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Following the derivation of amplitude equations through a new two-time-scale method

[O’Malley, R. E., Jr. & Kirkinis, E (2010) A combined renormalization group-multiple scale

method for singularly perturbed problems. Stud. Appl. Math. 124, 383–410], we show that a

multi-scale method may often be preferable for solving singularly perturbed problems than

the method of matched asymptotic expansions. We illustrate this approach with 10 singularly

perturbed ordinary and partial differential equations.
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1 Introduction

The most popular and best understood technique to solve singularly perturbed boundary

value problems is matched asymptotic expansions, based on the pioneering work of

Prandtl and countless subsequent international contributions since 1904, as surveyed

in Van Dyke [28], Il′in [11], O’Malley [25], Vasil′eva et al. [29], Lagerstrom [19] and

elsewhere. Multi-scale methods were developed much later, based on the independent

work of Kuzmak [18], Kevorkian [13], Mahony [22] and Cochran [4]. These are described

in the texts of Cole [5], Nayfeh [23], Smith [27], de Jager and Jiang [7], Kevorkian and

Cole [14] and Johnson [12], amongst other sources. However, with the advent of more

recent techniques such as the Renormalization Group (or RG) method of Goldenfeld,

Oono and co-workers (cf., e.g. [2, 3, 10]), it became clear that a simpler framework may

exist for the solution of the aforementioned problems that avoids some of the cumbersome

inner workings of the method of matched expansions, and that may possibly provide even

more accurate results for a wider range of parameter values.

In this paper, we demonstrate that with a refined version of the two-time (or multiple-

scale) method much progress can be made regarding the solution of singularly perturbed

problems. One possible disadvantage of the present technique is the need to introduce an

a-priori slow temporal or spatial scale. This, however, is the standard route followed in

applying multiple scales. Our skill in selecting this variable can be expected to improve

with experience or by incorporating ideas from the RG method.

We refer to Olver [24] for the definition of an asymptotic approximation and its use.
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2 Example 1

Lomov [21] considered the linear initial value problem

εu′ +
2

1 + x2
u = 2

3 + arctan2(x)

1 + x2
, u(0) = 1 (2.1)

for x � 0 in the limit that the small positive parameter ε tends to 0.

Two-timing suggests that the asymptotic solution be a function of both the given

independent variable x and the stretched (fast) variable

η =
1

ε

∫ x

0

2

1 + s2
ds =

2

ε
arctan(x), (2.2)

which varies monotonically from zero to infinity in an O(ε)-thick initial layer near x = 0.

This variable occurs naturally since eη is the integrating factor for (2.1). Indeed, linearity

shows that the solution is additively decomposed in the form

u(x, ε) = U(x, ε) + e− 2
ε

arctan(x)(1 −U(0, ε)) (2.3)

for an outer expansion

U(x, ε) = U0(x) + εU1(x) + . . . (2.4)

that is a power series expansion in ε that provides the asymptotic solution for x > 0, with

the supplemental initial layer correction providing non-uniform convergence in a narrow

boundary layer.

Regular perturbation methods readily determine the terms of U(x, ε) uniquely. Since

coefficients of successive powers of ε in the differential equation (2.1) must be zero

U0(x) = 3 + arctan2(x), (2.5)

while Uk(x) = − 1
2
(1 + x2)U ′

k−1(x), for each k � 1. Thus,

U1(x) = − arctan(x), U2(x) =
1

2
and Uk(x) = 0 for k � 3. (2.6)

This three-term outer expansion is an exact solution of the differential equation. The

boundary-layer correction is then simply the complementary solution determined by the

prescribed initial value. The sum (2.3) is the exact solution to the initial value problem

for all ε > 0. It features as initial layer for small values of ε.

Matched expansions (and the related boundary-layer correction and boundary function

method techniques) would instead provide a composite solution in the additive form

u(x, ε) = U(x, ε) + ξ(τ, ε2), (2.7)

with U being the same three-term outer solution (2.4) and where ξ(τ, ε2) ∼
∑

j�0 ξj(τ)ε
2j →

0 as τ = x/ε → ∞. The stretched homogeneous equation gives rise to the initial value

problems

dξ0

dτ
+ 2ξ0 = 0, ξ0(0) = −2, (2.8)
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Figure 1. (Colour online) Plot of the exact expression u−U, multiple-scale (2.3) and the

matched-expansions ξ ∼ ξ0 + ε2ξ1 for ε = 0.9 in the layer region.

dξ1

dτ
+ 2ξ1 = 2τ2ξ0, ξ1(0) = −1

2
, (2.9)

etc., so

ξ0(τ) = −2e−2τ, ξ1(τ) = −
(

1

2
+

4

3
τ3

)
e−2τ, . . . .

