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Approximate solutions to droplet dynamics in
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For the past decade, the interaction force between droplets flowing in a Hele-Shaw
cell has been modelled as a dipole. In this work, we use the recently derived
analytical solution of Sarig et al. (J. Fluid Mech., vol. 800, 2016, pp. 264–277) of
a two-droplet system, which satisfies the no-flux condition at both droplet interfaces,
and compare it to results of the dipole model, which does not satisfy the no-flux
condition. Unfortunately, the recently derived solution is given in terms of infinite
Fourier series, making any additional straightforward analysis difficult. We derive
simple approximations for these Fourier series. We show that at large spacing the
approximations for the interactions reduce to the expected dipole-like solution. We
also provide a new lower limit for the velocity for the case of almost touching
droplets. For the case of large spacing, the derivation is extended to arbitrary droplet
numbers – including an infinite lattice. We present a new correction for the dispersion
relation for the perturbations. We investigate the effect of the number of droplets in
a lattice, N, on the resulting dynamics.

Key words: Hele-Shaw flows, low-Reynolds-number flows, microfluidics

1. Introduction

Droplet dynamics in microfluidic Hele-Shaw cells has garnered much interest in the
last decade due to the many applications to which it is relevant. Notably, they have
much promise for large-scale automation of chemistry and biology microfluidic-based
systems (Garstecki et al. 2004; Link et al. 2004; Stone, Stroock & Ajdari 2004;
Joanicot & Ajdari 2005; Squires & Quake 2005; Pompano et al. 2011). No less
important, these same microfluidic systems also provide a platform to research
fundamental science such as the effect of capillary number, the flow rate ratio and
more (Christopher et al. 2008; Belloul et al. 2009).

A decade ago, Beatus, Tlusty & Bar-Ziv (2006) showed that the dispersion
relation of an infinite translating lattice of droplets in a Hele-Shaw microchannel
was analogous to that of phonons in a static solid-state crystal (Kittel 1986). This
dispersion relation was derived under the assumption that the flow around each droplet
was like the classical potential flow around a cylinder and the interactions between
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254 Y. Green

droplets were dipolar. It is well known in fluid mechanics that the superposition
of uniform and single dipole flows gives the classical solution of a flow around a
cylinder, which satisfies a no-flux condition at the surface (Landau & Lifshitz 1959;
Currie 1974). By adding additional dipolar interactions, the no-flux condition at each
droplet surface is violated. Yet the resulting dipole model described experiments
remarkably well (Beatus et al. 2006), even at small spacing where it is expected
to fail. Since then the dipole model has become the hallmark model used for the
investigation of interactions for systems of two or more droplets (Champagne et al.
2010; Champagne, Lauga & Bartolo 2011; Liu, Goree & Feng 2012; Uspal &
Doyle 2012a,b; Desreumaux et al. 2013; Shani et al. 2014), including a mean-field
approach, as well as the effects of confinement (Beatus, Bar-Ziv & Tlusty 2007)
and the formation of Burgers shock waves (Beatus, Tlusty & Bar-Ziv 2009) in a
microfluidics channel.

Later, Beatus, Bar-Ziv & Tlusty (2012) justified that using an infinite amount of
reflections would result in a de facto no-flux boundary condition (BC). However,
their argument was limited to two droplets (Beatus et al. 2012): ‘Unfortunately,
generalizing the method of reflections for three droplets or more is too cumbersome,
since it involves enumerating the reflections created by more than two surfaces.’
Owing to its inherent complexity, this two-droplet infinite-sum reflection potential
was never tested for the dynamics of two droplets. While it is not surprising that
the dipole model works at very large spacing, one should ask: Why does the model
work at intermediate spacing when one does not expect the interactions to be purely
dipolar?

In contrast to these many-body works, Sarig, Starosvetsky & Gat (2016) recently
studied the dynamics of a two-droplet system in a Hele-Shaw channel. There, they
solved for the pressure field for two arbitrarily sized and arbitrarily spaced droplets.
Using bipolar-cylindrical coordinates, they derived an analytical solution, for the
pressure field and forces on the droplets, in terms of infinite Fourier series, that
satisfies the no-flux BC. Unfortunately, while their solution is exact, its complicated
form does not allow for any additional straightforward analysis, including derivation
of zeroth- and first-order dynamical equations. Upon simple inspection, their solution
does not appear to reduce to the dipole solution, as is expected at large spacing. In
this work, we will show that indeed it does, and we derive a new approximation for
small spacing.

This work will be divided into two: N= 2 droplets (§§ 2 and 4) and N> 2 droplets
(§ 5). In § 2 we present a short summary of the work by Sarig et al. (2016), which
introduces the Fourier series and the forces. In § 3 we derive approximations for the
Fourier series terms for large and small spacing. We then analyse the interplay of the
various forces and rationalize why the dipole model appears to be successful even
at small spacing. In § 4 we derive the zeroth- and first-order equations governing the
two-droplet dynamics, which includes a new term in the perturbation equation. In § 5
we generalize our approach, for large spacing, from N = 2 to any N > 2 system and
analyse these N > 2 systems. Concluding remarks are given in § 6.

