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SUMMARY
During the past decade, robotics for cochlear implant electrode array insertion has been limited to
manipulation assistance. Going beyond manipulation assistance, this paper presents the new concept
of perception augmentation to detect and warn against the onset of intracochlear electrode array tip
folding. This online failure detection method uses a combination of intraoperative electrode insertion
force data and a predictive model of insertion force profile progression as a function of insertion
depth. The predictive model uses statistical characterization of insertion force profiles during normal
robotic electrode array insertions as well as the history of intra-operative insertion forces. Online
detection of onset of tip folding is achieved using the predictive model as an input into a support
vector machine classifier. Results show that the detection of tip folding onset can be achieved with
an accuracy of 88% despite the use of intra-operative insertion force data representing incomplete
insertion. This result is significant because it allows the surgeon or robot to choose a corrective action
for preventing intra-cochlear complications.
KEYWORDS: cochlear implants, fault detection, medical robotics.

1. Introduction
Cochlear implants (CI) (Fig. 1) restore auditory perception in patients with sensorineural hearing
loss. These prothesis are typically a two part system with an externally worn microphone/audio
processor and an implanted electrode array in the cochlea which is positioned within close proximity
to the auditory nerve. The electrode array is inserted into the scala tympani (ST) (one of three helical
chambers within the cochlea). Hearing sensation is restored by using the electrodes to provide direct
electrical stimulation to the auditory nerve–thereby bypassing dysfunctional hair cells which, in
normal anatomy, are responsible for transduction of acoustic energy into electric stimulation of the
auditory nerve.

Previous works on robot-assisted CI insertion were motivated by the need for avoiding intracochlear
trauma (as further explained in the background and motivation section). Zhang et al. first introduced
the concept of robotic insertion and steerable CI electrode arrays in ref. [38, 40] where different
kinematic arrangements and degrees of freedom in manipulating electrode arrays during the
insertion process were considered. The electrode insertion and steering path planning strategy of
ref. [38] was subsequently adapted to steer perimodiolar electrode arrays (PEA).23–26 In addition,
other works (e.g. Refs. [19, 31]) presented clinically adapted versions of electrode array insertion
tools.

Past works on electrode array insertion have focused on manipulation augmentation to enable
accurate steering and insertion of electrode arrays into the narrow and delicate anatomy of the scala-
tympani. Because of the hypothesis that large insertion forces are associated with a higher risk of
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Fig. 1. (a) A cochlear implant system:21 1© microphone, 2© processor, 3© transmitter, 4© reciever, 5© electrode
array, (b) cross section of the cochlea showing 6© cochlea, 7© scala-tympani, 8© scala-media, 9© scala
vestibuli.

intracochlear trauma, many works developed and used means for force sensing.17, 20, 23, 25, 28, 31, 33, 37, 40

Surprisingly, the use force sensing information has been limited to using force data as a metric for
post-evaluation of insertion quality.

In contrast to prior works limited to manipulation augmentation, this paper presents a contribution
by putting forward the notion of perception augmentation by which the robot augments the surgeon’s
perception by using sensory data and inference to perceive and guard against impending undesirable
insertion conditions. According to our new approach, force sensing data can be used to help surgeons
extend their perception abilities by providing them with a means for online detection of onset
of erroneous electrode insertion conditions. To the best of our knowledge, no prior works have
presented the concept of perception augmentation for assisting in the monitoring of the electrode
array insertion process. In-vivo force measurements were used in ref. [26] to facilitate electrode
array insertion despite errors in the registration of the robot to the anatomy. This work aims to
extend the concept of using intra-operative measurements to improve outcomes. Instead of focusing
on using the sensory information for control action as in ref. [26], we focus on using sensory
information as a means to derive inference regarding the normal progression of the insertion
process.

While there are several known erroneous electrode insertion conditions (e.g. extra-cochlear
buckling, intra-cochlear scalar crossing) this paper chooses to demonstrate the concept of perception
augmentation for detecting the onset of tip fold-over. This erroneous condition can arise from incorrect
electrode insertion technique causing the tip of the electrode array to fold over itself as insertion
progresses. When tip fold-over occurs further advancement of the electrode array into the ST can
cause damage to the electrode array and the intracochlear anatomy.

In our preliminary work,25 we presented an investigation of tip fold over using support vector
machine classifiers. This approach demonstrated an 89% success rate in classification of tip folding
based on data collected during the entire insertion process (i.e. classification was done post insertion)
and guided selection of appropriate feature vectors. However, during surgical insertion one is
interested in detection of the onset of tip fold over in order to warn against a potentially harmful
insertion or in order to guide corrective action during robotic insertion. This work extends25 by
investigating methods for detecting onset of tip fold-over. This effort is motivated by the desire to
reduce the risk of intra-cochlear trauma.

The remainder of this paper is organized as the following: Section 2 presents background on
CI surgery and motivation for this work, Section 3 presents the kinematic model used to describe
PEA insertion and insertion forces. Section 4 details the experimental protocol. Section 5 proposes
an algorithm for using force information to detect the onset of abnormal insertion events. Finally,
Section 6 presents the results of the proposed algorithm with discussion of its meaning and limitations
and Section 7 summarizes the findings.
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Fig. 2. Coordinate Frames and vectors describing electrode array insertion kinematics with a parametric rendering
of the cochlea helical geometry and the standard cochlea coordinate frame.