Both results (2.3) and (2.7) are asymptotically correct, but numerical checks using a stiff

integrator verify that the two-timing solution is more accurate in the initial layer for

moderate values of ε (cf. Figure 1).

3 Example 2

The solution of the general linear first-order singularly perturbed differential equation (cf.

Wong [32])

εu′ + a(x)u+ b(x) = 0, u(0) = 1 (3.1)

should likewise have a two-scale asymptotic representation

u(x, ε) = U(x, ε) + e− 1
ε

∫ x
0 a(s)ds(1 −U(0, ε)) (3.2)

on any bounded interval of x � 0 as ε → 0, provided a(x) > 0 holds there. Again, the

terms of the outer expansion U(x, ε) = U0(x)+εU1(x)+ . . . will be uniquely determined by

regular perturbation techniques, while the complementary initial layer correction decays
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to zero as the stretched variable

η =
1

ε

∫ x

0

a(s)ds → ∞. (3.3)

In particular, we will need a(x)U0 + b(x) = 0 and a(x)Uk + U ′
k−1 = 0 for all k � 1. The

unique asymptotic expansion (3.2) can also be obtained by integrating the exact solution

u(x, ε) = e− 1
ε

∫ x
0 a(s)dsu(0) − 1

ε

∫ x

0

e− 1
ε

∫ x
t
a(s)dsb(t)dt (3.4)

repeatedly by parts, when ε is small. First,

u(x, ε) = −b(x)

a(x)
+ e− 1

ε

∫ x
0 a(s)ds

(
u(0) +

b(0)

a(0)

)
−

∫ x

0

e− 1
ε

∫ x
t
a(s)ds d

dt

(
b(t)

a(t)

)
dt.

Because the new integral is O(ε), this shows that the leading term asymptotic approxima-

tion is asymptotically correct throughout the x interval. Next, we integrate by parts again

to obtain

u(x, ε) = −b(x)

a(x)
+

ε

a(x)

d

dx

(
b(x)

a(x)

)
+e− 1

ε

∫ x
0 a(s)ds

[
u(0) +

b(0)

a(0)
− ε

a(0)

d

dx

(
b(x)

a(x)

)
x=0

]
+O(ε2),

(3.5)

on bounded x intervals. Although the limiting behaviour of this asymptotic solution is

now clear, that is not so transparent from the exact solution itself.

A direct procedure to obtain the asymptotic solution would be to simply guess that it

has the form

u(x, ε) = U(x, ε) + e− 1
ε

∫ x
0 a(s)dsB(ε) (3.6)

for a smooth outer expansion U and a constant coefficient B(ε) = (1−U(0, ε)) determined

by it. Note that the second term of (3.6) exactly satisfies the homogeneous differential

equation for all ε.

4 Example 3

The canard phenomenon of delayed bifurcation (cf. [31]) illustrates one important ad-

vantage in using the optimal stretched variable anticipated by our multiple-scale method

(in contrast to matched asymptotics whose range of validity is generally more restricted).

Consider the initial value problem

εy′ − xp(x)y = 0 (4.1)

on x � −1 with y(−1) = 1, assuming p(x) > 0 is smooth. The exact solution

y(x, ε) = e−η (4.2)

is expressed simply in terms of only the stretched (fast) variable

η = −1

ε

∫ x

−1

sp(s)ds. (4.3)
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Because η → ∞ as ε → 0 for −1 < x < 0, the resulting limiting solution is trivial away

from an O(ε) thick initial layer near x = −1 when η is finite. The limiting solution however

loses stability for x > 0 since −xp(x) changes sign at x = 0. Nonetheless, the limit of y

remains trivial until reaching the jump point X > 0 where

∫ X

−1

sp(s)ds = 0. (4.4)

Clearly, y(X, ε) = 1 and y blows up exponentially beyond X since η → −∞ there.

