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SUMMARY
This paper addresses the problem of finding a non-
holonomic path subject to a curvature restriction, to be
tracked by a wheeled autonomous navigation vehicle. This
robot is able to navigate in a structured environment, with
obstacles modeled as polygons, thus constituting a model
based system. The path planning methodology begins with
the conditioning of the polygonal environment by offsetting
each polygon in order to avoid the possibility of collision
with the mobile. Next, the modified polygonal environment
is used to compute a preliminary shortest path (PA) between
the two extreme positions of the trajectory in the plane
(x, y). This preliminary path (PA) does not yet consider the
restrictions on the curvature and is formed only by straight
line segments. A smoothing process follows in order to
obtain a path (PS) that satisfies curvature restrictions which
consist basically of joining the straight line segments by
circular arcs of minimum radius R (filleting). Finally, the
initial and final orientation of the vehicle are accounted for.
This is done using a technique we have called the Star
Algorithm, because of the geometric shape of the resulting
maneuvers. A final complete path (PC) is thus obtained.

KEYWORDS: Robotics; Vehicles; Trajectory generation; Indoors
navigation; Curvature restrictions; Four wheeled steering.

1. INTRODUCTION
In this paper a collision-free path planning method for the
navigation of a wheeled mobile robot (WMR) is presented.
The type of vehicle considered is a Reeds & Shepp’s car-
like robot whose main characteristics are: (a) a restriction on
the minimum turning radius, and (b) a travelling direction
defined in the Cartesian plane. The navigation occurs in a
structured environment, with the presence of obstacles,
which are modeled as polygons. The latter are preferred
because of the computational efficiency in their handling.1

In most of the literature about autonomous navigation,
vehicles are considered having a full turning capacity on the
tracking point, and this point is located inside the mobile.
Hence most of the existing path planners do not contemplate
restrictions in the turning radius of the vehicle. However for
AGV-PUC (see Figure 1), an autonomous vehicle developed
in the Mechanical Engineering Department of the Catholic
University of Chile, a path planner that considers a

restriction on the minimum turning radius was essential,
given the mechanical configuration of the mobile (Reeds &
Shepp’s configuration). This has been the motivation of the
work described here.

As a first step, an algorithm of controlled amplification of
the polygons has been devised in order to prevent collision
of the mobile to the polygonal obstacles for any path that
requires the vehicle to turn around a vertex. As a second step
in order to obtain a preliminary optimal path (PA), the
authors have developed an algorithm based on the theories
of shortest route by Taha.2 This algorithm is based on a set
of basic matrices, which contain the information of the
polygons representing the obstacles in the environment.
With this information a preliminary path (PA) of minimum
length formed by straight lines segments is generated from
the initial to the final position. It may connect with vertices
belonging to polygons that cross into the trajectory. This
path is of minimum length but neither does it satisfy the
curvature restrictions nor does it consider the required initial
and final orientations of the mobile. This means that the
preliminary optimal path (PA) only connects two positions
(x, y), but not the overall configurations (x, y, �). The
preliminary path is smoothed by a filleting operation along
all vertices of the path to obtain path PS. The filleting
algorithm will always work well because of the provision in
the polygon offsetting stage. As a fourth and final step, to
satisfy the requirements of initial and final orientation of the

Fig. 1. Mobile robot AGV-PUC.
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mobile, we have used what we call the Star Algorithm,
which fits the necessary movements into the available space
with minimum maneuvering.

With the four previous steps it is possible to obtain a
smooth and continuous path, which is optimal or at least
nearly optimal, taking the mobile from an initial to a final
configuration.

2. BACKGROUND
In order to understand the context of our work, we will first
review basic concepts related to autonomous navigation and
analyze the main advances in the study of this subject so
far.

2.1. Sensor-based or model-based systems?
In autonomous navigation of mobile robots, two different
forms to accounting for the environment are distinguished.
The first is to generate the information through sensors as
the robot navigates, and the second is to use a mathematical
model of the environment previously generated and use a
reduced set of sensors. In the systems where environment
information is based on sensors, the environment is
perceived using such sensors as CCD cameras, laser
systems, ultrasonic sensors, infrared sensors, tactile sensors,
radar systems, as well as other less common such as light
sensors. On the other hand, in systems where environment
information is based on mathematical models, the environ-
ment must be previously known, and represented through
mathematical entities, such as polygons.