2. Background and Motivation
The cochlea is a helical structure with three principal chambers; the scala vestibuli (SV), the scala
media (SM), and the ST, Fig. 1(b). Most electrode arrays are designed to be inserted into the ST due
to evidence that CI placement entirely in the ST results in improved hearing outcome.13, 34, 35 This is
attributed to the relatively larger size of the ST in comparison to the SV.

Traditionally, the cochlea is accessed by performing a mastoidectomy and exposing the facial
recess.10 The electrode array is inserted into the ST chamber of the cochlea. Entry into the ST is
typically through the round window membrane or through an anterior-inferior cochleostomy using
a surgical drill on the order of 1 mm in diameter. The implant’s internal receiver, which remains
sub-dermal, is fixed to the patient’s skull. After implantation and a check of device function, the
surgical site is closed. The patient must then wear an external transceiver which attaches by a magnet
transcutaneously to the internal receiver.

The implanted electrode arrays come in several forms ranging from straight electrode arrays that
follow the lateral wall to pre-curved electrode arrays that follow the mid-scala or hug the inner
(modiolar) wall of the ST. In this work, we focus on the PEA as a case study. This selection was
based on the under-actuated structure of PEA’s which can be indirectly steered during implantation
using intelligent control of an embedded stylet.

Intra-cochlear trauma has been a focus of numerous studies1, 7, 11, 15, 27, 36, 36 with an emphasis on
mitigating damage to the intra-cochlear anatomy. Clinical evidence suggests that trauma mitigation
is correlated with improved retention of residual hearing.7 There is also evidence that preserving
residual hearing improves speech recognition in complex sound environments.14 Because of these
studies there has been an increased emphasis on the importance of inserting PEA’s using “soft”
technique in order to avoid intra-cochlear trauma.1, 13

In 2005, Roland28 included the measurement of insertion force as an additional quantitative post-
operative metric of insertion quality which has subsequently been used by a variety of groups. In 2007,
Todd reported insertion forces below 0.05N using PEA’s in highly controlled laboratory insertion
experiments.33 Other reported insertion forces have been mostly below 20 mN in magnitude across
different types of implants. Such low forces are below the threshold of accurate human perception3, 16

and have presented a need for new tools with embedded force sensing capability to be used. Several
works have presented prototypes for automated insertion using force sensing as either single19, 20, 31

or multi degree-of-freedom (DoF) devices.39, 40

Different types of complications can occur during the process of inserting the CI into the
cochlea. This work focuses on the tip folding complication. In tip folding cases, the distal tip of
the electrode folds over on itself during insertion. This results in some electrode contacts being
poorly positioned with respect to the auditory nerve. It also effectively doubles the cross sectional
area of the electrode array as it moves through the ST. Tip folding has been discussed in several works
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with Briggs addressing it during the development of perimodiolar designs4, 5 and as a consideration
in magnetically steerable electrode array prototypes.8 The rate of tip folding is not well known
in clinical practice although is expected to be rare with experienced surgeons. However, for a
tool intended to autonomously deploy implants, the clinical risk of folding the implant during
insertion requires the presence of safety algorithms that can mitigate the likelihood of inducing
trauma.

3. Robotic Insertion of CI Electrodes
The kinematics of robotic PEA insertion and the type of data collected are reviewed in this
section with additional details presented in ref. [24, 25]. The insertion of CI electrode arrays into
a cochlea phantom model was carried out using a custom-designed robotic-tool while assuming
manufacturer-recommended insertion technique. This phantom model was provided by Cochlear
Ltd. The choice of the phantom model for the execution of the insertions was motivated by the
need to easily observe the behavior of the PEA’s during insertion to confirm insertion conditions. In
our previous studies, it was observed that insertion forces were generally higher in temporal bones
than in the plastic model.25 However, it was hypothesized that the reason for increased force was
due to the uncertainty in determining the correct point to begin advancing off of the stylet. This
was tested through the use of a hybrid force/position admittance controller and demonstrated that
insertion forces in cadaveric specimens were comparable to the phantom model insertions when the
control was capable of correcting the pre-defined start of advancing off the stylet in the insertion
trajectory.26

It is assumed that access to the cochlea has been created through a mastoidectomy. The entrance to
the cochlea is made through either the round window or an anterior–inferior cochleostomy. Regardless
of the technique, the point of entry into the cochlea will be denoted as the insertion point.

The implant electrode used exclusively in these experiments was the Cochlear Contour Advance
PEA. This type of implant is actuated through the removal of an embedded metal stylet in the pre-
shaped silicone body of the electrode array. When the stylet is completely removed, the PEA is curled
so as to maintain close proximity of the modiolar (inner) wall of the cochlea. As the PEA is inserted
into the cochlea’s ST chamber, the removal of the stylet is coordinated with the insertion progress
using a technique called Advance Off Stylet (AOS). With this technique, the stylet is not disturbed
until approximately 7 mm of the PEA has entered the ST. A small mark on the exterior body of the
Contour Advance indicates this depth of insertion for the surgeon. To insert the PEA past the 7 mm
depth the surgeon holds the stylet fixed and advances the electrode array off the stylet. Figure 3 (A)
thru (C) presents a rendering of the AOS technique in a 2D profile of the ST chamber shape. The
figure shows the PEA and the ST in an accurate size scale relative to each other. This study included
purposely selected and modified prototypes of the Contour Advance, with manufacturing defects and
malfunctions, aimed to induce or facilitate tip folding events, at rates very significantly higher to any
experience reported in clinical practice with this electrode design.