2. Two-droplet problem definition

In general, in Hele-Shaw channels, the spacing separating the two surfaces, h̃
(where tilde marks dimensional units), is much smaller than all other length scales in
the system. If inertia is negligible, the in-plane velocities are related to the pressure
via ũ = −(h̃2/12µ̃F)∇̃p̃ and the in-plane pressure is determined by ∇̃2p̃ = 0, where
µ̃F is the viscosity of the background fluid. To simplify to u = −∇p, the velocity
is normalized by a characteristic velocity Ũ, and the in-plane length scales are
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Approximate solutions to droplet dynamics in Hele-Shaw flows 255

normalized by an in-plane characteristic length (discussed later), L̃, such that the
pressure scales as 12µ̃FŨL̃h̃−2.

That low-Reynolds-number flows can be described by a potential formulation has
been leveraged to simplify the mathematical analysis of otherwise complicated
problems. Perhaps the most notable is the Saffman–Taylor fingering instability
whereby a less viscous fluid is injected into a more viscous fluid and the interface is
unstable to transverse perturbations, leading to the formation of large fingers (Saffman
& Taylor 1958). The case of small droplets was also analysed, and it was shown that
surface tension ensures that the droplets are circular and stable (Taylor & Saffman
1959; Tanveer 1986). However, larger droplets can also have non-circular geometries
(Tanveer 1986; Green, Lustri & McCue 2017) (see the discussion regarding the
extraordinary branch in Tanveer (1986)). In this work we shall consider only circular
droplets, which are of interest to numerous applications (Pompano et al. 2011), and
were considered in Sarig et al. (2016) whose results we are extending.

One final comment is in order on the relation between Hele-Shaw flows and
potential flows. In this work, we will be using the results derived in Sarig et al.
(2016), who solved the Laplace equation in bipolar-cylindrical coordinates for the
flow field around two circular cylinders under the assumption of a Hele-Shaw cell.
However, a similar solution has already been derived in potential flows without the
assumption of bipolar coordinates. The Villat formula gives a closed-form solution
to the flow field around two cylinders in terms of an integral (Crowdy, Surana &
Yick 2007). Thus, the large- and small-spacing approximations derived in this work
are perhaps relevant and their concepts can be extended in the context of the Villat
formula.

Our system comprises two identical droplets, of radius R and viscosity µ̃d, confined
in a Hele-Shaw cell of height h (see figure 1a for a schematic). The background
fluid has a viscosity µ̃F and far from the droplets it is assumed that the fluid moves
with a uniform flow velocity of U∞ in the x̂ direction, which is aligned with the
axis connecting the droplets’ centres. The droplet’s centres are separated by a spacing
distance a(t).

Sarig et al. (2016) solved the Laplace equation, for the pressure, while satisfying
the no-flux condition. Rather than treating the force on the droplet to be point-like,
as the dipole model does, they integrated the pressure around each of the circular
droplets and calculated the applied force. Their solution allowed for two-dimensional
(2D) streaming flows (lateral and perpendicular flows). In this work we focus on one-
dimensional (1D) lateral flows with identical droplets, as this corresponds to realistic
experimental and numerical set-ups (Beatus et al. 2006, 2007; Champagne et al. 2010;
Liu et al. 2012). However, our approximations can also be extended to solve 2D
problems.

When the flow is aligned with the axis between the two centres of mass
(x̂ direction), the non-dimensional force acting on the ith droplet is (Sarig et al.
2016)

Fi = Fs + Fpressure + Ffriction + Fint = 0, (2.1)

Fs = 4πA2(U∞ − ẋi)Qs, (2.2)
Fint = 4πA2(ẋl −U∞)Qint, (2.3)

Fpressure =πR2U∞, (2.4)

Qs =

∞∑
n=1

ne−2nτR coth(2nτR), Qint =

∞∑
n=1

ne−2nτR csch(2nτR), (2.5a,b)
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FIGURE 1. (Colour online) (a) Schematic description of the two-droplet set-up. The
droplets are separated by a distance a(t), confined between two plates separated by a
distance h in the ẑ direction, and have a radius R. The streaming velocity of the fluid is
U∞. The coordinate x̂ is aligned along the axis line connecting the centres of the droplets.
(b) Side view of a droplet in the channel. There is a thin film of fluid between the droplet
and substrate with thickness hfilm. (c) Top view of the droplets. The bipolar parameters
A, τR (red markings) are related to a, R (blue markings).

where i 6= l and ẋi is the velocity of the ith droplet. Following Sarig et al. (2016),
forces are normalized by 12µ̃FŨL̃2h̃−1, where it is now obvious that L̃ can be either
R̃ or ã, and L̃� h̃. To avoid ambiguities when the spacing is infinite, L̃ = R̃ is the
preferred scaling. The bipolar cylindrical parameters A and τR will be discussed below.
The droplet displacements can be written in the following manner:

xi(t)= xi(t= 0)+Udt+ δxi(t). (2.6)

The third term is a perturbation term that describes small displacements about the
leading-order translation term. It is assumed that the droplet velocities are identical.
This need not be the case for non-symmetric droplets, as discussed in appendix A.
The droplet spacing is

a= a(t)= xi(t)− xl(t)= a0 + δxi − δxl = a0 +1δx, (2.7)

where a0 is the spacing at t = 0. The bipolar cylindrical parameters A and τR are
related to a and R through the following relations (figure 1c) (Sarig et al. 2016):