The speed of current computers allows processing the
information coming from the sensors in a short period of
time, enabling real time autonomous navigation in unknown
or partially known environment. However, the main dis-
advantage of these systems is the absence of any
preliminary idea of obstacle location, therefore, paths
towards the final configuration are not optimal. Never-
theless, sensor-based systems have been preferred, due to
the flexibility offered by sensors, which allow to have
almost real time feedback and also to cope with dynamic
variations of the environment. However, a type of inter-
mediate methodology can be used in which an initial
mathematical model of the environment is supplied, thus
freeing the computer of a substantial amount of work and
reducing the number and complexity of sensors required.
Sensors are then devoted only to handle the dynamic
variations of the environment and to collaborate in the
estimation of position to complement typically a system of
encoders mounted on traction motors (dead-reckoning
navigation). In this way an optimal path could be achieved
if the dynamics of the environment allows it. This
intermediate methodology is appropriate in indoor environ-
ments, where a great part of the surroundings behave in a
static manner, i.e. a museum3 or an industrial production
plant.

2.2. Car-like robot or omnidirectional robot?
According to the mechanical characteristics of a mobile
robot, it can be classified as an omnidirectional or a car-like
robot. Omnidirectional robots are those that have the
capability to follow any trajectory, without caring about first

order continuity, that is to say, they do not have a minimum
turning radius. A large number of well known robots have
this capability, as is the case of the commercial robots
NOMAD 200, RHINO, SAGE, EDINBURGH R2, GRAS-
MOOR and the platforms PYGMALION, LiAS and
HILARE. On the other hand, car-like mobile robots are
those with a minimum turning radius due to restrictions in
their traction and direction mechanisms.

2.3. Research on sensor-based systems
In this case the robot obtains the information of the
environment in real time through sensors. In this type of
robots there has been an important effort by researchers. For
example, Oriolo et al.4–7 and Khatib8 work in obtaining a
map of the environment in real time using ultrasonic
sensors. Murray and Jennings9 obtain a map using stereo
vision. On the other hand, Song and Tang10 combine the
ultrasonic perception with a CCD camera. In project LiAS11

the information coming from three types of sensors is used
to obtain a precise model of an unknown environment. This
model is subsequently used by a real time navigation
algorithm. Stentz12 carried out important work in partial or
completely unknown environments. He performed a scan-
ning of the environment with a range-finder laser to detect
obstacles and then form a matrix that contains the
environment model.

Stentz has worked in the development of the D*
algorithm, which generates optimal free-collisions trajecto-
ries among obstacles, Yahja et al.13 use this algorithm for the
navigation of a vehicle operating in a vast dimension
outdoor environment. Olson14 presents a probabilistic study
of self-localization comparing aspects of a map generated in
real time with a previously known map. Fox et al. use a
Markov localization algorithm to obtain the robot’s proba-
bilistic localization. With the help of special filters they can
introduce the dynamics of environment. This technique was
implemented in the RHINO robot,15 which gave interactive
tours to visitors of the “Deutsches Museum Bonn”. Another
previous work that uses successfully a Markovian localiza-
tion technique to navigate in a partially observable
environment is the one developed by Simmons and
Koenig.16 Similar approach is followed by Thrun et al.,17,18

Vlassis and Tsanakas19 and Yamauchi et al.20 who face the
problem of robot localization in an unknown environment.
Nehmzow et al.21,22 have used the robot NOMAD 200 to
perform different tasks, while obtaining the robot localiza-
tion through perception. For this purpose they have used a
sensor configuration that combines sixteen ultrasonic sen-
sors, sixteen infrared sensors, twenty tactile sensors, a flux
gate compass and a monochrome CCD camera to obtain a
map of multiple resolution. In addition to the previous
works, Nehmzow23 has experimented in robot navigation
using a differential light compass. This compass is imple-
mented with four to six light sensors. This technique has
been proved in robots GRASMOOR and EDINBURGH
R2.