The insertion depth of electrode arrays is often parameterized by either linear depth,
q,20, 25, 28, 31, 33, 38 or by the insertion angle about the cochlea helix, θ ,1, 2, 5, 9, 36 that points to the distal
tip of the electrode array. In this work, we present insertion force based on linear depth q ∈ [0, L]
where L is the electrode array length. This representation was chosen because linear depth estimates
may be made in real time by the robot controller. Instead of using the absolute insertion depth
q ∈ [0, L] we use a normalized insertion depth λ = q

qrange
because it was observed in ref. [24, 25] that

in the final millimeter of electrode insertion the gripper contact with the facial recess may corrupt
measurement of purely intra-cochlear reaction force. The constant qrange is a fraction of L used to
exclude contact of the gripper holding the PEA with the facial recess. By specifying qrange = 14 mm,
we removed contact events from all insertion data and allowed for fair comparison of intra-cochlear
forces.

A rendering of the robotic insertion system is shown in Fig. 4. A Stewart/Gough parallel robot 1©
carries a force sensing and stylet actuation module 2© and a gripper holding a PEA 3©. The gripper
has an attached frame {A} located at a pose x expressed in the robot’s base frame {B}. The pose vector
x ∈ R

7 contains the homogeneous transformation with a three element cartesian translation vector
and a unit quaternion.
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Fig. 3. Advance Off Stylet insertion technique. (a) The PEA is inserted until the distal end reaches the basal
turn. (b) Stylet retraction is coordinated with continued insertion into the scala tympani. (c) At full insertion
depth the stylet is completely. (d) Normal insertions result in the PEA electrodes being in close contact with the
modiolus. (e) Tip-folding results in the distal tip of the PEA bending over itself inside the cochlea.

Fig. 4. Robotic insertion system with frame definitions. The gripper frame {A} is located at a point x in the
robot base frame {B}. The force sensor measurements are expressed in frame {F}. The key components of the
system include (1) the six dof Stewart–Gough style robotic manipulator, (2) the gripper module that both holds
and actuates the PEA, and (3) the PEA implant.

The insertion trajectory was calculated as a linear interpolation between an initial and final position
of the gripper holding the PEA as described in ref. [25]. The pose of the gripper as a function of
insertion depth is denoted as x(q). At the beginning of insertion q0 = 0 and at the end of the insertion
q = qmax ≥ qrange. The PEA design requires coordinated actuation of the embedded stylet with the
magnitude of stylet retraction denoted by the variable qs(q). Once reaching the proper insertion depth
to start AOS (qAOS) the stylet is retracted at the same rate that the PEA advances into the cochlea. In
the observer’s frame of reference, the PEA will appear to advance off of the stylet. The magnitude of
stylet retraction is expressed as:

qs(q) =
{

0, q ≤ qAOS

q − qAOS, q > qAOS

. (1)
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Table I. Experimental matrix.

Set Specimen Insertion type Rate (mm/s) # of trials

1 Phantom Normal 1 51
2 Phantom Folding 1 51

4. Experimental Design
The objective of this research was to characterize insertion forces of PEA’s and to test methods in
which this force information could be used to identify an insertion complication before the insertion
completed. The transparent model allowed microscope observation of the PEA’s during insertion.
Using these observations the data could be classified by the resulting type of insertion. The resulting
types of insertions were defined into two groups. Normal insertions correspond to proper placement
of the PEA, with electrodes contacting the modiolar wall. Folding insertions were any cases where
the tip of the PEA bent back toward the base of the PEA.

Premature disruption of the stylet before insertion can lead to tip folding and although uncommon
in clinical execution, intelligent autonomous, or cooperative tools need the ability to determine if
their actions are leading to unintended and undesirable outcomes. The set of insertions performed
are detailed in Table I. Visual presentations of normal and folding insertions are shown in Fig. 3 (d)
and (e), respectively. Tip folding was deliberately induced by using selected research electrodes with
manufacturing defects and deploying them prematurely in the phantom model of the cochlea. The
purpose of this set up was to achieve as many cases of tip folding as possible (in contrast with real
electrode/product behavior in clinical cases).

The phantom model mimics the shape of a left side temporal bone with the mastoidectomy and
cochleostomy performed. The cochlea was removed from the model and placed in a new holder
to allow a digital microscope to monitor inter and extra-cochlear PEA mechanical behavior. Before
proceeding with PEA insertions the cochlea was filled with a 50% glycol solution to mimic lubrication
properties of perilymph. Using glycol solution for lubrication has been presented in ref. [28] and
validated against other lubrication alternatives in ref. [18]. After preparation, the phantom model was
secured within the workspace of the robotic insertion system.

