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2 H. Zhao and H. Cheng

1. Introduction and main results
The study of the spectrum of an almost periodic Schrödinger operator has been sweeping
the world for many years, which, consequently, has been called an ‘almost periodic
flu’, see the introduction of [61] for details. Other almost periodic problems include,
without limitation, the existence of an almost periodic solution to Hamilton partial
differential equations, the existence of almost periodic traveling fronts for Fisher and
Kolmogorov–Petrovskii–Piskunov (KPP) lattice equations, and the almost periodic initial
value problem of a Korteweg–de Vries (KdV) equation. In [16–18] and [39, 40, 70],
Bourgain et al and Geng et al construct the almost periodic solution to infinite dimensional
partial differential equations. Moreover, in [49, 54], the authors construct almost periodic
traveling fronts for the discrete and continuous Fisher–KPP equations, respectively.

Deift’s conjecture, an open question posed by Deift [33, 34] asks whether for almost
periodic initial datum, the solutions to the KdV equation are almost periodic in time? The
progress about this conjecture are the papers [27, 68], where, under suitable hypotheses,
Tsugawa, and Damanik and Goldstein prove the local and global existences of unique
solutions to the KdV equation for a small quasi-periodic analytic initial datum. Moreover,
in [13], Binder et al show that in the same setting as [27], the solution is almost periodic
in time.

Notice that the KdV equation is continuous in space variables, so it is important to
know what will happen to the discrete Deift conjecture problem. We, in this work, study
the initial datum problem of the Toda lattice equation, which is the discrete version of the
KdV equation. To state our work, we give some basic definitions.

Set T := R/Z as the cycle and T∞ =∏j∈Z T1 with product topology. We say that
a function f : Z → R is Bochner almost periodic if {f (· + k) : k ∈ Z} has a compact
closure in �∞(Z), where �∞(Z) denotes the space of all bounded functions defined on Z

with sup-norm. Set H(f ) = {f (· + k) : k ∈ Z}, which is the closure of {f (· + k) : k ∈ Z}
in �∞(Z). We also call H(f ) the hull of the almost periodic function f . Essentially, this
hull is a quotient group of T∞, so it can be represented by a continuously sampling function
on T∞ [62]. Thus, any Bochner almost periodic function f has the representation, that is,
there is another continuous function F defined on T∞ such that f (n) = F(nω), where
ω ∈ R∞ is called the frequency of f . In particular, if T∞ is replaced by Td , d ∈ N, we say
f is quasi-periodic. See the discussions in [15, 62] for details.

Define the set

Z∞∗ �
{
k ∈ Z∞ : |k|η �

∑
j∈N

〈j〉η|kj | < ∞
}

,

where 〈j〉 = max{1, |j |}. Moreover, we say that α ∈ T∞ is Diophantine, which we denote
as DC∞(γ , τ), if there exist γ > 0 and τ > 1 such that

DC∞(γ , τ) �
{
α ∈ T∞ : ‖〈k, α〉‖R/Z >

∏
j∈N

γ

(1 + |kj |τ 〈j〉τ ) for all k ∈ Z∞∗ \ {0}
}

,

where, for k = (kj )j∈Z ∈ Z∞∗ , α = (αj )j∈Z ∈ T∞,

〈k, α〉 =
∑
j∈Z

kjαj and ‖〈k, α〉‖R/Z � inf
p∈Z{|〈k, α〉 − p|}.
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Time almost periodicity for Toda lattice 3

The set DC∞(γ , τ) of Diophantine frequencies was first developed by Bourgain [18]. It is
shown that there exists a constant c(τ ) > 0(τ > 1) such that

meas DC∞(γ , τ) ≥ 1 − c(τ )γ ,

see the discussions in [12, 18] for details. In this paper, we will always assume γ > 0,
τ > 1. For a given Banach space X, introduce space Hσ (T∞, X):

Hσ (T∞, X) =
{
f (x) =

∑
k∈Z∞∗

f̂ (k)ei2π〈k,x〉, |f |σ �
∑

k∈Z∞∗

|f̂ (k)|Xe2πσ |k|η < ∞
}

.

1.1. Toda flow. The Toda lattice was proposed by Toda in 1967 [67] as a model
describing the positions and momenta of a chain, which is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

d

dt
an(t) = an(t)(bn+1(t) − bn(t)),

d

dt
bn(t) = 2(a2

n(t) − a2
n−1(t)),

n ∈ Z. (1.1)

Identifying (an(t), bn(t)) as a doubly infinite dimensional Jacobi matrix J (t) defined by

(J (t)u)n = an−1(t)un−1 + bn(t)un + an(t)un+1. (1.2)

The study of Toda flow using equation (1.1) depends heavily on the Jacobi matrix
J (t) defined by (1.2). Teschl [66, Theorem 12.6] shows that any initial condition
(an(0), bn(0)) ∈ �∞(Z) × �∞(Z) will lead to a unique solution (a, b) ∈ C∞(R, �∞(Z) ×
�∞(Z)) to equation (1.1). Under some hypotheses on the spectrum of operator J (0),
in [14], Binder et al show the existence and uniqueness of almost periodic solutions to
equation (1.1) with almost periodic initial value (an(0), bn(0)). Later, Leguil et al in [48],
by taking the initial value (an(0), bn(0)) = (1, V (x + nα)), n ∈ Z with V ∈ Cω(T, R),
α ∈ T, extend the conclusions above to Avila’s subcritical regime. (For any spectrum E of
Schrödinger operator HV ,α,x defined by equation (1.3), the Schrödinger cocycle (α, SV

E )

is subcritical.) In particular, for the most important example of almost Mathieu operators
(AMO), that is, V (·) = 2λ cos 2π(·), Leguil et al prove that there exist almost periodic
solutions for all 0 < λ < 1. We will extend the conclusions in [48] from finite dimensional
frequencies to infinite dimensional frequencies.