2.4. Research on model-based systems
These systems use a reduced set of sensors to complete the
environment information in the form of a previously
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generated mathematical model. To this category belongs the
work carried out by Barraquand and Latombe,24 who
propose an approach to robot path planning that consists in
the building and searching of a graph connecting the local
minimal of a potential function defined over the robot’s
configuration space, that is to say, the minimal is found in
the points farther away from the borders of the obstacles and
of the limits of the work space. This planner is fast and can
solve problems for robots with many more degrees of
freedom. In another pioneering work, Singh and Wagh25

presented a trajectory planning algorithm that uses the
intersecting nodes between rectangular free convex areas in
a specified environment with obstacles. This algorithm
generates routes of approximately minimum length formed
by the union of these nodes through straight lines.

2.5. Research on car-like robots
The study of the shortest paths for car-like robots has
already a long history. It was first addressed without the
presence of obstacles. The pioneering results were achieved
by Dubins,26 who characterized the shortest path as a set of
at least three contiguous geometric entities. Two types of
entities are used, either a straight line segment or a circular
arc. The robot was considered to move always forwardly.
Reeds and Shepp27 have suggested that the feasible
manifold of shortest paths is formed by 48 different cases
when moving both forward and backward is included.
Sussmann and Tang28 reduced this family to 46 canonical
paths. Souères and Laumond29 synthesized the number of
minimal paths by partitioning the manifold into cells
reachable by only one type of minimal path among the 46
paths. They also computed the exact shape of the shortest
path metric.30 Souères et al.31 characterize the shape of the
shortest path from an initial configuration to a point in the
plane for the Reeds and Shepp’s car. On the other hand, Bui
et al.32 used a similar approach for the synthesis of the
shortest path from a fixed configuration to a point in the
plane for the Dubins’s car. Mountarlier et al33 explored
general analytic tools to compute shortest paths to some
sub-manifolds of configurations in the plane.

The problem of computing the shortest path for a car-like
robot in the presence of obstacles is very difficult. The
existence of a shorter collision-free path for a Reeds and
Shepp’s car is not guaranteed (Desaulniers).34 In their work,
Reif and Wang35 discuss the complexity of the problem of
obtaining the shortest path with constrained curvature in
two dimensions. Recent results solve the problem of
computing shortest path among moderate or well-behaved
obstacles, which are distributed in the environment in
ordinate form.36,37

A large number of research efforts have addressed the
simpler problem of finding collision-free path without
consideration of minimum length. Instead they focus on
obtaining a smooth continuous path in the presence of
curvature restrictions for either Reeds & Shepp’s or
Dubins’s car.38–42

Among the most recent works that address the case of
car-like robots is that of Vendittelli et al.43 Their main
contribution has been a methodology to compute the
shortest nonholonomic path for a point on a mobile that is

moving amidst polygonal obstacles. Geometric algorithms
are used to compute the instantaneous shortest path from a
given configuration to a set of polygonal obstacles for both
Reeds & Shepp’s and Dubins’s car. A similar approach is
followed by Laumond, Jacobs, Taïx and Murray.44 They
obtain a fast and exact planner, based upon recursive
subdivision of a collision-free path generated by a lower-
level geometric planner that ignores the motion constraints
thus generating a holonomic path. Then, the trajectory is
optimized to obtain a nonholonomic path that is of near-
minimal length. This study was done in the context of the
HILARE mobile robot project.45

Wang, Linnett and Roberts46,47 investigate the feasible
movements of a three wheel vehicle with a steering angle
limitation, and point out the types of kinematic restrictions
that should be taken into account in path planning. Their
work concludes with a generic formulation of the problem
of path planning, and the presentation of a generic
algorithm, which is used to find an approximate optimal
global path and also to evaluate potential collision with
polygonal obstacles.

On the other hand, Wang and Cartmell48 have developed
algorithms to perform parallel transfer maneuvers, such as
reverse parking, moving off, negotiating a stationary
obstacle, overtaking a moving vehicle, and changing lanes.
These maneuvers are designed using function fitting
approaches, which generate curves that satisfy the boundary
conditions. The type of curves used are: a quintic polyno-
mial, a cubic polynomial and a triangular function. Murray
and Sastry49 proposed nonholonomic motion planning using
sinusoids for chained systems. Esquivel and Chiang50

analyze three types of curves for trajectory planning: a
parametric curve, an improved cubic polynomial and a
lineal-quadratic curve. More recently Esquivel and Chiang51

present a trajectory planner amidst polygonal obstacles
using Dubins’s curves.