The experimental setup for the insertion of PEA is shown in Fig. 5. The insertion system is a
custom made six DoF Stewart/Gough parallel robot rigidly fixed with respect to the phantom first
presented in ref. [39]. A gripper module with one dof to actuate the PEA’s stylet is mounted on a six
axis force/moment transducer (Nano43, ATI Industrial, Apex, NC) which is in turn connected to the
moving platform of the robot. The controller for the robotic system ran under the xPC Target real
time OS from Mathworks.

During each insertion experiment the specimen was fixed in position relative to the robot. Next,
the gripper was tele-manipulated to the insertion point x(qmax) in the cochlea in order to digitize
this point for calculation of the insertion trajectory. The gripper was then retracted to enable loading
the PEA. After loading, the electrode tip was guided to the insertion point. Once the PEA was in
position, the insertion trajectory was calculated and then executed. Once insertion was completed,
the electrode was retracted and the force data exported from the control computer for processing.

Each insertion was executed at a fixed rate (i.e. q̇ = 1 mm/s) with force measurements sampled
at 1000 kHz and processed through a 25 ms moving average filter. The insertion speed was selected
based on the range defined in prior works in phantom models.17, 37 The force resolution for the sensor
was 4 mN per axis and moment resolution was 0.025 N-mm per axis. The force and moment vector
is denoted as a wrench w = [

fx, fy, fz, fxx, fyy, fzz

]T
and presented in the force sensor frame {F}

as shown in Fig. 4.
Tip folding cases were generated by actuating (retracting) the stylet by 0.5 mm before the insertion

(off the stylet, AOS) into the cochlea begins. This simulates improper loading of the PEA into the
gripper or other significant disturbances to the distal tip of the PEA or its stylet prior to use. In
practice, the PEA should not have its stylet retracted until after the electrode is fully inserted into the
ST.

The force component fz is referred to as the insertion force, fx, fy are the lateral forces, and
fxx, fyy are the lateral moments. The moment fzz is the twisting moment along the electrode array’s
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Fig. 5. Experimental setup. {A} The insertion system is suspended over the phantom model of the cochlea.
Before experiments begin, the robotic system is registered to the phantom model. After loading a PEA into
the insertion system, the force sensor is unbiased for the weight of the PEA and the insertion trial would then
be executed. Sub-figure {B} presents a closer view of the robotic end effector, force sensor and the phantom
cochlea model.

long axis and due to the PEA’s compliance reaction moments in this direction are too small to be
perceptible by the sensor used in this study.

5. Detection of the Onset of Tip Folding
There are several basic clinical objectives that must be fulfilled in the process of detecting tip folding
to make the algorithm useful in a realistic setting:

(1) The detection algorithm should not be identifying folding events before initiating AOS since it is
not consistent with the conditions required for real folding to occur.

(2) The detection algorithm should identify a folding event as close to the start of AOS as possible to
prevent forcing a folded electrode array deeper into the cochlea.

(3) There is increased risk of trauma in removing an implant and inserting a new one so the detection
algorithm is biased to reducing false positives. This particular goal is a judgement call we have
made as an assumption that will be evaluated in future clinical research studies. Regardless our
proposed method is inherently tunable to later adjust the acceptable rates of false positive and
negatives based on a larger set of experimental data.

The key weakness with our preliminary classification method25 was that the entire insertion must
be completed before a decision could be made. This is undesirable since the folded PEA will have
been forced into the ST thus increasing the risk of trauma. The adjusted approach is to make a
continuous estimation of the entire insertion wrench throughout the insertion process.

Our approach for tip folding detection is presented in Fig. 6. A tip folding event is determined
by a support vector classifier (SVC); a supervised machine learning algorithm applied to tip folding
detection. In ref. [25] the SVC rendered a classification decision after the insertion was completed. To
detect a folding event earlier, we have added a model predictor which uses experimental measurement
distributions with the current measurements in order to produce the necessary feature vector to be
used by the SVC.

The wrench data is sampled at a high rate with m total measurements for any given insertion. The
indexing subscript k references one measurement or prediction with 1 ≤ k ≤ m. All data is expressed
in terms of the normalized insertion depth vector λ ∈ R

m with the use of λk indicating the kth step of the
insertion. In Fig. 6, a model estimator is used to augment the current component wrench measurement
fj (λk) with the experimental distribution f̄j (λ) to produce a prediction of the insertion wrench
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Fig. 6. Tip folding detection process. The subscript j refers to one of the measured wrench components. As a
force component measurement fj is made at depth λk , is combined with a known population of normal insertion
data with mean f̄j and variance σj to generate an estimate of a likely complete insertion force vector f̃j . This
estimate is then used to construct a feature vector φ that is passed to a SVC decision function to decide whether
a tip fold has occurred. In the case of tip folding, the robot is instructed to stop further insertion of the PEA into
the cochlea.

Fig. 7. Insertion force magnitudes based on cases of normal insertion (left) and tip folding insertions (right).
Plots are represented in normalized insertion distance λ.

component f̃j (λ). A subset of the predicted wrench components f̃j (λ), j ∈ [x, y, z, xx, yy, zz] are
then used to generate a feature vector φ (λk) which is used as an input to the SVC.

