V
T
k−1 . . . . V

T
k−m+1)rk−mr

T
k−m(Vk−m+1 . . . Vk−1)

+ rk−m+1(V
T
k−1 . . . V

T
k−m+2)rk−m+1r

T
k−m+1(Vk−m+2 . . . Vk−1)

+ . . . + rk−1rk−1r
T
k−1.

(8)

Expanding (8) allows efficient computation of the product
Hk∇Jk needed in sk update without storing the full matrix, Hk.
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Both LBFGS (Algorithm 1) and BFGS give the same results
within the first (m − 1) iterations for H0

k = H0. Complete details
of various quasi-Newton methods, including LBFGS, can be
found in [27–31].

Algorithm 1: Limited memory Broyden–Fletcher–Goldfarb–Shanno

Choose starting point s0, integer m > 0

k← 0

Repeat

Choose Hk, appropriately

Compute pk � −Hk∇Jk
Compute sk+1 = sk + αkpk

if k >m then

Discard the vector pair {rk−1, yk−1} from storage

end if

Compute and save rk � sk+1 − sk , yk � ∇Jk+1 − ∇Jk
k← k + 1

until convergence

Least-squares method

Well-posed problems are solvable and give unique solutions that
depend continuously on system parameters. Ill-posed problems
lack these constrains, and can emerge from inverse problems
that prevail in science and engineering fields, such as signal
processing, acoustics, and image processing [32].

This work presents an ill-posed problem (also called under-
determined system) that contains a system of linear equations
with fewer equations than unknowns [30, 33]. The general
representation of the ill-posed problem is

As = y, (9)

with A [ Ra×b denoting a mapping matrix that maps a state vec-
tor, s∈ℝb, to give y∈ℝa, where a and b represent number of
rows and columns of A. From (9), the ℓ2 minimization problem
to compute the cost function, J(s), becomes

J(s) = ||As− y‖22 . (10)

Equation (10) can be written in matrix form as:

J(s) = (As− y)T (As− y). (11)

Then, to obtain the gradient, J(s) is differentiated as:

∂[(As+ (− y))TI(As+ (− y))]
∂s

= (As− y)TITA+ (As− y)TIA. (12)

Hence,

∇Jk = (As− y)TITA+ (As− y)TIA (13)

Or

∇Jk = 2(As− y)TA. (14)
The LBFGS algorithm requires the cost function, J(s), and its

gradient as inputs. In this study, the value of J(s) is computed
by the least-squares method based on the Euclidean norm.
Then, regularization process follows, whereby a value is added
to the cost of function to provide a proper search direction of
the optimal solution.

Proposed regularization function

Regularization methods provide means to solve linear inverse pro-
blems in science and engineering fields [34]. Tikhonov regulariza-
tion is the simplest and oldest form of regularization that has been
widely applied by researchers as it gives convincing results at

Fig. 1. Multiple targets with first-order returns.
Source: [23].
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lower computational load [35]. Tikhonov regularization offers an
improved efficiency in exchange for a tolerable bias in problems
involving parameter estimation or in models with large number
of parameters.

Consider the ill-posed equation (9). Then, Tikhonov regular-
ization requires re-formulation of the equation by introducing
Tikhonov term that prevents degeneration of the solution.
Therefore, the equation re-formulation gives

(ATA+ mI)s = ATy, (15)

where μ≥ 0 denotes a regularization parameter that determines
the amount of regularization, and I is the identity matrix. Using
ordinary least-squares method, J(s)derived from (15) becomes

J(s) = ‖As− y‖22 +‖Gs ‖22 , (16)

where Γ = μI. This regularized cost function in (11) and the gra-
dient in (14) are used as inputs to the proposed optimization
method.