THEOREM 1.1. Let α ∈ DC∞(γ , τ) and V ∈ Hσ0(T
∞, R) with η ≥ 1. We consider the

Toda flow in equation (1.1) with initial condition (an(0), bn(0)) = (1, V (x + nα)). Then,
there exists ε∗(γ , τ , η, σ0), such that if |V |σ0 ≤ ε∗, we have:
(1) for any x ∈ T∞, equation (1.1) admits a unique solution (a(t), b(t)) defined for all

t ∈ R;
(2) for every t , the Jacobi matrix J (t) defined by equation (1.2) is almost periodic with

constant spectrum �V ,α;
(3) the solution (a(t), b(t)) is almost periodic in t in the sense that there exists

a continuous map M : TZ → �∞(Z) × �∞(Z), a point ϕ ∈ TZ, and a direction
ω ∈ RZ, such that (a(t), b(t)) = M(ϕ + ωt).
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4 H. Zhao and H. Cheng

Initial datum problems for other systems are in [31, 32], where Damanik, Li, and Xu
show the existence and uniqueness of spatially quasi-periodic solutions to the generalized
KdV equation and Benjamin–Bona–Mahony equation with quasi-periodic initial data on
the real line.

The proof of Theorem 1.1 depends on the discussions in [69], see Theorem 6.2. Given
almost periodic initial datum (an(0), bn(0)) = (1, V (x + nα)), two ingredients of the
hypotheses of Theorem 6.2 are that the spectrum set of Schrödinger operator HV ,α,x

defined by equation (1.3) is homogeneous and pure absolutely continuous (ac). Thus, to
apply this theorem, we, in §§1.2 and 1.3, will give our main results about the pure ac
spectrum and homogeneous spectrum.

1.2. Absolute continuous spectrum. In this subsection, we will give discussions about
the pure ac spectrum of the Schrödinger operator HV ,α,x , which is defined by

(HV ,α,xu)n = un+1 + un−1 + V (x + nα)un, n ∈ Z. (1.3)

A lot of research has been conducted by mathematicians and physicians about the almost
periodic operator HV ,α,x , that is, the potential V is almost periodic, see [10, 11, 46, 52]
for details. However, subsequently, much attention has been paid to the quasi-periodic and
limit periodic cases and less progress made in the almost periodic case.

We first consider the limit-periodic potential V , which lies in the closure of the space of
periodic potentials. That is, there exists {Vn}n∈N, where Vn, n ∈ N, are periodic functions,
such that

lim
n→∞ ‖V − Vn‖∞ = 0. (1.4)

Even though periodic operators always exhibit pure ac spectrum, in [2], Avila shows the
possibilities of new phenomena of the limit-periodic potentials, such as the genericity of
purely singular continuous spectrum [2, 25] and the denseness of pure point spectrum [30].
Instead of the V defined by equation (1.4), if we restrict the limit-periodic potentials in the
perturbative regime, that is, potentials V are with qn-periodic approximants Vn such that

lim
n→∞ eqn+1b‖V − Vn‖∞ = 0 for all b > 0, (1.5)

then in [55, 56] Pastur and Tkachenko show that HV ,α,x has pure ac spectrum, which serves
as the fundamental work of other related studies.

Now, we consider the quasi-periodic potential V . To study the spectral property of
HV ,α,x , we introduce the coupling constant λ ∈ R+ in front of the potential V. In the case
where λ is sufficiently large, the Lyapuonv exponent of cocycle (α, SλV

E ) is positive for
any E ∈ R, see [19, 42, 44, 65] and the references therein. Thus, Kotani’s theory implies
there will be no ac spectrum in the spectrum set. If the coupling constant λ is sufficiently
small, the frequency α has to be restricted to the Diophantine frequencies, which we
denote by DC for the set of these frequencies. (For any γ > 0, τ > d, the estimates
‖〈k, α〉‖R/Z ≥ γ |k|−τ for all 0 �= k ∈ Zd hold.) Under hypotheses that λ is small enough
and α ∈ DC, Dinaburg and Sinaı̆ [35] prove that the ac spectrum set is not empty, and in
[36], under the same hypotheses in [35], Eliasson shows that the spectrum is pure ac. In
the case where α ∈ DC, Avila and Jitomirskaya, based on a non-perturbative Anderson
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localization result, prove that there exists λ1 independent on α such that the spectrum
set is pure ac for all λ ≤ λ1, see [8] for details. For AMO with subcritical coupling, that
is, 0 < λ < 1, Avila and Damanik, in [6], show that the spectrum is pure ac by proving
that the integrated density of states is absolutely continuous. Moreover, Avila, Fayad, and
Krikorian [7] and Hou and You [45] consider the discrete and continuous Schrödinger
operators, respectively. They construct non-standard Kolmogorov–Arnold–Moser (KAM)
iterations and show that the set of ac spectrum is not empty for all α ∈ T \ Q and small
enough λ, and Avila’s conclusions in [3, 5] are able to show that the spectrum set is pure
ac. The case that λ is neither too large nor too small, which is the so-called global case,
is extremely complicated. However, in the one-frequency case, Avila gives the fascinating
global theory and shows that for typical analytic one-frequency Schrödinger operator, there
is no singular continuous spectrum, see [4] for details. Our pure ac spectrum result is the
following.