Knowing this, we could construct the uniform asymptotic solution for −1 � x � X, i.e.

y ∼ e−(x+1)p(−1)/ε + e−(X−x)p(X)/ε using the end-point stretchings (x + 1)/ε and (X − x)/ε

or, preferably,

y(x, ε) ∼ e
1
ε

∫ x
−1 sp(s)ds + e− 1

ε

∫ X
x
sp(s)ds. (4.5)

Typical stiff integrators track the stability of the limiting solution so they must be

expected to be unreliable for numerical use beyond the turning point at x = 0 (cf.

Dahlquist et al. [6]). A naive matching procedure would break down at the turning point,

in contrast to (4.2). Note that typical matching techniques would be incapable of providing

the jump location X.

5 Example 4

Next, consider the linear second-order two-point problem

εy′′ + a(x)y′ + b(x)y = c(x) (5.1)

on 0 � x � 1 with prescribed end values y(0) and y(1), again presuming a(x) > 0 holds

throughout the interval. We can expect (as two-timing will show) that the asymptotic

solution will have the two-variable form

y(x, ε) = A(x, ε) + e− 1
ε

∫ x
0 a(s)dsB(x, ε), (5.2)

where both the outer expansion A and the factor B (determining the initial layer correction

y − A) have smooth power series expansions in ε with respect to x. The second term will

indeed decay to zero as ε → 0 since the stretched variable

η =
1

ε

∫ x

0

a(s)ds → ∞ (5.3)

(outside an O(ε)-thick initial layer).

We differentiate the ansatz (5.2) twice and substitute into the governing equation (5.1).

Linear independence of 1 and exp[− 1
ε

∫ x
0 a(s)ds] requires the outer solution A to satisfy

the amplitude equation

aA′ + bA = c− εA′′ (5.4)

as a power series in ε on 0 � x � 1 and B to likewise satisfy the decoupled amplitude

equation

aB′ + (a′ − b)B = εB′′ (5.5)
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there. Because exp[− 1
ε

∫ 1

0
a(s)ds] is asymptotically negligible, the boundary conditions for

y imply that

A(1, ε) ∼ y(1) while B(0, ε) = y(0) − A(0, ε). (5.6)

A unique power series expansion A(x, ε) ∼
∑
Aj(x)ε

j for the solution of the resulting

terminal value problem, (5.4) with A(1, ε) = y(1), can be obtained termwise. For example,

A0(x) = e−
∫ 1

x
b(s)
a(s) dsy(1) −

∫ 1

x

c(t)

a(t)
e−

∫ t
x
b(s)
a(s) dsdt. (5.7)

A similar power series solution B(x, ε) ∼
∑
Bj(x)ε

j for (5.5) with B(0, ε) = y(0) − A(0, ε)

can be generated termwise. When c ≡ 0 one can readily find linearly independent

asymptotic solutions of the differential equation in the form A(x, ε) and e− 1
ε

∫ x
0 a(s)dsB(x, ε).

One could do so by eliminating the y′ term in (5.1) and then resort to a WKB procedure,

following papers of Wentzel, Kramers and Brillouin from 1926, (cf. Olver [24]) or one

could rely on the classical results in Wasow [30] or Lomov [21]. The non-homogeneous

equation could then be solved asymptotically using variation of parameters.

By contrast, classical two-timing instead directly seeks an asymptotic solution of (5.1)

in the form

y(x, ε) = y(x, η, ε) = y0(x, η) + εy1(x, η) + . . . (5.8)

for a stretched variable

η =
φ(x)

ε
, (5.9)

such that φ(0) = 0 and φ′(x) > 0 for x > 0. Then the chain rule converts (5.1) into the

partial differential equation (PDE)

(φ′)2

ε

[
yηη +

a

φ′ yη

]
+ [2φ′yηx + φ′′yη + ayx + by] + εyxx = c(x). (5.10)

The leading term y0ηη + a
φ′ y0η = 0 implies that

y0(x, η) = A0(x) + e−ηB0(x) (5.11)

with undetermined x-dependent coefficients A0 and B0 if we take φ′ = a to get

η =
1

ε

∫ x

0

a(s)ds, (5.12)

as anticipated. The limiting boundary conditions require that

A0(1) ∼ y(1), B0(0) = y(0) − A0(0). (5.13)