To generate the predicted wrench components f̃j (λ) we use an insertion force model f̂j (λk). Details
of the insertion force model to reduce the amount of numerical data processed are first presented.
This is followed by how the insertion force predictions for use with the SVC is generated. Lastly,
a modification of the SVC decision function to enable continuous online detection of tip folding
throughout the insertion process is presented.

5.1. Insertion force model
Figure 7 depicts average insertion direction forces for normal (blue, left side) and tip folding (red, right
side) insertions. The force and moment data collected during the insertion has thousands of samples
for each wrench element. Both real time processing and tip folding detection require a numerically
compact representation that maintains the measured signal fidelity. The purpose of the force model is
to provide this compact representation. It can be seen that one normal insertion appears to terminate
early. A large impulse was detected during insertion which caused the system to stop with a shallow
insertion. In this case, a final decision must be made by that point in the insertion. Since the insertion
was still normal, it was included in the set of experimental data.

Each wrench component is assumed to be a continuous function in the domain of λ ∈ [0, 1]. The
vector containing the values of the function representing each wrench component is designated by
fj (λ) where j is the particular wrench subscript. This vector is the discrete sampling at m points
λ = [λ1, λ2, . . . , λm] of the continuous signal of the F/T sensor during the entire PEA insertion. For
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the remainder of this section, the component subscript will be omitted. At a given depth of insertion
λ a wrench component f (λ) is approximated by a Bernstein polynomial basis representation f̂ (λ)
defined as

f̂ (λ) =
n∑

i=0

ciBi(λ), (2)

where ci is a fitting coefficient, n is the fitting order, and Bi(λ) is the Bernstein basis computed by
the following equation.

Bi(λ) = n!

i!(n − i)!

(
λi (1 − λ)n−i

)
, ∀i = 0, . . . , n. (3)

The advantages of the Bernstein polynomial basis include orthogonality in the unit domain,
its computational efficiency through recursive calculation of the coefficients and its excellent
conditioning which reduces the effect of rounding errors in the coefficients.12 For a given order
n and set of m sample points a fitting matrix is constructed

B =

⎡
⎢⎣

B1(λ1), . . . , Bn(λ1)
...,

. . .
...

B1(λm), . . . , Bn(λm)

⎤
⎥⎦ ∈ R

m×n+1. (4)

The coefficients vector c ∈ R
n+1 is determined from the force vector f(λ) through the least squares

solution

c = B−1f(λ). (5)

Given c, a vector containing the values of the insertion force model (2) is designate by f̂ ∈ R
m.

This vector can be calculated in matrix form as

f̂ = B c. (6)

Using the polynomial coefficients will not produce the same vector as the original measurement
(i.e. f̂ �= f) and the root mean square error, εRMS , of this discrepancy is defined as

εRMS =
√(

f̂ − f
)T (

f̂ − f
)

m
. (7)

The order of the polynomial series was set to n = 10 to fit the data with a RMS error comparable
to the force sensor noise of 0.004N (force) and 0.025 Nmm (moment).

Using this polynomial fitting, the force vector can be resized by changing the number of sample
points in λ. Based on our work,25 the number of samples per wrench component was set to m = 25.
From the collection of measured normal insertion data, the average and variance as a function of
insertion depth λ are denoted as f̄m and σm respectively. A second subscript denotes the axis of the
measurement (i.e. f̄m,z is the average force for the z axis in the force sensor frame {F}). Table II
presents the fitting coefficients for the averages and variances of the insertion forces and lateral
moments from the set of normal insertion data used in the folding detection.

5.2. Estimation of future forces
Our previously trained classification model relied on the entire insertion data set to make a successful
classification. The present goal is to make a determination on the detection of tip folding as close
to the onset of the event as possible. To do this, a prediction of the future insertion forces, based on
what has been currently recorded, is required. The update to this prediction is made at each of the m

measured points in the force vector f ∈ R
m.
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Table II. Insertion force summary.

Coef. c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

f̄m,z −0.00368 0.00322 −0.09043 0.27410 −0.66837 0.48569 −0.32705 0.08950 −0.09196 −0.02012 −0.09988
σm,z 0.00754 0.00454 −0.07346 0.31662 −0.53801 0.81025 −0.77213 0.51994 −0.15782 0.07319 0.11535
f̄m,xx −0.02584 −0.30809 1.67939 −3.86249 2.56596 3.16762 −4.02440 3.20528 0.00664 −0.12767 −0.41673
σm,xx 0.06385 −0.19397 1.17943 −3.78169 9.13224 −5.35123 4.77472 0.43311 1.75574 1.35499 1.47611
f̄m,yy 0.01062 −0.10120 0.67325 −2.18398 4.65950 −6.10697 2.50529 −1.68914 −0.12048 −0.69473 −0.19172
σm,yy 0.04616 −0.07260 0.39600 −1.43339 4.16891 −3.64368 3.21728 −0.37063 0.87301 0.46814 1.06752
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At the kth sample (where 1 ≤ k ≤ m) the predicted force vector is denoted by f̃(λk). In the
following section, we explain the prediction approach depicted in Fig. 8. At each prediction update
the estimated coefficient vector c̃(λk) is determined and then used in Eq. (8) to provide the latest
estimation:

f̃(λk) = B(λ) c̃(λk). (8)