THEOREM 1.2. Assume α ∈ DC∞(γ , τ). Then there exists 0 < ε∗(γ , τ , η, σ0) < 1 such
that if V ∈ Hσ0(T

∞, R) with η ≥ 1 and |V |σ0 ≤ ε∗, the operator HV ,α,x has pure
absolutely continuous spectrum.

By the discussions above, we know that the works mentioned above are all with limit
periodic or quasi-periodic potentials, and our Theorem 1.2 extends the results above to
almost periodic potential cases. Since we consider the infinite dimensional frequency,
a new technique is needed to overcome the difficulties brought by infinite dimensional
frequencies. See the discussions in §4 for details.

1.3. Homogeneous spectrum. In this subsection, we will prove the homogeneity of the
spectrum by using the exponential decay of the spectral gaps and Hölder continuity of
the integrated density of states. Recall that in [21], the concept of an homogeneous set is
introduced by Carleson.

Definition 1.3. Given μ > 0, a closed set S ⊂ R is called μ-homogeneous if

|S ∩ (E − ε, E + ε)| ≥ με for all E ∈ S, for all 0 < ε < diam S.

It is known that the homogeneity of closed subsets of R is important in inverse spectral
theory, see the fundamental works of Sodin and Yuditskii [63, 64]. In particular, under the
hypotheses of finite total gap length along with a reflectionless condition, it is shown in
[64] that the homogeneity of the spectrum implies the almost periodicity of the associated
potentials and Gesztesy and Yuditskii [41], under the same hypotheses in [64], show that
the Schrödinger operators have pure ac spectra. Here, we want to mention that the result of
Remling and Poltoratski [57, Corollary 2.3] shows that if S is weakly homogeneous and J
is reflectionless on S, then S does not support a singular spectrum, see [57] for details.

In [38], Fillman and Lukic consider the Schrödinger operators with limit periodic
potential and show the existence of homogeneous spectra by assuming the potential obeys
the Pastur–Tkachenko condition, and Fillman [37] proves the spectra of discrete operators
with generic potential are homogeneous; here, generic potential is a dense subset of limit
periodic potential. Later, Damanik and Fillman in [23] also show the existence of an
homogeneous spectrum for the limit periodic potentials defined by (1.5).
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As for the quasi-periodic potential case, we refer to [28], where Damanik, Goldstein, and
Lukic consider continuous Schrödinger operators and show the existences of homogeneous
spectra with Diophantine frequency and small potential V . In [29], Damanik et al consider
the discrete Schrödinger operators and show homogeneous spectra under the conditions
that frequency is Diophantine and the Lyapunov exponent is positive. Moreover, to ensure
the existence of an homogeneous spectrum for supercritical AMO (λ > 1), [29] shows
that the strong Diophantine frequency is needed. Later, Leguil et al [48] consider discrete
Schrödinger operators with some Liouvillean frequencies and prove that the spectrum is
homogeneous if V is small enough. Our result is as follow.

THEOREM 1.4. Let α ∈ DC∞(γ , τ) and set V ∈ Hσ0(T
∞, R), η ≥ 1. There exists

0 < ε∗(γ , τ , η, σ0) < 1 such that if |V |σ0 ≤ ε∗, then the spectrum set of HV ,α,x is
μ-homogeneous for some μ ∈ (0, 1).

In Theorem 1.4, we extend the results above from limit periodic and quasi-periodic
potentials to almost periodic potentials. In [9], the authors construct the Schrödinger
operator with one frequency whose spectrum is not homogeneous. Thus, the hypotheses in
Theorem 1.4 are not restrictive.

2. Preliminary
In this section, we give some basic definitions and conclusions. Even though the
discussions are given in Td topology with d ∈ N, the conclusions will also hold in our
T∞ topology since we equip T∞ with the product topology of T.

2.1. Jacobi operator and Schrödinger operator. For a = (an)n∈Z, b = (bn)n∈Z ∈
�∞(Z, R), we define the Jacobi operator J associate with a, b by

(Ju)n = an−1un−1 + bnun + anun+1. (2.1)

The Jacobi operator J arises naturally in the context of the spectral theorem, which says
any bounded self-adjoint operator A with a cyclic vector is unitarily equivalent to a Jacobi
operator on a half-line. It is self-adjoint since we restrict an, bn ∈ R for all n ∈ Z. We
restrict ourselves to the non-singular case, where an > 0 for all n ∈ Z.

Let � be the spectrum of the self-adjoint Jacobi matrices J defined by equation (2.1).
Given any z /∈ �, the Green’s function of J is the integral kernel of (J − z)−1:

GJ (m, n; z) = 〈en, (J − z)−1em〉. (2.2)

Definition 2.1. [13, 22, 64] Let � ∈ R. A Jacobi operator J is said to be reflectionless on
� if Re(GJ (n, n; E + i0)) = 0 for all n ∈ N and Lebesgue almost every (a.e.) E ∈ �.