The coefficient of ε0 in the PDE (5.10) then requires that

a2(y1ηη + y1η) + (−aB′
0 + (−a′ + b)B0)e

−η + aA′
0 + bA0 − c = 0. (5.14)
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To eliminate secular terms in y like ηk or ηje−η , we more generally require that y =

A+ Be−η , where A(x, ε) satisfies the amplitude equation

aA′ + bA = c− εA′′ (5.15)

as a power series in ε and B(x, ε) to likewise satisfies the decoupled amplitude equation

aB′ + (a′ − b)B = εB′′. (5.16)

Again, aA′
0 + bA0 = c and aB′

0 + (a′ − b)B0 = 0, so y1 has the form

y1(x, η) = A1(x) + e−ηB1(x) (5.17)

for undetermined x-dependent coefficients A1 and B1 to be found (by eliminating secular

terms in y2 or, more directly, by power series methods) as solutions of aA′
1 +bA1 +A′′

0 = 0

and aB′
1 + (a′ − b)B1 + B′′

0 = 0, with the implied boundary values.

5.1 First illustration

The equation

εy′′ + (1 + x)y′ − y = 0, (5.18)

with y(0) = 0 and y(1) = 2 has the exact solution

y(x, ε) = (1 + x)

⎛
⎝1 −

⎡
⎣

∫ 1

x
e− 1

ε
∫ s
0 (1+t)dt

(1+s)2
ds∫ 1

0
e− 1

ε
∫ s
0 (1+t)dt

(1+s)2
ds

⎤
⎦

⎞
⎠ (5.19)

by reduction of order. Note that Laplace’s method (cf. Olver [24]) implies that its

asymptotic solution has the form

y(x, ε) = A(x, ε) + e− 1
ε

∫ x
0 (1+t)dtB(x, ε), (5.20)

where

(1 + x)A′ − A = −εA′′, A(1, ε) = 2 (5.21)

determines the exact (one-term) outer solution

A(x, ε) = 1 + x (5.22)

and where

(1 + x)B′ + 2B = εB′′, B(0, ε) = −1 (5.23)

for a series B(x, ε) = B0(x) + εB1(x) + . . . determines the boundary-layer correction factor

B(x, ε) = − 1

(1 + x)2
+

3ε

(1 + x)4
(1 − (1 + x)2) + . . . (5.24)
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termwise. The result is again preferable, for moderate values of ε, to that which we would

obtain by matched asymptotic expansions as the composite

y(x, ε) = 1 + x+ ξ(τ, ε) (5.25)

for τ = x/ε. The correction term ξ to lowest order is ξ0(τ) = −e−τ, in contrast to the

richer two-scale result B0(x)e
−η = − 1

(1+x)2
e− x

ε e− x2

2ε .

5.2 Second illustration

Bender & Orszag [1] consider the singular linear equation

εxy′′ − y′ − xy = 0 (5.26)

with

y(0) = y(1) = 1. (5.27)

Because the coefficient a(x) = − 1
x

of the first-order derivative in (5.1) is negative, we

might anticipate a terminal layer described by e−η for η = 1
ε

∫ 1

x
ds
s

= − ln x
ε

, i.e. e−η = x1/ε.

Following [26], we introduce the ansatz

y(x, ε) = A(x, ε) + B(x, ε)x1/ε. (5.28)

The analytic expressions for the slowly-varying amplitudes are

A(x, ε) = e−x2/2
(
1 +

ε

4
(x4 − 2x2) + . . .

)
(5.29)

and

B(x, ε) = xe
x2−1

2

[
(1 − e−1/2) +

ε

30
(23 − 18x5 − 5x6 + e−1/2(−14 + 18x5 + 5x6)) + . . .

]
.

(5.30)

Note that the behaviour of the solution near x = 0 corresponds to that anticipated by

the method of Frobenius.