3. NEW METHODOLOGY TO OBTAIN A NEAR
OPTIMAL PATH SUBJECT TO RESTRICTION IN
THE RADIUS OF CURVATURE
The problem of finding a path subject to a limitation in the
radius of curvature can be solved in three stages. The first
stage consists in obtaining an environment with obstacles
adapted to the mobile. The second stage consists in
obtaining a smooth path that connects the initial and final
position while taking into account the curvature restriction,
and the third part consists in taking into account the initial
and final orientation of the mobile.

3.1. Offset of the polygonal environment
We begin with an initial mathematical model of the
environment, in which obstacles are modeled as polygons.
As any given vehicle may have different dimensions, the
polygonal environment must be adapted to include an offset
that will ensure that no point on the vehicle will touch any
present obstacle. The required offset is in general different
for every obstacle because it is dependent on the geometry
of the mobile as well as the geometric shape of the obstacle.
To compute the offset for a given polygon it is first required
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to know the angle of the sharpest convex vertex in the
polygon. As shown in Figure 2 the angle in this vertex can
be acute, straight or obtuse. The arc of minimal radius that
can be followed by the mobile to skirt this vertex is also
shown. Now, to maintain the mobile sufficiently far away
from the vertex and its sides, the arc should pass at a certain
distance d of the vertex. Distance d is related to the
magnitude of the offset (z). Distance d depends on the
geometry of the mobile and is computed using the width and
length of the vehicle. Thus,

d=
1
2

�Length 2 +Width 2 (1)

From the previous figure we have that:

H=
R

sin (�)
(2)

d1 =H�R (3)

z=(d+d1) sin (�) (4)

So replacing equation 2 in 3 and the result to equation 4 we
obtain.

z=R�R sin (�)+d sin (�) (5)

Therefore, the offset z depends on the minimum turning
radius of the mobile (R), on the geometric constant d and on
the angle �, of the sharpest vertex of the polygon. With this
value of z it is assured that any vertex of the polygon can be
turned around with a minimum curvature radius R. The
initial polygonal environment is then modified by offsetting
each polygon by the corresponding z value. Figure 3 shows
an example for an environment of three polygons adapted
with an offset for a test vehicle.

3.2. Generation of a smooth path
We now wish to obtain a smooth path that takes into account
the turning restriction in a vehicle, that is to say its
minimum turning radius R. A vehicle with such a restriction
is known as a car-like robot. To solve this problem a
preliminary path (PA) is needed which is obtained by
modification of an algorithm developed by Taha for
construing critical routes. This algorithm and its adaptation
to the case in hand is described in Appendix I.

Figure 4 shows the preliminary path (PA) for a particular
task obtained by Taha’s modified algorithm. Note that the
resulting PA path is formed by piecewise straight lines
segments.

A smooth path can be obtained next by replacing each
vertex in the preliminary path PA by a fillet of radius R,
which is the minimum turning radius of the vehicle. The
computation carried to offset the polygons assures that the
fillet inserted fits in place of the replaced vertex. The smooth
path obtained is called PS.

3.3. Initial and final orientations
3.3.1. R-Geodesic approach. Now in the third step of our
methodology we must solve the problem of the initial and
final orientations. This problem arises when the vehicle is
not able to follow path PS from its initial position, because
the vehicle is in a different starting orientation. Therefore
the mobile must be reoriented without colliding against any
neighboring obstacles.

Fig. 2. Vertex with offset.

Fig. 3. Environment of three polygons with offset.

Fig. 4. Preliminary shortest path (PA) obtained by means of the
extension of the method of Taha.
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If enough space exists, the reorientation maneuver can be
performed through an R-geodesic, which is the curve of
smallest length that connects two poses in the plane subject
to curvature restrictions (Dubins). As shown in Figure 5,
there are two possible R-geodesics to connect the initial
configuration (xi , yi , �i ) with path PS, whose starting
orientation is �path. These R-geodesics are composed of an
arc segment and a straight line segment. It is clear from
Figure 5 that it is preferable to select the R-geodesic 1
because it is the shortest. When this is not possible because
a collision occurs, then R-geodesic 2 can be selected.