Given any z ∈ H := {z ∈ C : Im z > 0}, the difference equation Ju = zu has two
solutions u± (defined up to normalization) with u±

0 �= 0, which are in �2(Z±), respec-
tively. Let m±

J = ∓(u±
±1/a0u

±
0 ). Then, m+

J and m−
J are Herglotz functions, i.e., they

map H holomorphically into itself. For almost every E ∈ R, the non-tangential limits
limε→0+ m±

J (E + iε) exist. Then, we have
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GJ (0, 0; z) = −1
a2

0(m+
J (z) + m−

J (z))
, z ∈ H. (2.3)

Consider the linear Schrödinger operator HV ,α,x defined by

(HV ,α,xu)n = un+1 + un−1 + V (x + nα)un, n ∈ Z, (2.4)

where x ∈ Td , d ∈ N ∪ {∞}, is called the phase, α ∈ Td is called the frequency, and V is
called the potential.

The Schrödinger operator HV ,α,x defined by equation (2.4) will be self-adjoint if we
assume V is real-valued and it is a special case of Jacobi operator J (t) defined by equation
(2.1) with an ≡ 1 for all n ∈ Z. Moreover, since we assume α ∈ DC∞(γ , τ), V (x + nα)

is almost periodic in n ∈ Z, and we call HV ,α,x the almost periodic Schrödinger operator.

2.2. Cocycle. Set T := R/Z as the cycle (the base) and SL(2, R) as the set of 2 by 2 real
matrices with determinant 1 (the fiber). Thus, the smooth cocycles are diffeomorphisms
on the product Td × C2 of the form

(α, A) : Td × C2 → Td × C2,

(x, y) �→ (x + α, A(x)y),

where α ∈ Td and A ∈ C∞(Td , SL(2, R)), d ∈ N ∪ {∞}.
Now, we turn back to Schrödinger operator HV ,α,x defined by equation (2.4). Note any

formal solution u = (un)n∈Z of HV ,α,xu = Eu can be rewritten as(
un+1

un

)
= SV

E (x + nα)

(
un

un−1

)
,

where

SV
E (x) =

(
E − V (x) − 1

1 0

)
.

We call (α, SV
E (x)) the Schrödinger cocycle. The iterations of (α, SV

E (·)) are of the form
(α, SV

E (·))n = (nα, SV
E,n(·)), where SV

E,n(·) is called the transfer matrix and defined by

SV
E,n(·) :=

⎧⎨⎩SE,V (· + (n − 1)α) · · · SE,V (· + α)SE,V (·), n ≥ 0,

S−1
E,V (· + nα)S−1

E,V (· + (n + 1)α) · · · S−1
E,V (· − α), n < 0,

then, we have (
un+1

un

)
= SV

E,n(x)

(
u1

u0

)
.

2.3. Integrated density of states and Lyapunov exponent. The integrated density of
states (IDS) NV : R → [0, 1] of HV ,α,x is defined as

NV (E) =
∫
Td

μV ,x(−∞, E] dx,

where μV ,x is the spectral measure of HV ,α,x .
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Define the finite Lyapunov exponent as

Ln(α, SV
E ) = 1

n

∫
Td

ln ‖SV
E,n(x)‖ dx,

then by Kingman’s subadditive ergodic theorem, the Lyapunov exponent of (α, SV
E ) is

defined as

L(α, SV
E ) = lim

n→∞ Ln(α, SV
E ) = inf

n>0
Ln(α, SV

E ) ≥ 0. (2.5)

Note that in our case, d = ∞. It turns out that if α ∈ DC∞(γ , τ) (thus, α is uniquely
ergodic), then

L(α, SV
E ) = lim

n→∞
1
n

ln ‖SV
E,n(x)‖, a.e. x ∈ T∞.

By the Thouless formula, the relation between the IDS and the Lyapunov exponent
defined by equation (2.5) is

L(α, SV
E ) =

∫
ln |E − E′| dNV (E′).

2.4. Rotation number. Assume that A ∈ Hσ (Td , SL(2, R)) is homotopic to identity and
introduce the map:

F : Td × S1 → Td × S1, (x, v) �→
(

x + α,
A(x)v

‖A(x)v‖
)

,

which admits a continuous lift F̃ : Td × R → Td × R of the form F̃ (x, y) = (x + α, y +
f (x, y)) such that f (x, y + 1) = f (x, y) and π(y + f (x, y)) = A(x)π(y)/‖A(x)π(y)‖.
We call that F̃ is a lift for (α, A). Since x �→ x + α is uniquely ergodic on Td , we can
invoke a theorem by Herman [44] and Johnson and Moser [46]: for every (x, y) ∈ Td × R,
the limit

lim
n→∞

1
n

n−1∑
k=0

f (F̃ k(x, y))

exists, is independent of (x, y), and the convergence is uniform in (x, y); the class of this
number in T (which is independent of the chosen lift) is called the fibered rotation number
of (α, A), which is denoted by ρ(α, A). Moreover, the rotation number ρf (α, A) relates
density of states NV as follows:

NV (E) = 1 − 2ρ(α, A). (2.6)

For any C ∈ SL(2, R), it is immediate from the definition that

|ρ(α, A) − ρ(α, C)| ≤ ‖A(x) − C‖1/2
C0 . (2.7)

In addition to the conclusion given by equation (2.7), we also have two conclusions
below.
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LEMMA 2.2. [47] The rotation number is invariant under the conjugation map which
is homotopic to the identity. More precisely, if A, B : Td → SL(2, R) is continuous and
homotopic to the identity, then

ρ(α, B(· + α)−1A(·)B(·)) = ρ(α, A).