6 Example 5

More generally, if we consider the nonlinear problem

εy′′ + a(x)y′ + b(x, y) = 0 (6.1)

with a and b smooth and a(x) > 0, we would naturally seek a multi-scale solution of the

two-point problem in the form

y(x, η, ε) ∼
∑
j�0

yj(x, η)ε
j (6.2)

with

η =
1

ε

∫ x

0

a(s)ds. (6.3)
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This would require

a2(x)

(
∂2y

∂η2
+

∂y

∂η

)
+ ε

(
2a(x)

∂2y

∂η∂x
+ a′(x)

∂y

∂η
+ a(x)

∂y

∂x
+ b(x, y)

)
+ ε2

∂2y

∂x2
= 0. (6.4)

Again, we obtain

y0(x, η) = A0(x) + B0(x)e
−η (6.5)

and y1 will need to satisfy

a2(x)

(
∂2y1

∂η2
+

∂y1

∂η

)
= −a(x)A′

0 + (a(x)B′
0 + a′(x)B0)e

−η − b(x, A0 + B0e
−η). (6.6)

Considering the right-hand side as a power series in e−η , we will eliminate secular terms in

y1 if we require the coefficients of 1 and e−η to vanish. Thus, A0 must satisfy the nonlinear

terminal value problem

a(x)A′
0 + b(x, A0) = 0, A0(1) = y(1) (6.7)

throughout 0 � x � 1, and B0 must satisfy the linear initial value problem

a(x)B′
0 + (a′(x) − by(x, A0))B0 = 0, B0(0) = y(0) − A0(0). (6.8)

(We cannot expect to proceed in cases where the outer limit A0 blows up anywhere).

This determines y0 completely and allows y1 to be determined up to a solution of the

homogeneous problem by using undetermined coefficients, i.e. y1 has the form A1(x) +

B1(x)e
−η + e−2ηC1(x, e

−η) where C1 is known. Note that the numerical implementation of

such results could be very valuable (cf. [9]).

7 Example 6

Consider the first-order linear equation [33]

εu′ + (x− 1)2u = 1, u(0) = 0. (7.1)

The exact solution is

u(x, ε) =
1

ε

∫ x

0

e− (x−1)3

3ε e
(s−1)3

3ε ds. (7.2)

Up to the turning point at x = 1, the preceding theory implies that u has the asymptotic

form

u(x, ε) = A(x, ε) + e− 1
ε

∫ x
0 (s−1)2dsB(x, ε) ≡ A(x, ε) + e− [(x−1)3−1]

3ε B(x, ε), (7.3)

where A and B satisfy the amplitude equations εA′ + (x − 1)2A = 1 and B′ = 0 so

B(x, ε) = −A(0, ε). This also follows from integrating the exact solution by parts. The

need for an initial layer is clear since the limiting equation is inconsistent with the initial

condition. Note that the second term in (7.3) exactly satisfies the homogeneous differential

equation. As we would anticipate, the outer solution A is inappropriate at the turn-

ing point x = 1. Indeed power series methods require (x− 1)2A0 = 1, (x− 1)2A1 +A′
0 = 0,
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etc., so

A(x, ε) =
1

(x− 1)2
+

2ε

(x− 1)5
+ . . . (7.4)

while u(1, ε) = 1
ε

∫ 1

0
e− (1−s)3

3ε ds is O(ε−2/3). Beyond x = 1, however, we would again expect

the outer asymptotic solution A(x, ε) to apply.

8 Example 7

Consider the two-point nonlinear Neumann problem

ε2y′′ + f(x, y) = 0 (8.1)

on 0 � x � 1 with y′(0) and y′(1) prescribed, assuming that the limiting equation

f(x, A0(x)) = 0 (8.2)

has a stable root A0(x) such that fy(x, A0(x)) < 0 holds throughout the interval. To meet

the boundary conditions, we must expect y′ to converge non-uniformly at both endpoints.

Here, we naturally introduce the stretched variables

η =
1

ε

∫ x

0

√
−fy(s, A(s, ε))ds (8.3)

and

ζ =
1

ε

∫ 1

x

√
−fy(s, A(s, ε))ds (8.4)

and seek a uniform asymptotic solution in the three-variable form

y(x, η, ζ, ε) = A(x, ε) + ε(B(x, ε)e−η + C(x, ε)e−ζ) + ε2(D(x, ε)e−2η + E(x, ε)e−2ζ) + . . . .