3.3.2. Star method. If there is no space available to follow
any of the R-geodesic curves described above, we can resort
to the so called Star algorithm developed by the authors.
This algorithm consists in finding the appropriate angle (�)
and the necessary number of circular arc steps (n) to go
from the actual initial orientation �i to the initial orientation
(�path) of path PS. A sequence of forward and backward
movements is defined, resembling a star with cusps. The
angle � should be of such magnitude to allow completion of
the reorientation maneuver in an integer number of steps.

The Star Method begins by computing distance dmin

which is the smallest distance between the tracking point of
the mobile and either the nearest obstacle or the physical
limits of the work space.

Distance dmin is the minimum distance to maneuver,
obtained through a simple scanning of the environment,
using mathematical expressions like the minimum distance
between a point and a straight line.

Now, from Figure 6 we can deduce the following
expression

�min =2 tan�1� R
dmin
� (6)

On the other hand, in appendix II we prove that the value of
the angle � is equivalent to

�=�i +
2n �1

2n � (7)

In the above expression n is the number of circular arc pairs
of the type shown in Figure 7, that are necessary to take the
mobile from one orientation to another. � is the absolute
angle between the actual initial orientation of the mobile

Fig. 5. Two R-geodesic to match initial configuration with
path PS.

Fig. 6. Angle �min necessary to obtain a distance dmin.

Fig. 7. Connection maneuver between the vehicle’s position and
the path for n=1.
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and the initial orientation of path PS, and �i is the
complement of �, as is shown in Figure 8. Then replacing �
for �min and isolating n, we have:

n=

ln
1

1�
�min ��i

�

ln[2]

(8)

The value of n is not necessarily an integer, therefore it is
rounded to the next highest integer. Once the new value of
n is obtained, angle � is updated from equation (7). With
new angle � and by virtue of equation (9) a new and
definitive minimum distance rmin is computed, which is
always smaller or equal than the critical distance dmin. In
Figure 7 we can see graphically the resulting maneuvers for
n=1.

rmin =
R

tan ��

2� (9)

In general, to reach the final orientation, n pairs of circular
arcs around the starting point are followed. Each pair of arcs
will reduce in the n-th part the angle � (angle between the
orientation of the mobile and the initial orientation of path
PS).

In Figure 9 the methodology described is used to generate
a complete path (PC) for one obstacle and initial configura-
tion (2, 2, ��/2) to final configuration (4, 4, 0°).

In Figure 10 the details of the initial orientation
maneuvers for the path of Figure 9 is shown. In this case for
�path =109.544°, �i =�90°, �=160.456°, �i =19.544°,
dmin =0.82 m, R=1 m, �min =101.296°, n=2, �=138.75°,
rmin =0.39 m.

In Figure 11 the path obtained for a test vehicle in the
environment of Figure 4 is shown. Now in this case the
shortest path PA has been smoothed to take into account the
curvature restriction. The configurations to connect are (1, l,
0°) and (23, 18, 0°).

In certain cases, before implementing the Star Method, a
controlled movement along a straight line can be followed

Fig. 8. Absolute angles �i and �.
Fig. 9. Example of a path obtained with the proposed path
planner.

Fig. 10. Detail of initial orientation maneuver for n=2.

Fig. 11. Shortest path that satisfies curvature restriction.
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in order to center the mobile inside the available maneuver-
ing space. In this way a larger value of dmin is obtained
which facilitates the initial orientation maneuvers. However
this could be done at the expense of increasing significantly
the resulting path length. Whenever the movement
described above is performed, the mobile changes its initial
position, and this new position becomes the starting point to
perform the reorientation maneuver.

4. CONCLUSIONS
One of the most difficult problems in autonomous naviga-
tion path planning is that of obtaining a path subject to
curvature restrictions. Indeed, it has been demonstrated that
the problem of finding the shortest path in presence of
obstacles does not always have an optimal solution. In such
cases it is desirable to have a planner that is able to generate
a feasible path of acceptable length. On the other hand, the
problem of unlocking the mobile from a position has not
been studied thoroughly since most of the investigators
assume the presence of well distributed obstacles, with
enough space to maneuver without colliding.