A=

√
a2 − 4R2

2
≈

{
a/2, a/R� 1 or τR� 1,
√

41δxR, A/R� 1 or τR� 1,
(2.8)

τR = sinh−1

(
A
R

)
≈

{
log(a/R), a/R� 1 or τR� 1,

A/R, A/R� 1 or τR� 1.
(2.9)
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Approximate solutions to droplet dynamics in Hele-Shaw flows 257

The expressions for A and τR are approximated for large spacing, τR� 1, and small
spacing, τR� 1. In this paper, the notation a/R and A/R appears often. While similar,
these are not to be taken as the same. The notation a/R� 1 implies that the droplets
are almost isolated, while the notation A/R� 1 implies that the droplets are almost
touching such that amin = 2R (or a/R≈ 2+1δx/R). We note there is a difference in
our notation of τR versus that of Sarig et al. (2016). In their work, τ1,2 =±τR takes
both positive and negative values (figure 1c). However, the Fourier coefficients (2.5)
depend only on |τR|. For brevity, we refer only to the absolute value (see appendix A
and Sarig et al. (2016) for more details).

There are numerous forces that contribute to the governing equation (2.1). For the
sake of clarity and brevity, from this point we distinguish only between the interaction
term (2.3) and the direct term, which is the sum of all other terms

Fdirect = Fs + Fpressure + Ffriction. (2.10)

The nomenclature direct and int for interaction will become more apparent in the
next sections, where we will show that in the case of large spacing the direct force
is independent of the spacing a0 whereas the interaction term is a0-dependent. The
interaction term is the drag contribution due to the fact that there are two droplets.
The pressure term accounts for a force due a pressure gradient in the channel and is
reminiscent of a buoyant-like force.

We are finally left with modelling the frictional force. Beatus et al. (2006, 2007,
2009, 2012) modelled their friction force based on an energy argument where their
friction coefficient, µdipole (not to be confused with the viscosity), had to be deduced
for each experiment separately as the geometry and fluid properties were varied. In
contrast, Sarig et al. (2016) suggested that the dimensional friction force was F̃friction=

12πR̃2Ũdh̃−1(2µ̃d + µ̃F − 2µ̃F/β), where β =Ud(a0→∞)/U∞ is a parameter that is
calibrated experimentally from a single isolated droplet. In non-dimensional form the
friction force is (normalizing by 12µ̃FŨL̃2h̃−1)

Ffriction =−πηR2ẋi, (2.11)

where the droplet velocity Ud has been replaced by ẋi (2.6) and η = η(µ̃F, µ̃d, β).
One can consider (2.11) to be a general form for a non-dimensional friction where
the exact details of η = η(µ̃F, µ̃d, β) are not needed, nor are they currently known,
which is why (2.11) is convenient. So rather than calibrating β one calibrates η. In
fact, any function of the form F̃friction = 12πR̃2Ũdh̃−1µ̃dβ̃ would eventually reduce to
(2.11). Here we suggest another possible candidate for β = Ud(a0→∞)/U∞ based
solely on scaling arguments. However, even here, some calibration is required.

First, consider the unperturbed Poiseuille flow in a Hele-Shaw cell. The shear stress
scales as µ̃FŨ∞h̃−1. This stress is integrated over a region proportional to R̃2 yielding
a force ∼µ̃FR̃2Ũ∞h̃−1. Next, consider the well-studied case of a gaseous bubble in the
channel, with zero contact angle, and a thin lubrication film separating the bubble and
substrate (figure 1b). In the film, the viscous friction force scales as ∼µ̃FR̃2Ũfilmh̃−1

film.
Bretherton (1961) showed that the thickness of the film was h̃film/h̃= 2.38Ca2/3, where
Ca = µ̃FŨd/σ̃ is the capillary number and σ̃ is the surface tension. This result was
later generalized for the case of a viscous droplet and it was shown that the thickness
could be increased by a factor of 22/3 or 42/3 depending on the viscosity ratio and
boundary condition at the interface (Teletzke, Davis & Scriven 1988; Hodges, Jensen
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258 Y. Green

& Rallison 2004). If one assumes that the bottom interface moves with the droplet
velocity, the force ∼µ̃FR̃2Ũdh̃−1Ca−2/3. At sufficiently low Ca, hfilm is independent
of Ca and depends on the disjoining pressure such that hfilm = const. (Huerre et al.
2015). This would change the dimensional formulation yet leaves the η formulation
(2.11) unchanged. Indeed, further experiments are needed to determine the exact
η = η(µ̃F, µ̃d, β) relation as well as to determine whether or not there is any Ca
dependence.

Prior to proceeding with further analysis, it is beneficial to consider the case when
O(δxi) terms are negligible. Inserting (2.2)–(2.4), (2.6) and (2.11) into (2.1) yields the
droplet velocity

Ud =
4A2(Qs −Qint)+ R2

4A2(Qs −Qint)+ ηR2
U∞. (2.12)

Note that we have still not approximated the Fourier series. We see that Qs and Qint
are counteractive. The additional term in the numerator is the pressure, while in the
denominator it is the friction. This equation is somewhat reminiscent of an equation
given in Uspal & Doyle (2012a); however here we have only one coefficient η that
needs to be calibrated from experiments, whereas Uspal & Doyle (2012a) had two
coefficients (drag and friction) that needed to be determined from both experiments
and phenomenological models.