PROPOSITION 2.3. If A : T∞ → SL(2, R) is continuous and homotopic to the identity,
and E : 2T∞ → SL(2, R) is defined by

E(x) =
(

cos(π〈r , x〉) − sin(π〈r , x〉)
sin(π〈r , x〉) cos(π〈r , x〉)

)
,

then

ρ((0, E) ◦ (α, A) ◦ (0, E−1)) = ρ(α, A) + 〈r , α〉
2

mod 1.

Proof. It is known that ρ((0, B) ◦ (α, A) ◦ (0, B−1)) = ρ(α, A)mod 1 if B : 2T∞ →
SL(2, R) is homotopic to the identity. In this case, the lift of (α, E(x + α)A(x)E−1(x))

is given by

G̃(x, y) =
(

x + α, y + f

(
x, y − 〈r , x〉

2

)
+ 〈r , α〉

2

)
.

Define

g(x, y) = f

(
x, y − 〈r , x〉

2

)
+ 〈r , α〉

2
,

gk(x, y) =
k−1∑
i=0

g(G̃i(x, y)), fk(x, y) =
k−1∑
i=0

f (F̃ i(x, y)).

Using mathematical induction, then, gk(x, y) = fk(x, y − 〈r , x〉/2) + k〈r , α〉/2. Note
the fact of the convergence of the Birkhoff means

ρ((0, E) ◦ (α, A) ◦ (0, E−1)) = ρ(α, A) + 〈r , α〉
2

mod 1.

3. Almost reducibility
In this section, we will establish our main KAM induction and then give the basic
quantitative estimates in the case of reducibility and almost reducibility. These estimates
will be applied to control the growth of corresponding Schrödinger cocycles.

3.1. Decomposition along resonances. In this subsection, parameters ρ, ε, N, will be
fixed. Define the resonant case as that where k∗ ∈ Z∞∗ with 0 < |k∗|η ≤ N , such that

‖2ρ − 〈k∗, α〉‖R/Z < ε1/12.

The vector k∗ will be referred to as a ‘resonant site’.
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After here, the constant c values are bounded uniformly but are different in different
places. Moreover, for any K > 0, define the truncating operators TK on Hσ (T∞, X) as

(TKf )(x) =
∑

k∈Z∞∗ ,|k|η<K

f̂ (k)ei2π〈k,x〉,

and projection operator RK as

(RKf )(x) =
∑

k∈Z∞∗ ,|k|η≥K

f̂ (k)ei2π〈k,x〉.

Decomposition of the space Hσ (T∞, su(1, 1)) is defined as follows: for any given
ξ > 0, α ∈ T∞, A ∈ SU(1, 1), we decompose Bσ = Hσ (T∞, su(1, 1)) = Bnre

σ (ξ) ⊕
Bre

σ (ξ) in such a way that for any Y ∈ Bnre
σ (ξ),

A−1Y (x + α)A ∈ Bnre
σ (ξ), |A−1Y (x + α)A − Y (x)|σ ≥ ξ |Y (x)|σ . (3.1)

Let Pnre, Pre be the standard projections from Bσ onto Bnre
σ (ξ) and Bre

σ (ξ).

LEMMA 3.1. [20] Assume that ε ≤ (4‖A‖)−4, ξ ≥ 13‖A‖2ε1/2. For any f ∈ Bσ with
|f |σ ≤ ε, there exists Y ∈ Bσ , f re ∈ Bre

σ (ξ) such that

eY(x+α)(Aef (x))e−Y(x) = Aef re(x), |Y |σ ≤ ε1/2, |f re|σ ≤ 2ε.

Referring to [20, Remark 3.1], Lemma 3.1 sets up the fact that Bσ is a Banach space.
Before giving the induction proposition, we introduce the following well-known results,
which control the estimate of the small divisor.

LEMMA 3.2. [51] Let μ1, μ2 ≥ 1. We have the following estimate for N � 1:

sup
k∈Z∞∗ ,|k|η≤N

∏
j∈N

(1 + |kj |μ1〈j〉μ2) ≤ (1 + N)c(η,μ1,μ2)N
1/(1+η)

(3.2)

for some constant C(η, μ1, μ2) > 0.