Results and discussion

Simulation results

The room layout was maintained as that in the work of [36], and
the coordinate system’s origin is the center of the array (Fig. 2).
The front wall was located at 0.5 m parallel to the array with
thickness of 20 cm. The first target was placed at (0.31, 3.6) m,
the second target was added at (−0.62, 5.2) m, third target was
placed at (0.71, 1) m and the fourth target was introduced at
(2.5, 4.0) m as shown in Fig. 2. Computer with Intel® core™
i7-8550U CPU @ 1.80 GHz 1.99 GHz processor, 16.0 GB RAM,
a 64-bit Operating System, x64-based processor and the windows
edition installed was windows 10 pro and MATLAB R2019a soft-
ware was used for performing the simulation. Next, the targets
were reconstructed using LBFGS, configured to run through 30
iterations with 15 stored vectors. Empirical experiments show
that this configuration guarantees optimal reconstruction results.
Furthermore, we set the step length to 5.5 and the initial Hessian
was an identity matrix.

In each scenario, the targets were reconstructed and perform-
ance measures were compared with the state-of-the-art method
presented in [36]. The parameters set for imaging were as follows:
frequency range ( f ) = 1− 3 GHz; frequency bins (M ) = 801;

Fig. 2. Measurement setup and room layout.
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transceiver locations (N ) = 77; and number of multipath (R) = 4.
Finally, the scene was discretized into 64 × 64 pixels.

Scenario 1: Varying number of targets
In this scenario, we started by reconstructing the first two tar-
gets using the existing and proposed methods. Figures 3(a) and
3(b) show the final images for two-target reconstruction using
the existing method and the proposed method. Figures 4(a)
and 4(b) show reconstructed images using three targets for
the existing and the proposed method. Figures 5(a) and 5(b)
show the final images with four targets reconstructed using
existing method and the proposed method. By visual inspec-
tion, the figures in all the three cases seem to have nearly the
same quality.

To quantify the performance, RT, MSE, SCR and RCP were
used. Figure 6(a) shows that the proposed method reconstructs
the image within a shorter time compared with the existing
method. Also, Fig. 6(b) shows that the existing method gives

images with relatively lower MSE when the numbers of targets
is small. However, as the number of targets increases, our pro-
posed method demonstrates better performance in terms of
MSE relative to the existing method. Figures 6(c) and 6(d) show
that the existing method outperforms the proposed method, in
terms of SCR and RCP, but visual results suggest that our method
maintains acceptable perceptual qualities.

Scenario 2: Varying the size of the data volume
In this scenario, four targets were chosen and kept constant
throughout the experiment, a situation seen in Fig. 2. Data
volumes considered in this case were 10, 12.5, 16, and 25%. The
aim of this experiment was to establish the effect of data volume
to the performance of the reconstruction algorithm. To quantify
the performance, again run time, MSE, RCP, and SCR were
used as performance indicators. Figures 7(a) and 7(b) show the
images of the scene reconstructed at 10% data volume using the
existing and proposed method. Again, the visual appearance of

Fig. 4. Reconstructed images for three targets. (a) Existing method. (b) Proposed method.

Fig. 3. Reconstructed images for two targets. (a) Existing method. (b) Proposed method.
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the two images is almost similar. However, qualitatively the pro-
posed method demonstrates better performance over a wide range
of values.

The results in Fig. 8(a) show that the proposed method offers
lower run time compared with the existing counterpart. It was
observed that the run time, for both methods, increases with

Fig. 6. Variation of performance measures with the number of targets. (a) RT, (b) MSE, (c) SCR and (d) RCP.

Fig. 5. Reconstructed images for four targets. (a) Existing method. (b) Proposed method.
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Fig. 8. Variation of performance measures with the data volume. (a) RT, (b) MSE, (c) SCR and (d) RCP.