3. Approximations
In this section we will approximate the coefficients of (2.5) for large (τR� 1) and

small (τR� 1) spacing. We then compare these to the non-approximated terms.

3.1. Large-spacing approximation

The hyperbolic functions in (2.5) are approximated as coth(2nτR) ≈ 1 + 2e−4nτR and
csch(2nτR)≈ 2e−2nτR + 2e−6nτR , yielding

Q(τR�1)
s =

∞∑
n=1

n(1+ 2e−4nτR)

e2nτR
=

e2τR

(e2τR − 1)2
+

2e6τR

(e6τR − 1)2
≈

R2

a2
+ · · · , (3.1)

Q(τR�1)
int =

∞∑
n=1

2n(e−2nτR + e−6nτR)

e2nτR
=

2e4τR

(e4τR − 1)2
+

2e8τR

(e8τR − 1)2
≈ 2

R4

a4
+ · · · . (3.2)

We have kept only the leading-order terms after verifying that higher-order terms do
not change the result. For large spacing, the direct and interaction forces are

F(τR�1)
direct = [2U∞ − (1+ η)ẋi]πR2, F(τR�1)

int = 2π(ẋl −U∞)R4/a2. (3.3a,b)

The direct force is spacing-independent. In contrast, it is clear that the interaction
force is spacing-dependent with a dipolar behaviour. It should be stated here that the
interaction is not set a priori to be dipolar, as in the potential approach (Beatus et al.
2012), but rather it is a result.

3.2. Small-spacing approximation
For small spacing we employ the Poisson summation formula, where the sum of a
series is given by (equation (8.7.33) in Prosperetti (2011))

∞∑
n=1

Q(n)=−
1
2

lim
x→0+

Q(x)+
∫
∞

0
Q(x) dx+ 2

∞∑
m=1

∫
∞

0
Q(x) cos(2πmx) dx. (3.4)
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Inserting (2.5) yields

Qs =
π2
− 4

16τ 2
R
−

1
4τR
+

∞∑
m=1

[
π2m2

− τ 2
R

2(π2m2 + τ 2
R)

2
+

π2

8τ 2
R

sech2

(
π2m
2τR

)]
, (3.5)

Qint =
π2

48τ 2
R
−

1
4τR
+

∞∑
m=1

[
1

2π2m2
−

π2

8τ 2
R

csch2

(
π2m
2τR

)]
. (3.6)

Equations (3.5) and (3.6) are just another series representation of (2.5). However, in
this representation it is more convenient to treat the case of τR � 1, for it can be
observed that the second expression in each sum goes to zero. In contrast, the first
term is

∑
∞

m=1 m−2
= π2/6. Interestingly, this sum will be encountered a number of

times in this work. The coefficients reduce to

Q(τR�1)
s =

π2
− 4

16τ 2
R
−

1
4τR
+

1
12
, Q(τR�1)

int =
π2

48τ 2
R
−

1
4τR
+

1
12
. (3.7a,b)

The direct and interaction forces are

F(τR�1)
direct

πR2
= (U∞ − ẋi)

(
π2
− 4
4
− τR +

τ 2
R

3

)
+U∞ − ηẋ, (3.8a)

F(τR�1)
int

πR2
= (ẋl −U∞)

(
π2

12
− τR +

τ 2
R

3

)
. (3.8b)

Inserting (3.8a) into (2.1) (Fi = 0) shows that the O(τR, τ
2
R) terms identically cancel

out.
Naturally the following questions arise: Is the small-spacing approximation

physically and mathematically relevant? When the spacing is sufficiently small,
will the Hele-Shaw approximation still hold? Will droplets also continue to remain
circular? It is true that, under certain circumstances, the droplets can deform and no
longer retain their circular shapes; however, this usually occurs for gaseous bubbles
(Maxworthy 1986; Kopf-Sill & Homsy 1987). In contrast, it has been shown that
one can create lattices of nearly touching circular droplets (Pompano et al. 2011)
and it is often observed too that droplets do not deform. We will proceed under this
assumption. For the case that the droplets are almost touching, the spacing is still
much larger than the gap between the surfaces, amin= 2R� h, so that the assumption
of Hele-Shaw still holds. Further, Sarig et al. (2016) compared their theoretical
model to the two-droplet experiments by Shen et al. (2014). The correspondence
was striking, indicating that the Hele-Shaw approximation does not fail. Sarig et al.
(2016) also made another prediction – that their model could be extended to the
case of a smaller droplet encapsulated in a larger droplet. While this scenario is not
discussed in this work, the Fourier coefficients for the scenario are almost the same
as (2.5), thus the approximations derived in this work can, with some modifications,
be used in the investigation of this alternative scenario.