The coefficients in c̃(λk) converge to c from Eq. (5) at the final sample (c̃(λm) = c). Our estimation
of c̃(λk) is a weighted least squares solution of the form

c̃(λk) = (
BT W−1

k B
)−1

BT W−1
k g (λk) , (9)

where Wk is the weight matrix and g(λk) is the augmented force vector at the kth sample. The vector
g(λk) is a combination of measurements taken by the robot up to the present position λk and an
estimated average force f̄k for future measurements

g (λk) =
[

fk
f̄k

]
, fk �

⎡
⎢⎣

f (λ1)
...

f (λk)

⎤
⎥⎦ , f̄k �

⎡
⎢⎣

f̄ (λk+1)
...

f̄ (λm)

⎤
⎥⎦ , (10)

The weight matrix Wk ensures that f̃(λk) agrees with the currently known data and passes through
the estimated future force averages with weight proportional to an estimated variance. Typically, the
best weight matrix would be the covariance matrix of the data set32 but this is unknown a-priori
in practice. Instead, the m measurements are considered independent Gaussian distributions with a
known variance σ (λ). The measured force data also has a degree of uncertainty based on sensor
accuracy that is parameterized by β. The weighting matrix is thus diagonal and of the form

Wk =
[ 1

β
I[k×k] 0[m−k×m−k]

0[m−k×m−k] �−1
k

]
, (11)

given that

�k =

⎡
⎢⎣

σ 2
m(λk+1) . . . 0

...
. . .

...
0 . . . σ 2

m(λm)

⎤
⎥⎦ ∈ R

m−k×m−k. (12)

When constructing the augmented force vector g(λk) the most naive future force input would be to
use the previously measured averages and variance. In this case, f̄ (λk) = f̄m(λk) and σ (λk) = σm(λk).
This method will cause the prediction to quickly match the experimental average and does not take
into account the current magnitude of the insertion forces nor the rate at which they are currently
changing. To improve the prediction of f̄ (λ) and σ (λ), the average force distribution f̄m(λk) and
σm(λk) are combined with an extrapolated distribution f̄e(λk) and σe(λk). The two distributions are
combined using the method described in ref. [6] such that:

f̄ (λj ) = f̄m(λj )σ 2
e (λj ) + f̄e(λj )σ 2

m(λj )

σ 2
e (λj ) + σ 2

m(λj )
, (13)

σ 2(λj ) = σ 2
e (λj )σ 2

m(λj )

σ 2
e (λj ) + σ 2

m(λj )
. (14)

The extrapolated distribution is a first order approximation based on the current force measurement
f (λk) and the measured rate of change of insertion force f ′(λk) = df

dλ
and its standard deviation as

σ ′(λk). The extrapolation is first order and starting at the current sample k, the distance in normalized
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insertion space to the j th predicted sample is defined as

�λk,j = λj − λk ∀k ≤ j ≤ m. (15)

This means that the average extrapolated force has mean f̄e and is estimated by starting at the
current measurement f (λk) and linearly extrapolating based on the fixed rate f̄ ′ such that

f̄e(λj ) = f (λk) + �λk,j f̄ ′(λk) ∀k ≤ j ≤ m. (16)

We assume a linear propagation of the uncertainty distribution with insertion depth. The uncertainty
grows proportionally to σ ′ and the distance travelled �λk,j . The extrapolated distribution standard
deviation σe equal to:

σe(λj ) = �λk,j σd (λk) ∀k ≤ j ≤ m. (17)

This update procedure generates the elements in f̄ from Eq. (10) and the variance matrix �k

from Eq. (12). The steps in the predictive calculation are reviewed in Algorithm 1. After generating
predictions for the wrench components using Eq. (8) the data is used in the trained classifier to
determine if a folding event has begun.

Algorithm 1 Generation of Estimated Force

Require: f̄m, σ̄m, f̄′
m, σ̄ ′

m

for j = k, . . . , m do
�λk,j from Eq. (15)
Calculate f̄e(�λk,j ) from Eq. (16)
Calculate σe(�λk,j ) from Eq. (17)

end for
Calculate f̄ from Eq. (13)
Calculate σ from Eq. (14)
Construct g(λk) from Eq. (10)
Calculate c̃(λk) from Eq. (9)
Calculate f̃(λk) from Eq. (8) return f̃(λk)

Figure 8 shows how the information is combined to form a prediction for insertion force at
λk = 0.4. The current point in the insertion process for the shown prediction is designated by a large
dot. The average insertion force for a prior sample set of normal insertions is shown as a dashed line.
The final insertion force for this particular insertion is shown in the fine solid line. A thick solid line
is used to show the predicted force.

5.3. Tip folding classification
To address the separation of normal and tip folding insertion data our previous work25 used a SVC
machine learning algorithm which will be reviewed here.