Fig. 7. Reconstructed images with 10% data volume. (a) Existing method. (b) Proposed method.
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data volume. Though, the existing method returned lower MSE
value, Fig. 8(b) shows that as the data volume increases, MSE of
the proposed method decreases significantly. Figures 8(c) and 8(d)

show the variations of SCR and RCP with the data volumes. It is
evident from the figures that the existing proposed method pro-
duces relatively high SCR and RCP. In summary, we have achieved

Fig. 9. Image reconstruction at 0 dB SNR. (a) Existing method. (b) Proposed method.

Fig. 10. Variation of performance measures with SNR. (a) Run Time, (b) MSE, (c) SCR and (d) RCP.
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lower run time at the expense of the image quality. Nevertheless,
the reconstructed images using the proposed method have accept-
able qualities and can be clearly interpreted. We can therefore,

argue that our method can be sought out in real-world applications
where the response time is very crucial, including rescue missions
and military surveys.

Fig. 11. Reconstructed images using with experimental data. (a) Existing method. (b) Proposed method.

Fig. 12. Variation of performance measures with the data volume using experimental data. (a) Run time, (b) MSE, (c) SCR and (d) RCP.
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Scenario 3: Varying SNR
The intention of this scenario was to examine the robustness of
the proposed method relative to the existing one. In this case,
four targets were considered for the reason similar to that
explained in the previous experiment. The targets were recon-
structed at different SNR values ranging from 0 to 20 dB.
Figures 9(a) and 9(b) show the images reconstructed with the
existing and proposed methods when the value of SNR was set
to 0 dB. The image of the existing method is highly cluttered com-
pared with the proposed method.

Figure 10(a) shows the run times at different SNR values where
the proposed method exhibits lower run times for all SNR. Figure 10
(b) shows the values of MSE at different SNR values and the results
indicate that the proposed method outperforms the existing method
over a wide range of SNR values. In Fig. 10(c), our method gives
higher SCR values for a wide range of SNR values compared with
the existing one. However, the two give comparable RCP values as
shown in Fig. 10(d). Generally, this observation alludes that the pro-
posed method is highly effective under noisy environment, and
hence more suitable in practical TWRI scenarios.

Experimental results

In order to further evaluate the performance of the proposed
method, experimental data were employed in the LBFGS method.
The used experimental data were obtained from King Fahd
University of Petroleum and Minerals (KFUPM). The experimen-
tal setup involved two targets of radius 23 cm located at (0.75,
2) m and (0.5, 3) m [23]. The results were fairly compared with
the existing method. Figures 11(a) and 11(b) show the images
reconstructed with the existing and proposed methods, respect-
ively, at different data volumes. It is revealed that the visual
image quality of proposed method is acceptable though it is
slightly lower than that of existing method. Quantitative results,
presented in Fig. 12, support the observation.

The results in Fig. 12(a) show that the run time, for both
methods, increases with data volume and the proposed method
attains lower run time compared to the existing method at the
expense of image quality. It is observed in Fig. 12(b), the existing
method returns lower MSE value at lower data volumes. As the
data volume increases, MSE of the proposed method decreases
significantly. Figures 12(c) and 12(d) respectively show the varia-
tions of SCR and RCP with the data volumes. It is evident from
Fig. 12 that the proposed method returns relatively low, but
acceptable, SCR and RCP. The run time for the proposed method
has proved to be significant, thus making it more suitable in time-
sensitive operations, such as rescue missions.

Conclusion

The authors of this study have introduced a fast image reconstruc-
tion method in TWRI. The method uses LBFGS optimization as a
sub-problem in the least-squares problem. Simulation results
demonstrate that the proposed method executes faster relative
to the existing method. Furthermore, our method generates plaus-
ible scenes that closely match with the reference scenes. Using
objective quality metrics (MSE, SCR, and RCP), the proposed
method outperforms the classical method without sacrificing
the computational load. Therefore, our method performs recon-
struction faster without degrading quality of the reconstructed
image. This promising achievement may have a significant posi-
tive impact on the application of TWRI in real situations.

Currently, we are extending the method to incorporate extended
targets scenarios.
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