3.3. Approximation comparison
We compare the large- and small-spacing models of the coefficients to the non-
approximated terms (2.5) where it is evident that both the large- and small-spacing
approximations correspond nicely to the non-approximated terms in each of their
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FIGURE 2. (Colour online) (a) Log–log plot of the various models of coefficients Qs and
Qint versus A/R. (Inset) A zoom of (a). (b) Semi-log plot of the ratio of the large-spacing
model to the exact model, Q(τR�)1/Q, versus A/R (Q(τR�1)

s , blue; Q(τR�1)
int , red). The vertical

grey lines mark a0/R= 2.5, 3 and 4.

respective domains (figure 2a). It can be observed that for A/R � 3, Qs/Qint � 1,
which indicates that the dynamics are primarily dictated by the direct term and not
by the interaction term. In figure 2(b) we show that the large-scale approximation is
valid for most of the A/R domain. We plot the ratio Q(τR�1)/Q versus A/R for both
the s and int terms. It can be observed when a0/R > 3 that the s ratio is unity while
the int ratio departs slightly prior to that. Combined, these findings explain why the
dipole model works well even at remarkably small spacing, such as a0/R= 4, where
one does not expect the dipole interaction assumption to hold.

4. Two-droplet velocity and perturbation equations
In this section we derive the zeroth-order equation, from which we calculate the

droplet velocity, Ud, and the first-order correction for the perturbation dynamics.

4.1. Large spacing

The a−2 term in (3.3) can be rewritten (using (2.7)) as a−2
≈ (1 − 21δx/a0)a−2

0 .
Inserting this relation and (3.3) into (2.1) (Fi = 0) yields two equations of orders
O(1) and O(δx/a0), respectively:

U(τR�1)
d =

a2
0 − R2

a2
0(1+ η)/2− R2

U∞, (4.1)

−δẋi(1+ η)+ 2δẋl
R2

a2
0
=−4

[
U∞ −U(τR�1)

d

] R2

a2
0

1δx
a0
. (4.2)

To compare with the dipole model, we derived the two-droplet velocity based on
the dipole model formulation (Beatus et al. 2006, 2012). The results are similar;
however, the δẋlR2a−2

0 term in (4.2) is new relative to the dipole model and is
discussed later (§ 5.2). We also report an error in the reported expression for the
velocity of an infinite lattice (discussed in § 5.2).

Finally, we recall that the parameter η needs to be calibrated experimentally
relative to isolated droplets U(τR�1)

d (a0 → ∞) = 2U∞(1 + η). In this work we use
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FIGURE 3. (Colour online) The droplet velocity, Ud, normalized by U(τR�1)
d (a0→∞),

versus the normalized spacing a0/R: U(τR�1)
d (4.1); U(τR�1)

d (4.3); Ud (2.12).

the experimental parameters given in figure 3 of Beatus et al. (2006), R̃ = 10 µm,
Ũd(a0→∞)= 295 µm s−1 and Ũ∞= 1090 µm s−1, which yields η= 2Ũ∞/Ũd − 1≈
6.36.

4.2. Small spacing

Equation (2.1) yields two equations of order O(1) and O(δxR/A2), respectively:

U(τR�1)
d =

π2

π2 − 6+ 6η
U∞, (4.3)

−3(4η+π2
− 4)δẋi +π2δẋl = 0. (4.4)

Equation (4.3) is a novel lower bound for the droplet velocity. Equation (4.4) has the
trivial solution, δxi(t)= δxi(t= 0), indicating that the droplet dynamics are quasi-stable.

4.3. Droplet velocity comparison
In figure 3 we plot the various models for the velocity as a function of droplet spacing.
The non-approximated solution varies between the upper, U(τR�1)

d (a0→∞), and lower,
U(τR�1)

d , constant approximations. We see that the large-spacing approximation is valid
for most spacing. This is no longer surprising, as discussed in § 3.3.

5. N > 2 and infinite lattices
5.1. Extension from N = 2 to N > 2

We know from Beatus et al. (2006) that, even when the no-flux BC is not satisfied,
the dipole model corresponds very well to the experimental results for large spacing.
In § 3.3, we showed that the effects of the interactions are not dominant if a0 � R.
This suggests that our N = 2 model can be extended to N > 2 where we acknowledge
that such a system would not satisfy the no-flux BC. As we will show, the effects
appear to be negligible. The extension of our mechanical equilibrium model to N > 2
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droplet lattices using the superposition method is similar to the dipole model, yet our
derivation differs in that we model the forces and do not use a predetermined velocity
potential. An added advantage of our method is that in § 4.1 we showed that our
model predicts an additional term that does not exist in the traditional dipole model.
We will analyse the effect of this term. In what will follow, we focus only on large
spacing, τR� 1, and for the sake of brevity and clarity, we drop all superscripts.

Our starting point is to require mechanical equilibrium such that each droplet
satisfies Fdirect + Fint,i(N)= 0. While Fdirect is spacing- and N-independent (3.3), Fint,i
depends on both. Thus we rewrite the interaction force for the ith droplet to account
for all interactions:

Fint,i(N)=
N∑

l 6=i

Fint,i−l. (5.1)

To write out Fint,i−l explicitly, we need to know the ail spacings, which are given by

ail(t)= a0,il +1δx{i,l}, (5.2)
a0,il(t)= |i− l| a0, (5.3)

1δx{i,l} =

{
δxi − δxl, i> l,

δxl − δxi, i< l.
(5.4)

Equation (5.3) ensures that all the droplets are evenly spaced similar as in a solid-state
crystal (Kittel 1986). Equation (5.4) ensures that the sign of the perturbation difference
in (5.2) is self-consistent for each equation. In the interaction force, we are primarily
interested in a−2

il . The approximation yields

1
a2

il

∼=
1− 21δx{i,l}/(a0 |i− l|)

a2
0(i− l)2

. (5.5)