In this paper we have presented a method to obtain paths
subject to curvature restrictions to serve as reference in the
navigation of a WMR in a modeled-based environment,
with obstacles modeled as polygons. In this method an
initial algorithm is used, which perform a controlled
amplification of the obstacles of environment, using for this
purpose the characteristic geometric dimensions and the
turning radius of the mobile, and the angle of the sharpest
vertex in every polygon. A second algorithm presented in
this article gives a path of minimal length, which we call
PA. This second algorithm is based on the minimal route
theories developed by Taha. Now the path PA must be
smoothed to account for the curvature restrictions on the
vehicle path which are a consequence of the vehicle
limitation in the turning radius. For this purpose we present
a third algorithm in which PA is successively modified by
filleting so that the vehicle can skirt an obstacle while
maintaining itself at a desirable minimal distance. Hence a
smoothed polyline is obtained, which we call PS.

To account for the initial and final orientations of the
mobile, a novel algorithm is presented called the Star
Algorithm because of the shape of the maneuvers involved.
Hence collision-free maneuvers can be specified cases
where there is an initial blockage of the mobile or the final
orientation is not directly reachable. For this purpose a
minimal maneuvering distance is determined which is the
basis to compute the necessary number of movements to
achieve the desired initial or final orientation of the
vehicle.

All four previously mentioned algorithms form part of a
path planning methodology of great speed and relatively
low computational complexity. A path called PC is obtained
which is a path of minimum length if a solution exists and
of approximately minimum length otherwise.

This planner has been developed within the frame
of project AGV_PUC (Autonomously Guided Vehicle
Pontificia Universidad Catolica). This project consists in the
development of a WMR (see Figure 1), that uses a
navigation system based on a mathematical model. For its

localization a dead reckoning is used. Information is
communicated through wireless modems between a host
computer and the on-board computer of the mobile. Among
future tasks in this project is the implementation of a ring of
16 ultrasonic sensors to help in the tasks of localization of
the mobile, through triangulation.
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APPENDIX I
COMPUTATION OF SHORTEST PATH WITHOUT
TURNING RESTRICTIONS

(a) Mathematical modeling of the Environment
It is desired to obtain a geometric path of minimum length
between two positions on the plane passing through
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polygonal obstacles, without considering curvature restric-
tions. For this purpose we have appealed to the acyclic
algorithm of the shortest path (Taha). This algorithm has
been adapted and extended for the specific goals of our
problem.

In the first place we must have a geometric map of the
environment in a tabulated form. This map consists of two
vectors, one with the x values and the other with the y values
of the vertices of all polygons, and also the initial and final
position. The coordinates of the starting point will be the
first elements in the vectors, and the target point gives the
last elements in both vectors.

There are N polygons distributed in the environment,
each one is labeled with a number, from 1 until N. Each
polygon has a number of vertices, enumerated in clock-wise
form, beginning with vertex 2 in polygon 1. All vertices are
enumerated in this way successively, thus obtaining the
following vectors:

X=

x1

x2

·
·

xK

; Y=

y1

y2

·
·

yK

(A1)

The dimension of these vectors is K. This value corresponds
to the total number of vertices of the polygons, plus two.
The elements xi and yi correspond to the ordinate and the
abscissa respectively of vertex i. In Figure Al the enumera-
tion of a typical environment characterized by K=25 points
and with N=3 obstacles is shown. The obstacles must be
amplified through an arbitrary offset before obtaining
vectors X and Y. Such offset obeys to the necessity of
generating space for the volume of the vehicle as analyzed
in section 3.1 of this article.

Once the environment is characterized by vectors X and Y,
a matrix of distances M is computed:

M=

d11

d21

·
·

dK1

d12

·
·
·
·

·
·
·
·
·

·
·
·
·
·

d1K

·
·
·

dKK

(A2)

The dimensions of this matrix are K� K and the element dij

is the distance between vertex points i and j, therefore M is
a symmetrical matrix with a null diagonal. When the union
between two points are not possible, because there is an
obstacle between them, a very high unreal distance is
assigned, to avoid this itinerary in the shortest path.

(b) Algorithm of the shortest path
The steps of the algorithm will be explained using the
schematized environment of the Figure A1. We have

ui =shorter distance between the point 1 (start) and the point i

Where ui =0, by definition. The ui values, i=2, . . . , K, are
calculated in recursive form by means of the following
formula:

ui =min {distance uj +distance dij }

for i=2, . . . , K; j=1, . . . , i�1 (A3)

Where dij is the distance between the vertex points i and the
point j given by the matrix of distances M.