(8.5)

Such a choice can be motivated by doing a dominant balance (cf. [1]). If y ∼ A0 + B0e
−η

near x = 0 with η = ψ/ε, the dominant terms in the resulting PDE will be ε(ψ2
x +

fy(x, A0))B0e
−η ∼ 0 requiring us to select ψ ∼

∫ x
0

√
−fy(s, A0(s))ds. Differentiating the

ansatz (8.5) suitably, substituting into (8.1) and equating coefficients of 1, e−η, e−2η, e−ζ , e−2ζ

requires the outer expansion A to satisfy the given nonlinear amplitude equation

ε2A′′ + f(x, A) = 0; (8.6)

B to satisfy the initial value problem for the linear amplitude equation

ε2B′′ − 2
√

−fy(x, A)B′ − (
√

−fy(x, A))′B = 0 (8.7)

with the implied initial condition
√

−fy(0, A(0, ε))B(0, ε) = A′(0, ε) − y′(0) + εB′(0, ε) −
2ε

√
−fy(0, A(0, ε))D(0, ε) + . . .; C to satisfy the linear terminal value problem

ε2C ′′ + 2
√

−fy(x, A)C ′ + (
√

−fy(x, A))′C = 0 (8.8)

https://doi.org/10.1017/S0956792511000325 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000325


Two-timing and matched asymptotic expansions 623

with
√

−fy(1, A(1, ε))C(1, ε) = −A′(1, ε)+y′(1)−εC ′(1, ε)−2ε
√

−fy(1, A(1, ε))E(1, ε)+ . . .;

and D and E to satisfy the linear equations

ε2D′′ − 4ε
√

−fy(x, A)D′ − 2ε(
√

−fy(x, A))′D − 3fy(x, A)D +
1

2
fyy(x, A)B2 = 0 (8.9)

and

ε2E ′′ + 4ε
√

−fy(x, A)E ′ + 2ε(
√

−fy(x, A))′E − 3fy(x, A)E +
1

2
fyy(x, A)C2 = 0. (8.10)

Terms in the expansions for D and E follow in a straightforward manner in terms of

A,B and C . Note that O’Malley and Kirkinis [26] considered the related linear problem

ε2y′′ − a2(x)y = b(x), 0 � x � 1, with y(0) and y(1) prescribed. For these problems, it

has been quite easy to determine the stretched variable(s) and the form of the asymptotic

solutions. One could also prove that the expansions are asymptotic, since they will agree

with the results one would obtain using, for example, averaging.

9 Example 8

Zauderer [33] considers the first-order Cauchy problem

ε(ut + ux) + u = sin t, t � 0 (9.1)

where a subscript implies partial differentiation, with u(x, 0) = f(x) on −∞ < x < ∞, for

which we would anticipate an asymptotic solution of the form

u(x, t) = A(x, t, ε) + B(x, t, ε)e−t/ε, (9.2)

i.e. with an O(ε) thick initial layer in time. Then the outer solution must satisfy

ε(At + Ax) + A = sin t (9.3)

as a power series expansion in ε. The explicit solution is

A(x, t, ε) =
sin t− ε cos t

1 + ε2
, (9.4)

as can be directly checked. Linearity then implies that B must satisfy

Bt + Bx = 0, B(x, 0, ε) = f(x) +
ε

1 + ε2
. (9.5)

Thus,

B(x, t, ε) = f(x− t) +
ε

1 + ε2
, (9.6)

i.e. the asymptotic solution is

u(x, t) =
1

1 + ε2
(sin t− ε cos t) +

(
f(x− t) +

ε

1 + ε2

)
e−t/ε, (9.7)

which is exact. Note that the influence of the initial function is short lasting.
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10 Example 9

We will next consider the singularly perturbed Cauchy problem for the hyperbolic equation

ε(utt − c2uxx) + ut + aux = 0 for t � 0, (10.1)

with initial conditions

u(x, 0) = f(x) and ut(x, 0) = g(x) (10.2)

given on −∞ < x < ∞. Because the reduced equation is of the first order, we must

anticipate an initial layer of O(ε) thickness near t = 0. This suggests introducing the fast

time t/ε and and seeking an asymptotic solution of the form

u(x, t) = A(x, t, ε) + εB(x, t, ε)e−t/ε. (10.3)

Then, for example, ux = Ax + εBxe
−t/ε and ut = At + (−B + εBt)e

−t/ε, so the PDE (10.1)

takes the form

ε(Att − c2Axx) + At + aAx + ε[−Bt + aBx + ε(Btt − c2Bxx)]e
−t/ε = 0, (10.4)

implying that A must satisfy the outer amplitude equation

ε(Att − c2Axx) + At + aAx = 0 (10.5)

while B must satisfy

ε(Btt − c2Bxx) − Bt + aBx = 0. (10.6)