As in § 4, we shall need to divide the forces into zeroth- and first-order terms, which
are denoted by the respective superscripts O(1) and O(δx):

FO(1)
int,i−l =

F2,l

(i− l)2
, (5.6)

FO(δx)
int,i−l =

2πR4

a2
0(i− l)2

δẋl − 2
F2,l

(i− l)2
1δx{i,l}

a0 |i− l|
, (5.7)

where F2,l = 2π(Ud,l − U∞)R4/a2
0 is the zeroth-order term of the two-droplet case

(3.3). The subscript l indicates that this coefficient changes if one does not make the
explicit assumption that the droplets move with a uniform velocity (Ud,l=Ud). Since
an infinite lattice has a fore–aft symmetry, we make that assumption and drop this
subscript, F2,l = F2.

5.2. Infinite lattice
In this section we shall reproduce the results of Beatus et al. (2006) for an infinite
lattice. The zeroth-order expression from (5.1) yields

FO(1)
int (N→∞)=

∞∑
l=−∞,l 6=i

FO(1)
int,i−l =

∞∑
l=−∞,l 6=i

F2

(i− l)2
= 2F2

∞∑
l=1

l−2
= 2

(
π2

6

)
F2, (5.8)
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where we have already encountered this infinite sum. The zeroth-order force balance
yields the velocity

Ud =
a2

0 − (π
2/3)R2

(1+ η)a2
0/2− (π2/3)R2

U∞. (5.9)

Equation (5.9) has a similar form to (4.1) except that the R2 coefficient is now π2/3
instead of 1. Later, in figure 5, we compare the two-droplet case to the infinite lattice.
It can be observed that, for a given spacing, the two-droplet system (solid grey line)
has a higher velocity than the infinite lattice (solid black line). As the number of
droplets increases, so does the number of interaction forces, resulting in an increase
in the total interaction force, which operates as an effective drag. This results in a
decrease of the velocity with increasing N, for constant spacing. This explanation and
that Ud(N= 2)>Ud(N→∞) conflict with the original ‘peloton effect’ explanation of
Beatus et al. (2006, 2012) that compared the infinite lattice to riding cyclists. Indeed,
cyclists riding in the turbulent wake of preceding cyclists can pedal less and stay at
the same velocity; however, drag reduction is a large-Reynolds-number effect, related
to boundary layer effects, that has no equivalent in classical low-Reynolds-number
Hele-Shaw flows.

Equation (5.9) differs from that given in Beatus et al. (2006),

U(dipole)
d =

a2
0U(dipole,∞)

d

a2
0 +π2R2(1−U(dipole,∞)

d /U∞)/3
, (5.10)

where U(dipole,∞)
d =U∞(1+µdipole/ξd)

−1 is the velocity of an isolated particle, µdipole is
similar to our η, in the sense that it is a fitting parameter, and ξd = ξd(µ,R, h) was a
drag parameter. Beatus et al. (2006, 2012) made an error in their final calculation. If
one follows the derivation as prescribed in their works, one gets

U(corrected dipole)
d =

a2
0 − (π

2/3)R2

a2
0(U∞/Ud

(dipole,∞))− (π2/3)R2
U∞, (5.11)

where it is now evident that (5.11) is similar in form to (5.9) when a0�R. In figure 5
we compare our infinite lattice (solid black line) and that of Beatus et al. (2006,
2012) (dashed black line). It is likely that Beatus et al. (2006, 2012) did not pick
up their error because the functional forms of (5.9)–(5.11) are similar and matched
experiments.

We now investigate the perturbation equations. Using FO(δx)
int,i−l (5.7) and FO(δx)

direct (3.3)
yields

−(1+ η)δẋi +

∞∑
l=−∞,l 6=i

2
(i− l)2

[
δẋlR2

a2
0
−

F21δx{i,l}
πR2a0 |i− l|

]
= 0. (5.12)

This equation differs from the dipole model perturbation equation (Beatus et al. 2006,
2007, 2012), whereby our model includes the

∑
δẋl coupling correction. For simplicity

we neglect this term for now, as we reproduce the classical results of the dipole model.
We shall add its effects hereafter. We rewrite (5.12) as

δẋî=0 =−Cs

∞∑
l=−∞,l 6=0

1δx{î=0,l}

|l|3
=−Cs

∞∑
l=1

1δx{0,l} +1δx{0,−l}

l3
=Cs

∞∑
l=1

δxl − δx−l

l3
,

(5.13)
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where Cs = 4R2(U∞ −Ud)/[a3
0(1+ η)]. We insert a travelling wave, δxi ∼ exp[j(kx −

ωt)], into (5.13) (j=
√
−1 is the imaginary number). The droplet with subscript l is

located at x= la0. After some algebraic manipulations (5.13) yields

ω∞ =−2Cs

∞∑
l=1

sin(lka0)

l3
. (5.14)

The infinity subscript has been added to indicate an infinite lattice (N → ∞).
Equation (5.14) has the same form as that of the original work (Beatus et al. 2006,
2012) save for the fitting parameter η. We report that this infinite series converges
to a simple polynomial of order 3 (see equation 1.443-5 on p. 47 of Gradshteyn &
Ryzhik (2007)):