For the given c, assume that D(c) is the smallest one such that

(ln D(c))η/(4+4η) ≥ c ln ln D(c). (3.3)

PROPOSITION 3.3. Let α ∈ DC∞(γ , τ), γ > 0, 0 < σ < 1/10, τ > 1, η > 0. Con-
sider the cocycle (α, Aef (x)), where A ∈ SU(1, 1) with eigenvalues {ei2πρ , e−i2πρ} and
f ∈ Hσ (T∞, su(1, 1)) with the estimate

|f |σ ≤ ε ≤ D(c)−1 exp{−[(σ − δ)π ](−2(2+η))/η}, (3.4)

where δ ∈ (0, σ) and D(c) is the one defined by equation (3.3) with c = c(γ , τ , η, ‖A‖).
Then, there exists B ∈ Hδ(2T∞, SU(1, 1)), f+ ∈ Hδ(T

∞, su(1, 1)), and A+ ∈ SU(1, 1),
such that

B(x + α)(Aef (x))B(x)−1 = A+ef+(x). (3.5)
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Moreover, let N = {(σ − δ)π}−1 ln ε−1, then we distinguish the conclusions into two
cases. Non-resonant case: if for any 0 < |k|η ≤ N , k ∈ Z∞∗ ,

‖2ρ − 〈k, α〉‖R/Z ≥ ε1/12, (3.6)

then

|B − Id|δ ≤ ε1/2, |f+|δ ≤ 4ε3, ‖A+ − A‖ ≤ 2ε. (3.7)

Resonant case: if there exists k∗ ∈ Z∞∗ , 0 < |k∗|η ≤ N , such that

‖2ρ − 〈k∗, α〉‖R/Z < ε1/12,

then

|B|δ ≤ eπδ|k∗|ηε−1/480, ‖B‖ ≤ ε−1/480, |f+(x)|δ � ε10,

ρ(α, A+ef+(x)) = ρ(α, Aef (x)) + 〈k∗, α〉
2

,
(3.8)

and A+ = eA′′+ , ‖A′′+‖ < 4ε1/12,

A′′+ =
(

it+ v+
v̄+ − it+

)
with |t+| ≤ 4ε1/12, |v+| ≤ 2ε1−1/240e−2π |k∗|ησ .

Proof. Non-resonant case. Before giving the proof, we give the estimate of small divisor
in the following claim.

CLAIM 3.4. For any α ∈ DC∞(γ , τ), and parameters N , η, τ , ε given above, the follow-
ing estimates hold:

‖〈k, α〉‖R/Z ≥ γ (1 + N)−c(η,τ)N1/(1+η)

> 2ε1/240. (3.9)

Proof. The fact that α ∈ DC∞(γ , τ) and equation (3.2) yield, for any 0 < |k|η ≤ N ,

‖〈k, α〉‖R/Z ≥ γ
∏
j∈N

1
(1 + |kj |τ 〈j〉τ ) ≥ γ (1 + N)−c(η,τ)N1/(1+η)

.

Now, we give the proof of the last inequality in equation (3.9). First, equation (3.4)
shows

ln ε−1 ≥ max{[(σ − δ)π ]−2(2+η)/η, [c ln ln ε−1]2(1+η)/η}, (3.10)

where c depends on the parameters η, τ , γ . The inequality above yields

(ln ε−1)η/(1+η) = (ln ε−1)η/(2(1+η))(ln ε−1)η/(2(1+η)) > c[(σ − δ)π ]−1/(1+η) ln ln ε−1.
(3.11)

Then,

ln ε−1 > (ln ε−1)1/(1+η)c[(σ − δ)π ]−1/(1+η) ln ln ε−1

> c{[(σ − δ)π ]−1 ln ε−1}1/(1+η)(ln[(σ − δ)π ]−1 + ln ln ε−1),
(3.12)
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where the first and second inequalities are from equations (3.11) and (3.10), respectively.
The last inequality in equation (3.12) and the fact N = {(σ − δ)π}−1 ln ε−1 yield

ln ε−1 > cN1/(1+η) ln N ,

which yields

ε−1/240 > 2γ −1(1 + N)c(η,τ)N1/(1+η)

.

Define

�N =
{
f ∈ Hσ (T∞, su(1, 1))| f (x) =

∑
k∈Z∞∗ ,0<|k|η≤N

f̂ (k)ei2π〈k,x〉
}

. (3.13)

By equations (3.6) and (3.9), a simple computation shows that if Y ∈ �N , A ∈ SU(1, 1),
then

|A−1Y (x + α)A − Y (x)|σ � ε1/4|Y (x)|σ .

Thus, �N ⊂ Bnre
σ (ε1/4). Note ε ≤ (4‖A‖)−4 and ε1/4 > 13‖A‖2ε1/2, then by Lemma 3.1

with ε1/4 in place of ξ , we know that there exist Y ∈ Bσ , f re ∈ Bre
σ (ε1/4) such that

eY(x+α)(Aef (x))e−Y(x) = Aef re(x), (3.14)

where |Y |σ ≤ ε1/2, |f re|σ ≤ 2ε. Notice f re ∈ Bre
σ (ε1/4), then by equation (3.13),

f re(x) = f̂ re(0) + RNf re(x), ‖f̂ re(0)‖ ≤ 2ε. (3.15)

Moreover, we also have

|RNf re(x)|δ =
∑

k∈Z∞∗ ,|k|η>N

‖f̂ re(k)‖e2π |k|ηδ

≤ ‖f re‖σ sup
|k|η>N

e−2π |k|η(σ−δ) ≤ e−2πN(σ−δ)2ε ≤ 2ε3.
(3.16)

Set

ef+(x) := e−f̂ re(0)ef re(x), A+ := Aef̂ re(0), B(x) := eY(x).