We naturally seek solutions as power series

A(x, t, ε) = A0(x, t) + εA1(x, t) + . . . (10.7)

and

B(x, t, ε) = B0(x, t) + εB1(x, t) + . . . (10.8)

subject to the initial conditions

A(x, 0, ε) + εB(x, 0, ε) = f(x) and − B(x, 0, ε) + At(x, 0, ε) + εBt(x, 0, ε) = g(x). (10.9)

Then, A0, B0 and A1 must satisfy the initial value problems

A0t + aA0x = 0, A0(x, 0) = f(x), (10.10)

−B0t + aB0x = 0, B0(x, 0) = −g(x) + A0t(x, 0), (10.11)

A1t + aA1x = c2A0xx − A0tt, A1(x, 0) = −B0(x, 0). (10.12)

They have the unique solutions

A0(x, t) = f(x− at), (10.13)

B0(x, t) = −g(x+ at) − af′(x+ at) (10.14)
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and

A1(x, t) = t(c2 − a2)f′′(x− at) + g(x− at) + af′(x− at). (10.15)

The resulting asymptotic approximation

u(x, t; ε) = f(x− at) + ε
(
t(c2 − a2)f′′(x− at) + g(x− at) + af′(x− at)

)
− εe− t

ε

(
g(x+ at) + af′(x+ at)

)
+ O(ε2) (10.16)

agrees with that obtained by Zauderer [33] using matched expansions. The result is valid

for finite t. It breaks down when εt is large due to the unbounded secular term εA1.

This can be corrected by renormalization (cf. [15–17]). Indeed, if we introduce the spatial

operator

L = a∂x + ε(a2 − c2)∂2
x, (10.17)

the amplitude equations can be rewritten as

At = −LA and Bt = LB (10.18)

which lead to

u(x, t; ε) = e−εt(a2−c2)∂2
xA(x− at, 0, ε) + εe−t/εeεt(a

2−c2)∂2
xB(x+ at, 0, ε) (10.19)

since, for example, eat∂xB(x, 0, ε) = B(x + at, 0, ε). It can be easily verified that by incor-

porating the given initial conditions and expanding the exponential operator one recovers

(10.16) for finite t. The meaning of the exponentiated differential operators is obtained by

expanding the exponentials in their Maclaurin series with differential operator terms.

For the generalized Cauchy problem

ε(utt − c2∇2u) + ut + (a · ∇)u = 0, u(x, 0) = f(x), ut(x, 0) = g(x), (10.20)

where a = (a1, a2, . . . , an), we would again seek an asymptotic solution of the form

u(x, t) = A(x, t, ε) + εB(x, t, ε)e−t/ε. (10.21)

Proceeding analogously, we get

u(x, t) = e−εt[(a·∇)2−c2∇2]A(x − at, 0, ε) + εe−t/εeεt[(a·∇)2−c2∇2]B(x + at, 0, ε) (10.22)

and obtain the initial values for A and B by using power series expansions of the initial

conditions with respect to ε.

11 Example 10

Amongst the papers presented at the International Conference on Singular Perturbation

Theory and Application in Shanghai in June 2010, Du et al. [8] considered the linear

singularly perturbed Dirichlet problem ε(uxx+uyy)+a(x, y)ux+b(x, y)uy+c(x, y)u = f(x, y)

on the unit square. They required the coefficients a and b to be positive in order to avoid

the O(
√
ε) parabolic boundary layer that would occur if part of the boundary was a
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characteristic of the reduced equation (cf., e.g. de Jager and Jiang [7]). We will instead

consider the simpler problem

ε(uxx + uyy) + ux + uy + 2u = 0 (11.1)

with continuous boundary data

u(x, 0) = φ(x),

u(x, 1) = J(x),

u(1, y) = ψ(y),

u(0, y) =K(y),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.2)

matching smoothly at the corners of the square.

Comparing the asymptotic behaviour of the corresponding ordinary differential equa-

tions, we would expect boundary layers of O(ε) thickness along the edges x = 0 and

y = 0. However, we will also have a ‘corner layer’ of the same thickness near the origin

(cf. Il′in [11]), where the boundary layers intersect (cf. Figure 2).