∞∑
l=1

sin(lka0)

l3
=

π2ka0

6
−

π(ka0)
2

4
+
(ka0)

3

12
, 0 6 ka0 6 2π. (5.15)

Note that the coefficient of the linear term is the previously encountered π2/6 similar
to that in (3.5), (3.6) and (5.8) – the importance of which will become apparent soon.
We return to the previously neglected coupling term in (5.12). Inserting the travelling
wave into it yields

2
R2

a2
0

∞∑
l=−∞,l 6=0

δẋl

l2
=−2jωe−jωt R

2

a2
0

∞∑
l=1

ejkla0 + e−jkla0

l2
=−jζωe−jωt, (5.16)

where ζ = 2R2
[Li2(jka0) + Li2(−jka0)]a−2

0 is a real number, and Li2(θ) =
∑
∞

l=1θ
ll−2

is the polylogarithm of order 2 and argument θ (Lewin 1991). Inserting (5.16) into
(5.13) would modify (5.14) such that ω∞,corrected =ω∞(1+ η)/(1+ η− ζ ). In figure 4
we plot the ratio ω∞,corrected/ω∞ for various values of a0/R. Naturally, as the droplets
are spaced farther apart, the correction is of less importance, yet, for closely packed
droplets, the correction can be 4–6 %.

5.3. The finite N-droplet lattice
In the previous section we showed that the zeroth-order term of the total interaction
force was multiplied by π2/3 relative to the case of two droplets. We expect that
this remains true also for a finite but large number of droplets. In reality, in a finite
numbered lattice, the total interaction force on edge droplets is different from those
near the centre. It can be shown that the ratio is at most a factor of 2. With this
understanding, combined with the previous understanding, the interaction force is not
the dominant force in the system; we make a simplifying assumption that all droplets
behave as a droplet located at the centre. We shall show that, even for relatively
small N, the lattice will behave in a very similar way to an infinite lattice. Hence
we continue to require that Ud,i =Ud.

For the case of an odd number of droplets, N = 2M + 1 (M pairs relative to the
central droplet), the total interaction force is straightforward:

FO(1)
int (2N + 1)= 2F2

M∑
l=1

l−2
=GMF2, (5.17)
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FIGURE 4. (Colour online) Plot of ω∞,corrected/ω∞ versus the normalized wave number ka0
for different a0/R ratios and η= 6.36.

where GM = 2
∑M

l=1l−2
= 2HM,2 and HM,2 is the generalized harmonic number of order

M of power 2. As can be expected, HM→∞,2→ π2/6. Like the infinite lattice, it can
be shown that the droplet velocity is

Ud =
a2

0 −GMR2

(1+ η)a2
0/2−GMR2

U∞. (5.18)

Equation (5.18) has a similar form to (4.1) and (5.9). Already for small lattices
(G10/G∞ ∼ 94 %), the lattice is practically infinite and edge effects can be ignored.

In figure 5 we plot the droplet velocity versus the spacing for a travelling lattice of
N droplets. As N increases, equation (5.18) varies monotonically from its N= 2 lower
limit (4.1) to its N→∞ upper limit (5.9). As can be expected, already at N= 21 the
lattice behaves as an almost infinite lattice, justifying the assumption Ud,i =Ud.

Similarly, the perturbation equation for finite N is

−(1+ η)δẋi +

2M+1∑
l 6=i

2
(i− l)2

[
δẋlR2

a2
0
−

F21δx{i,l}
πR2a0 |i− l|

]
= 0. (5.19)

For simplicity, we neglect the new correction term, which yields the following
dispersion relation:

ωN =−2Cs

M∑
l=1

sin(lka0)

l3
. (5.20)

In figure 6(a) we plot the ratio −ωN/2Cs versus the normalized wavenumber ka0
for varying N. As the number of droplets increases, the solution converges to the
infinite solution. It converges faster than the droplet velocity convergence because
ωN converges as l−3 while GM converges as l−2. It can be seen in figure 6(b) that
N = 3 (two nearest-neighbour interactions) given by the dashed red line accounts for
approximately 80 % of the ω∞ response. Also, at relatively small numbers, such as
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2 5 10 15

1

FIGURE 5. (Colour online) Normalized droplet velocity Ud/Ud(a0→∞) versus a0/R for
varying number of droplets. The brown arrow points in the direction of increasing N. The
two extreme cases of N= 2 (4.1) and N→∞ (5.9) are marked by a solid grey and black
line, respectively. The black dashed line is the velocity (5.10) given by Beatus et al. (2006,
2012).
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FIGURE 6. (Colour online) (a) A plot of −ωN/2Cs versus the normalized wavenumber
ka0 for a system of varying droplet number, N. (b) A plot of the ratio ωN/ω∞ versus the
normalized wavenumber ka0. (Inset) A zoom of (b). The brown arrow indicates direction
of increasing N.

N ∼O(20), the ratio is unity for almost all ka0. However, it can be observed that the
solution does not converge at small ka0 (large wavelengths) even for large N. This is
rationalized based on a previous observation: the linear term of the dispersion relation
(5.15) with the coefficient π2/6 is determined by an infinite number of interactions.
Simply put: a finite-sized lattice can sustain only a finite-sized wavelength.