SVC’s can be used to address a variety of problems and a brief review of the SVC algorthm is
provided here with greater detail provided in ref. [29, 30]. Our problem is a binary classification task
to which the SVC is well suited. In the binary classification problem, a collection of N data sets
are classified by the binary vector f (v) ∈ R

N with values of −1 or 1. Each data set is defined by a
feature space v ∈ R

d whose values represent the pertinent attributes of that set. The SVC algorithm
searches for a hyperplane defined by a vector of weight coefficients w ∈ R

d and a scalar bias b which
classifies any data set by the decision function

h(v) = sgn ((w · v) + b) ∈ [−1, 1]. (18)

This decision function is inherently linear but the feature space may be mapped into higher dimensions
through a kernel function k〈v, vi〉. The kernel function relies on a set of feature vectors vi taken from
a set of training data and each weighted by a coefficient αi which are collectively called the support
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Fig. 8. Example of force prediction. The dashed line is the measured force average f̄m(λ) from prior data. The
thin solid line is the true final measurement f (λ) for this insertion. The dot represents the current point of the
insertion λk where the prediction is made. A linearly extrapolation f̄e(λk) from the current measurement f (λk)
is made based on the average rate of change f̄ ′

m(λk). The thick solid line indicates the final prediction f̄ (λk)
based on a combination of f̄m(λk) and f̄e(λk).

vectors. The new decision function is written as

h(v) =
l∑

i=1

αik〈vi , v〉 + b. (19)

The kernel functions used in SVC’s are varied but the four most common kernels are the linear,
polynomial, radial basis, and sigmoid. Our previous investigation,25 looked at several combinations
of feature spaces and kernel functions. It was determined that a linear kernel with a descretized
sampling of insertion direction force and the orthogonal moment components (fz,fxx , and fyy) had
the highest classification accuracy at approximately 90%. The linear kernel defined as

k〈vi , v〉linear = vT
i v. (20)

The feature space was 75 elements which required the completed insertion before a classification
could be made. The vector λ is rescaled to m = 25 with λm = 1. We propose that the predictive model
detailed in the previous section can be used at the kth sample measurement to generate a new feature
vector

ṽ(λk) = [
f̃T
z,k, f̃T

xx,k, f̃T
yy,k

]T ∈ R
d=3m=75, (21)

where f̃z,k , f̃xx,k and f̃yy,k are the estimated future insertion force and lateral moments with the frame
indices referring to frame {F } in Fig. 4.

SVM classifiers can be sensitive to scaling differences between the various features so
preconditioning is applied before training the classifier. The vector o ∈ R

m is an offset vector with
each element equal to the mean of the same element in the collection of feature vectors used in
training the SVM. The matrix S ∈ R

m×m is a diagonal matrix with the diagonal elements equal to the
standard deviation of the corresponding feature in the training data. A new preconditioned feature
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vector φ is then defined as:

φ(λk) = S−1 (ṽ(λk) − o) , (22)

which is substituted into Eq. (19) in place of vi and results in the decision function:

h(φ) =
l∑

i=1

αik〈φi , φ(λk)〉linear + b. (23)

This scaling method lets the SVC algorithm find a best fit separation hyperplane where each feature
has zero mean and has a variance of unity.

5.4. Folding onset detection
In addition to its high accuracy in our preliminary work, the major advantage of the linear kernel is
that prediction error can be linearly propagated through the decision function (23). The estimated
feature vector can then be written as

ṽ(λk) = v + ε(λk), (24)

where ε(λk) is the error in the prediction estimation at step k. Substituting Eq. (24) into Eq. (22) and
Eq. (23) using a linear kernel and differentiating with respect to ε yields:

dh

dε
=

l∑
i=1

αiS−1vi . (25)

Individual elements of the vector ε(λk) have their ith index denoted as εi(λk). We assume that only
samples estimated beyond the current measurement have a significant effect on the decision function
and therefore εi(λk) = 0, ∀ i ≤ k. Since errors are not considered up to the kth measurement, two
auxilary vectors ak and bk are defined as

ai(λk) = [
vi,k+1, . . . , vi,m

]T ∈ R
m−k

b(λk) = [εk+1, . . . , εm]T ∈ R
m−k

, (26)

which are substituted into Eq. (25), replacing ṽ(λi) and ε respectively without loss of information.

dh

db(λk)
=

l∑
i=k

αiS−1ai(λk) = z(λk). (27)

The effect of b(λk) on the deviation of the decision function (parameterized as δh) is not known
precisely but can be bounded using the Cauchy–Schwarz inequality

δh(λk) ≤ ‖z(λk)‖‖bk‖. (28)

The value of z(λk) is easily calculated from the trained support vectors and ‖bk‖ is estimated
from evaluating the prediction model error as a function of λ as shown from the set of data used
in training the SVC. The bound on the uncertainty from Eq. (28) is highly conservative and can be
tuned by introducing a scalar constant ρ ∈ [0, 1]. The final real time classification of folding event
then becomes

g(λk) =
{

−1 if h(ṽk) + ρ‖z(λk)‖‖b(λk)‖ ≤ 0
1 otherwise

. (29)

Since a negative value in Eq. (29) indicates a tip folding event, this approach is biased toward false
negative as stated previously in our list of clinical objectives.

https://doi.org/10.1017/S0263574716000333 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000333


1612 Robot-assisted perception augmentation

Table III. Classification errors.

ρ 0 0.25 0.5 0.75 1

False positives (%) 12 6 6 5 5
False negatives (%) 2 4 4 4 4
Combined accuracy (%) 81 87 87 88 88

Fig. 9. Tip folding onset detection. The grouped histogram shows the number of detected folding insertions
at normalized insertion points from 0 to 1 in 0.1 increments. The dashed vertical line is the point where AOS
begins. No folding events should be reported before this point. Five values of ρ used in the decision function
are shown at each histogram group. The higher the value of ρ the more conservative the detection algorithm
becomes in declaring a folding event.