The limiting behaviour on the upper half triangle y > x > 0 will naturally be determined

as the solution of the reduced problem

A0x + A0y + 2A0 = 0, A0(x, 1) = J(x). (11.3)

We can describe the initial data as x(s) = s, y(s) = 1 and A0(s) = J(s) and solving

the characteristic equations we obtain x = t + s, y = t + 1 and A0 = e−2tJ(s), where

t = y − 1, s = x− y + 1 and

A0(x, y) = e2(1−y)J(x− y + 1). (11.4)

In the lower triangle, where x > y, the reduced problem must satisfy

A0x + A0y + 2A0 = 0, A0(1, y) = ψ(y). (11.5)

Its solution is

A0(x, y) = e2(1−x)ψ(y − x+ 1). (11.6)

Note that these two reduced solutions agree on the diagonal of the square since ψ(1) =

J(1). Higher-order terms in an outer expansion A(x, y, ε) =
∑

j�0 Aj(x, y)ε
j can likewise

be uniquely defined in both triangles by a regular perturbation procedure.

We cannot generally expect A0(x, 0) = e2(1−x)ψ(1 − x) = φ(x) to hold, however, so we

must introduce a supplemental additive boundary layer

u(x, y, ε) = B(x, y, ε)e−y/ε (11.7)

along the edge y = 0 where φ is prescribed. Linearity then requires B to satisfy the regular

perturbation problem

ε(Bxx + Byy) + (Bx − By) + 2B = 0 (11.8)
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�

�

u(0, y) = K(y)

u(x, 1) = J(x)

u(x, 0) = φ(x)

u(1, y) = ψ(y)

y

x

1

1

(α)

(β)

(γ)

(δ)

Figure 2. Planar geometry of problem (11.1). Regions (β), (γ) and (δ) correspond to the initial layers

B(x, y, ε)e−y/ε, C(x, y, ε)e−x/ε and the corner layer D(ε)e−(x+y)/ε, respectively. Region (α) corresponds

to the outer limits (11.4) and (11.6) above and below the diagonal of the square, respectively.

nearby, with boundary data B(x, 0, ε) = φ(x) − A(x, 0, ε). In particular, the leading term

B0 will satisfy

B0x − B0y + 2B0 = 0, B0(x, 0) = φ(x) − A0(x, 0). (11.9)

Its solution is

B0(x, y) = e2y(φ(x+ y) − A0(x+ y, 0)). (11.10)

Later terms in B follow readily. We analogously construct the boundary-layer correction

C(x, y, ε)e−x/ε along the edge x = 0. The sum A(x, y, ε) + B(x, y, ε)e−y/ε + C(x, y, ε)e−x/ε

is an asymptotic solution of the differential equation. At the origin, however, it will have

the limiting value A0(0, 0) + B0(0, 0) + C0(0, 0) = −e2J(1) since we have assumed that

φ(0) = K(0). To meet the prescribed corner value, we now introduce an additive corner

solution

D(ε)e−(x+y)/ε, (11.11)

which satisfies the differential equation for all constants D. This allows us to solve the

Dirichlet problem by using the uniformly valid ansatz

u(x, y, ε) = A(x, y, ε) + B(x, y, ε)e−y/ε + C(x, y, ε)e−x/ε + D(ε)e−(x+y)/ε. (11.12)

Here φ(0) = K(0) = A(0, ε) + B(0, ε) + C(0, ε) + D(ε) determines D(ε) asymptotically. We

note that the need for a corner layer was first recognized by Levinson [20] and a matched

solution was given by Zauderer [33].

Following the informal discussion of the present article, readers are urged to apply

the formalism to other problems of interest, for example, to those from the texts of

Nayfeh [23] and Kevorkian and Cole [14]. A variety of nonlinear problems are solved in

ref. [26].

12 Conclusion

The authors demonstrate, using 10 diverse explicit examples, that multiple-scale methods

have definite advantages over matched asymptotic expansions. The results are however

equivalent as ε → 0, but the multiple-scale approximations will hold for larger ε values.
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Determining the right stretched variables to use is clear for these examples, but further

experience is needed to make such selections in general.
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