6. Conclusions
In this work we have shown that using the large- and small-spacing approximations

of the Fourier coefficients (2.5) allows the zeroth- and first-order governing equations
to be written out in simple form. This allows for additional analysis that is not
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possible with the non-approximated series. While this model recapitulates much of
the results of the dipole model, it is different in that it does not use a predetermined
flow potential and dictates the interaction to be dipolar. Rather, the dipolar interaction
is a result. Further, the analysis is based on the assumption of mechanical equilibrium.
Also, a new term, which does not exist in the dipole, appears. The discussion here
follows the structure of this paper. We will first focus on the N = 2 findings and then
move to the N > 2 findings.

In § 3 we investigated the interplay between the various forces for N = 2 droplets.
There, we showed that Qs�Qint, when a0/R> 3, so that the effect of the interaction
term is relatively negligible compared to the other forces such that dynamics are
primarily determined by Fdirect. We further show that the dipole model solution
corresponds to the non-approximated velocity in most of the a0/R domain, even at
relatively small spacings where it is expected to fail (figure 3).

Thus far, the small-spacing approximation appears not to have received much
attention in the literature. This is perhaps because it was assumed that if the
interaction is not dipolar, the mathematical complexity increases, and perhaps that the
Hele-Shaw approximation would fail. Sarig et al. (2016) compared their results with
the experiments of Shen et al. (2014) and the correspondence was striking, indicating
that the Hele-Shaw approximation holds. Further, our small-spacing solution provides
a simple estimate, U(τR�1)

d (4.3).
Both the small- and large-spacing approximations have the potential to solve

related problems. The formulation here can be extended to two dimensions, and/or
can solve for non-identical droplets (Sarig et al. 2016). In appendix A we extend
the large-spacing approximation for non-identical droplets. Also, Sarig et al. (2016)
suggested that the model is also suitable for investigating the dynamics of a small
droplet encapsulated in a larger droplet. The Fourier coefficients for such a scenario
are almost the same as those discussed in this work. Hence, with some modifications,
this too can be solved. These approximations can also be extended to investigate the
well-known Villat formula. It would be interesting to see if that flow potential can
be reduced to a simpler expression for large and small approximations.

The exact details of the friction coefficient are currently unknown. We have
suggested a new form for the friction coefficient. It would be interesting and helpful
to conduct a thorough experimental investigation of the velocity of an isolated drop
Ud(a0→∞) as a function of the parameters U∞, R, h, µ̃f , µ̃d, σ̃ as they are varied.

Finally, in § 5 we extended the derivation from N = 2 to N > 2 droplets. For
a given spacing, as N increases, Ud decreases. This is due to the increase of the
effective drag. The velocity converges with increasing N to the infinite solution. For
the dispersion relation, ωN , we show that already at relatively small N ∼ O(20) the
finite lattice behaves as an infinite lattice save for a small discrepancy at small ka0.
We also investigate the behaviour of the new O(R2/a2) correction to the dispersion
relation and show that it introduces a correction of a few per cent. In this work,
we have started to investigate the effect of this term and we have shown that the
new term leads to a few per cent change in the dispersion relation. Yet, it would
indeed be interesting to see how this term might effect the long-time evolution of
non-crystal-like lattices that have been investigated numerically and experimentally
(Liu et al. 2012; Shen et al. 2014). It would indeed be interesting to investigate the
case of a lattice of N > 2 where all droplets are touching. On the one hand, we
know that all non-nearest-neighbour dynamics (aij > 4R) can be modelled by dipolar
interactions, yet it is unclear how the nearest-neighbour interactions (amin= 2R) should
be modelled. This is left for future work.
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Appendix A. Two-droplet generalizations
Sarig et al. (2016) solved the case of two droplets of arbitrary radii and viscosities.

For this general case, the Q coefficients have a more complicated form:

Qs =

∞∑
n=1

ne−2n|τi| coth[n(|τi| + |τl|)], (A 1)

Qint =

∞∑
n=1

ne−n(|τi|+|τl|) csch[n(|τi| + |τl|)], (A 2)

A= (2a)−1
√
[a2−(R1 + R2)2][a2 − (R1 − R2)2], (A 3)
τ1,2 =± sinh−1(A/R1,2). (A 4)

For the case of large spacing, when a� R1 + R2 (A= a/2 and |τi| = log(a/Ri)):

Q(τR�1)
s =

∞∑
n=1

ne−2n|τi| coth [n(|τi| + |τl|)]≈
∞∑

n=1

ne−2n|τi| =
e2τi

(e2τi − 1)2
≈

Ri
2

a2
, (A 5)

Q(τR�1)
int =

∞∑
n=1

ne−n(|τi|+|τl|) csch[n(|τi| + |τl|)] ≈

∞∑
n=1

2ne−2n(|τi|+|τl|)

=
2e2(|τi|+|τl|)

[e2(|τi|+|τl|) − 1]2
≈

2Ri
2Rl

2

a4
. (A 6)

From (A 5), it is apparent that the force associated with the Qs term is unequal
for each droplet, which will lead to Fdirect,1 6= Fdirect,2 such that the droplets move
at different velocity (Ud,i 6= Ud). The friction force is also dependent on the radii
and viscosity Ffriction,i = πηiRi

2q̇i. Inserting all these results into (2.1) will yield an
algebraic set of equations for Ud,i.
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