Thus, the cocycle (α, Aef re(x)) can be written as (α, A+ef+(x)) and (0, B) changes
(α, Aef (x)) to (α, A+ef+(x)). Notice that eAeE = eA+E+D , where D is a sum of terms
of order at least 2 in A, E, then by equations (3.15) and (3.16), we get

|f+(x)|δ ≤ 4ε3, ‖A+ − A‖ ≤ ‖A‖‖Id − ef̂ re(0)‖ ≤ 2ε, |B − Id|δ ≤ ε1/2.

Resonant case. Note that we only need to consider the case in which A ∈ SU(1, 1) is
elliptic with eigenvalues {ei2πρ , e−i2πρ} for ρ ∈ R \ {0}, because if ρ = ib, with b ∈ R,
then equation (3.9) implies ‖i2b − 〈k∗, α〉‖R/Z > 2ε1/240.

CLAIM 3.5. Assume that k∗ is the resonant site with

0 < |k∗|η ≤ N ,

then there is no other resonant site k′∗ with |k′∗| ≤ N1+(η/2).
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Proof. Assume that there exists k′∗ �= k∗ with |k′∗|η ≤ N1+(η/2), satisfying
‖2ρ − 〈k′∗, α〉‖R/Z < ε1/12, then by the Diophantine condition of α, we have

γ
∏
j∈N

1
(1 + |k′∗j − k∗j |τ 〈j〉τ ) ≤ ‖〈k′∗, α〉 − 〈k∗, α〉‖R/Z < 2ε1/12.

Moreover, note |k′∗ − k∗|η ≤ 2N1+(η/2), then by equation (3.2) and the inequalities above,

γ

2
ε−1/12 <

∏
j∈N

(1 + |k′∗j − k∗j |τ 〈j〉τ ) ≤ (1 + 2N1+(η/2))c(η,τ)(2N1+(η/2))1/(1+η)

,

which, together with the fact N = {(σ − δ)π}−1 ln ε−1, implies

(ln ε−1)η/(2+2η) < c(γ , τ , η)[(σ − δ)π ]−(2+η)/(2+2η) ln ln ε−1. (3.17)

However, equation (3.10) implies [(σ − δ)π ]−(2+η)/(2+2η) < (ln ε−1)η/(4+4η), which,
together with equation (3.17), implies

(ln ε−1)η/(4+4η) < c(γ , τ , η) ln ln ε−1.

The inequality above is contradictory to equations (3.4) and (3.3).

Note that tr A = ei2πρ + e−i2πρ = 2 cos 2πρ > −2, so there exists A′ ∈ su(1, 1) such
that A = eA′

with spec (A′) = {i2πρ, −i2πρ}, ρ ∈ (0, 1
2 ). In this resonant case, the fact

that there exist k∗ with |k∗|η < N such that

‖2ρ − 〈k∗, α〉‖R/Z < ε1/12

together with similar calculations above yield

|ρ| ≥ ε1/252. (3.18)

Moreover, [45, Lemma 8.1] implies that there exists P ∈ SU(1, 1) such that

PAP −1 = diag(ei2πρ , e−i2πρ) := A∗,

where

‖P ‖ ≤ 2(‖A′‖|2πρ|−1)1/2 ≤ ε−1/480, (3.19)

here, the second inequality is by equation (3.18). Furthermore, set h(x) = Pf (x)P −1, then
the cocycle (α, Aef (x)) is changed into (α, A∗eh(x)) with

|h|σ ≤ ε−1/240 · ε � ε′. (3.20)

The estimate ε1/12 ≥ 13‖A∗‖2ε′1/2 enables us to apply Lemma 3.1 to the cocycle
(α, A∗eh(x)) to remove all the non-resonant terms of h, that is, there exists Y ∈ Bσ ,
hre ∈ Bre

σ (ε1/12) such that

eY(x+α)(A∗eh(x))e−Y(x) = A∗ehre(x),

with |Y |σ ≤ ε′1/2, |hre|σ ≤ 2ε′. Thus, we get the cocycle (α, A∗ehre(x)).
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Now define

�1(ε
1/12) = {k ∈ Z∞∗ : ‖〈k, α〉‖R/Z ≥ ε1/12},

�2(ε
1/12) = {k ∈ Z∞∗ : ‖2ρ − 〈k, α〉‖R/Z ≥ ε1/12},

and define Bnre
σ (ε1/12) as in equation (3.1) with A being substituted by A∗. Then, we can

compute that any Y ∈ Bnre
σ (ε1/12) takes the precise form:

Y (x) =
(

it (x) v(x)

v̄(x) − it (x)

)
=

∑
k∈�1(ε1/12)

(
ît (k) 0
0 − ît (k)

)
ei2π〈k,x〉 +

∑
k∈�2(ε1/12)

(
0 v̂(k)ei2π〈k,x〉
¯̂v(k)e−i2π〈k,x〉 0

)
,

where t (x) ∈ R, v(x) ∈ C.
Combining with the fact that α ∈ DC∞(γ , τ) and the Claim 3.5, we have

{Z∞∗ \ �1(ε
1/12)} ∩ {k ∈ Z∞∗ : |k|η ≤ N ′} = {0},

{Z∞∗ \ �2(ε
1/12)} ∩ {k ∈ Z∞∗ : |k|η ≤ N ′} = {k∗},

where N ′ � 2N1+(η/2) − N . Thus, hre(x) ∈ Bre
σ (ε1/12) can be rewritten as

hre(x) = hre
0 (x) + hre

1 (x) + hre
2 (x)