If the distance ui is smaller than ui�1, this means that the
most direct path toward the initial point from the point i, is
not through the previous point i�1, therefore in this
moment a new calculation must be performed in inverse
form to compute again the shortest distance to the points
below j, in the following way.

uh =min {uh, ul +dhl}

for h=i�1, i�2, . . . , 2; 1=i, i�1, . . . , i (A4)

Thus, it is most probable that the minimum distance of the
previous points to point i has changed. This means that the
path through point i is shorter than the previous one. When
arriving at a point that doesn’t change the current shortest
distance, the inverse loop is finished, since the following
points will not change the minimum distance.

In the final solution for the shortest path, it is not enough
to determine only the value of the shortest distance uK from
the target point to the starting point. In concurrent form, we
should also identify the points along the path. To achieve
this, a labeled procedure is used, which associates the
shortest distance from the start point to each point (ui) to the
point predecessor’s number.

Label of the point i=[ui, j] (AS)

Where j is the point that precedes i immediately in the
shortest path toward the initial point, that is to say,

ui =uj +dij (A6)

By definition, the label in the point 1 is [0, 0], what indicates
that the point 1 is the source or departure.

In Table I the labels for the first 8 points of the studied
model of the Figure A1 are shown.Fig. A1. Typical environment characterization.
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The labels are partial and they can change. This happens
when a point presents a different shorter path toward the
starting point than through the previous point and its label
doesn’t correspond to this previous point. For example in
Figure A1, the point 9 has direct connection with the
starting point, therefore its distance is u9 =d91 and its label
number is 1, and not 8. Therefore both the path and label are
computed once again to the previous points in inverse sense
until arriving to a point that doesn’t change its shorter path.
The result of this new computation is shown in Table II.
Notice the change in the shortest path for points 8, 7 and 6,
which was expected. However points 5, 4, 3 and 2 remain
with their already calculated path.

This recursive method implies that the definitive shorter
distance from the point i to the initial point only can be
obtained when arriving to the final or target point K.

In Figure A2 the minimal path obtained to connect the
configurations given in Figure A1 is shown.

APPENDIX II
COMPUTATION OF THE ANGLE �n REQUIRED
FOR A REORIENTATION MANEUVER IN A
LIMITED SPACE
In Figure A3 we show the reorientation maneuver to move
a mobile robot from the initial orientation �i =�90° to
�path =45° for both n=1 and n=2 cases. Here n is the number
of circular arc pairs (�n) that are necessary to move the
mobile from one orientation to another, � is the absolute
angle between the current orientation of the mobile and the
desired orientation. � is always smaller than � (rad), and �i

is the complement of �. In the previously mentioned figure
the circular area for any given value of n is the free space for
performing the maneuver. Note that for a small available
area the value of n is forced to increase.

The angle �n is the angle of the corresponding circular
arc. In the above figure �1 is shown. In Table III we show
how this value changes for the first four cases.

Thus in general, we can deduce the following expression

�n =�i +
2n �1

2n � (A7)

Table I. Examples of labels.

Vertex i ui Label

1 u1 =0 [0, 0]
2 u2 =d21 [u2, 1]
3 u3 =d31 [u3, 1]
4 u4 =u3 +d43 [u4, 3]
5 u5 =u4 +d54 [u5, 4]
6 u6 =u5 +d65 [u6, 5]
7 u7 =u6 +d76 [u7, 6]
8 u8 =u7 +d87 [u8, 7]

Table II. Example of label’s change.

Vertex i Ui Label

1 u1 =0 [0, 0]
2 u2 =d21 [u2, 1]
3 u3 =d31 [u3, 1]
4 u4 =u3 +d43 [u4, 3]
5 u5 =u4 +d54 [u5, 4]
6 u6 =u7 +d67 [u6, 7]
7 u7 =u8 +d78 [u7, 8]
8 u8 =u9 +d89 [u8, 9]
9 u9 =d91 [u9, 1]

Fig. A2. Shortest path between S and T.

Fig. A3. Reorientation maneuver for n=1 and n=2.

Table III. Values of �n.

N �n

0 �0 =�i

1 �1 =�i +�/2
2 �2 =�i +3�/4
3 �3 =�i +7�/8
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