6. Results and Discussion
The SVC training used a randomized set of 40 insertions using a ten-fold sampling process as
discussed in ref. [25]. The training result from our prior work was used with an additional 20
insertion experiments added for testing the classifier. Our objective was to quantify the overall
detection accuracy and determine at which point in the insertion process the tip folding could be
detected from the set of purposely induced folding events.

Classification was treated as a one way process, once the algorithm returned a tip-folding event
the insertion could not be classified as normal. A false positive is defined as identifying a normal
insertion as a tip folding event. A false negative is defined as a tip folding insertion that the SVC
identifies as normal. The combined accuracy is defined as the ratio of the correctly identified normal
and folding insertions compared to the total number of insertions.

The primary goal of the predictive model is to identify tip folding events as soon as possible.
Figure 9 presents a histogram of onset detection with the insertion domain divided into 10 equal bins.
Five values of ρ are shown to see the effect of the uncertainty margin on the point of onset detection.
The vertical dashed line represents the point of initiation for AOS technique. Due to the mechanics
of tip folding, the detection algorithm should not detect folding event until after AOS begins.

As the uncertainty margin increases as ρ approaches 1, the tip-folding detection is delayed as the
SVC decision function must have a stronger degree of confidence to declare a folding event early.
With higher margins (ρ > 0.5) the accidental declaration of a folding event before AOS is eliminated.
With no margin applied, there are cases of accidental folding detection early in the insertion process.

Table III shows the number of false positives and negatives for different values of ρ. The 25
insertions used in the SVC were removed from the processing of the results. Adjusting the uncertainty
margin has little effect on the number of false negatives, with the most conservative bound (ρ = 1)
allowing one additional tip folding event to be missed. Without the uncertainty margin (ρ = 0), the
number of false positives increases drastically. Based on the results shown in Table III we have
selected ρ = 0.75 for our insertion system.
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As expected, from Table III we see that classification accuracy reaches a comparable value of 88%
to our preliminary result using full insertion depth data.

6.1. Discussion
The results of our classification method have demonstrated that force and trajectory data can be
used to infer intra-cochlear tip folding with a reasonable degree of success. We have made several
simplifications in the design of this classification method that must be addressed to provide the
proper context to our results. In this work, we have restricted our experiments to a single nominal
cochlea geometry while there is some variation in practice between different cochlea in regards to
cross sectional area of the scala chambers and the contour of the helical spiral. In live patients, this
geometric data can be retrieved through pre-operative imaging and segmentation as demonstrated by
Noble et al.22

We plan to expand our feature space in future work to include geometric parameterization of
the cochlea. For example, Cohen9 has proposed modeling locations in the cochlea spiral through a
parametric equation with only a few independent variables. Such a model is well suited to SVM
classification since it does not add a large number of dimensions to the feature space. Our existing
results exist in a sub-space of this larger feature set and can be incorporated into new training data
where cochlea geometry varies. The inclusion of geometric variability will require a larger set of
experiments but so long as the geometric data can be measured it does not represent a significant
impediment to our method. What will be required of this study is the determination of a compact and
complete set of features to describe the geometry of the cochlea.

As discussed in the introduction, we have focused on tip folding detection in this work but
mentioned two other insertion failure modes. The first is extra-cochlear buckling of the electrode
array during insertion. This failure mode typically occurs early in the insertion process where the
distal tip of the electrode array is not well supported. The forces and moments required to deform
the implant are significantly higher than the magnitudes we report here (greater than 200 mN) and
our system stops insertion for such high loads. Also, visual observation may be a better metric for
extra-cochlear buckling since the electrode is still visible to the surgeon/robotic system.

A second insertion complication where this type of force based identification is useful is in
identifying scala crossing during insertion. This is when the tip of the electrode array punctures the
basilar membrane and moves from the ST to SV. It is highly likely that such a puncture can be detected
through force measurements and may alter the results of our classification method. This motivates
a future research direction to examine the insertion forces observed during scala crossings. Since
this complication requires the full cochlea, it will be a clinically focused study in fresh cadaveric
specimens.

7. Conclusion
The goal of this work was to expand the use of real time force sensing in the CI robotic insertion
to provide a means of detecting complications in the insertion process. Thus far in the literature,
robotics applied in the CI procedure have not used real time sensing in this capacity. Tip folding of
PEA’s was induced by using selected research electrodes with manufacturing defects and improper
manipulation, in a phantom (plastic) model of the cochlea, and used as a case study to demonstrate
that intra-cochlear phenomenon could be perceived through extra-cochlear measurements. For our
work the tip folding event was deliberately induced on defective research PEA’s to replicate the
phenomenon. We plan to expand this machine learning method to detect other adverse events such as
scala crossing in the future. The Bernstein polynomial basis presented here also allows us to report
insertion force measurements in a compact and accurate way that can allow the measurements to be
more accurately disseminated in the literature. Combined with our prior work in force admittance
control to CI insertion this work continues to build a force-based CI insertion control algorithm with
application in laboratory electrode evaluation and future clinical deployment.
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