=
(

ît (0) 0
0 − ît (0)

)
+
(

0 v̂(k∗)ei2π〈k∗,x〉
v̂(k∗)e−i2π〈k∗,x〉 0

)
+

∑
|k|η>N ′

ĥre(k)ei2π〈k,x〉

with

‖hre
j ‖σ ≤ ‖hre‖σ ≤ 2ε′, j = 0, 1, 2. (3.21)

Define Q : 2T∞ → SU(1, 1) as

Q(x) =
(

e−iπ〈k∗,x〉 0
0 eiπ〈k∗,x〉

)
,

so we have

|Q(x)|δ ≤ eπδ|k∗|η ≤ ε−δ/(σ−δ), (3.22)

where the last inequality is from |k∗|η ≤ N = {(σ − δ)π}−1 ln ε−1. One can also show

Q(x + α)(A∗ehre(x))Q(x)−1 = A′∗eh′re(x),

where

A′∗ = Q(x + α)A∗Q(x)−1 =
(

ei2π(ρ−〈k∗,α〉/2) 0
0 e−i2π(ρ−〈k∗,α〉/2)

)
,

and

h′re(x) = Q(x)hre(x)Q(x)−1 =
2∑

j=0

Q(x)hre
j (x)Q(x)−1.
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Moreover,

Q(x)hre
0 (x)Q(x)−1 = hre

0 (x), Q(x)hre
1 (x)Q(x)−1 =

(
0 v̂(k∗)
¯̂v(k∗) 0

)
,

M−1Q(x)M =
(

cos π〈k∗, x〉 − sin π〈k∗, x〉
sin π〈k∗, x〉 cos π〈k∗, x〉

)
.

Denote

L = Q(x)hre
0 (x)Q(x)−1 + Q(x)hre

1 (x)Q(x)−1,

F = Q(x)hre
2 (x)Q(x)−1,

B = Q(x)eY(x)P : 2T∞ → SU(1, 1).

Then, by the discussions above, we have

B(x + α)(Aef (x))B(x)−1 = A′∗eh′re(x) := A+ef+(x),

where

A+ = A′∗eL := eA′′+

=
(

ei2π(ρ−〈k∗,α〉/2) 0
0 e−i2π(ρ−〈k∗,α〉/2)

)
exp

(
ît (0) v̂(k∗)
¯̂v(k∗) − ît (0)

)
,

ef+(x) = e−Leh′re(x) = e−LeL+F .

(3.23)

Now, we give the estimates of B and the cocycle (α, A+ef+(x)). First, Proposition 2.3
shows

ρ(α, A+ef+(x)) = ρ(α, Aef (x)) + 〈k∗, α〉
2

,

and the estimates in equations (3.19)–(3.22) yield

|B|δ ≤ eπδ|k∗|ηε−1/480, ‖B‖ ≤ ε−1/480,

|̂t(0)| ≤ 2ε′, |̂v(k∗)| ≤ 2ε′e−2πσ |k∗|η ,

|F |δ ≤ ε−2δ/(σ−δ)|hre
2 |δ ≤ ε−2δ/(σ−δ)e−2πN ′(σ−δ)|hre

2 |σ
≤ 2ε1−1/240ε4Nη/2

ε−2σ/(σ−δ) � ε10.

The estimates above imply that the B, f+ and A
′′
+ defined by equation (3.23) are those we

need.

3.2. Reducibility of almost-periodic cocycle. Given any σ ∈ (0, σ0), define

σj+1 = σj − σ0 − σ

12(j + 1)2 , j ≥ 1, (3.24)

then,

σ∞ = σ0 −
+∞∑
i=0

(σi − σi+1) ≥ 5σ0 + σ

6
> σ .
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Let

ε0 < ε∗ := D(c)−1 exp{−{[12(N∗ + 1)2][(σ0 − σ)π ]−1}2(2+η)/η}, (3.25)

where D(c) is the one in equation (3.4) and

N∗ = (3η/4(2+η) − 1)−1. (3.26)

Moreover, we also define

εj+1 = 4ε3
j , Nj = {(σj − σj+1)π}−1 ln ε−1

j , j ≥ 0. (3.27)

Remark 3.6. Assume we arrive at the (j + 1)th step’s cocycle (α, Aje
fj ) satisfying the

hypotheses of Proposition 3.3 with σ , δ and A, f being replaced by σj , σj+1 and Aj , fj ,
then we can apply Proposition 3.3 and get a new cocycle (α, Aj+1e

fj+1). The conclusions
of Proposition 3.3 show that |fj+1|σj+1 ≤ εj+1 for both the resonant and non-resonant
cases. The choice of ε∗ defined by equation (3.25) with N∗ being given by equation (3.26)
ensures that

εj+1 ≤ D(c)−1 exp{−[(σj+1 − σj+2)π ](−2(2+η))/η}. (3.28)

That is, (α, Aj+1e
fj+1) satisfies the hypotheses of Proposition 3.3 with σ , δ and A, f

being replaced by σj+1, σj+2 and Aj+1, fj+1. That is, we can apply Proposition 3.3 to
(α, Aje

fj ) for all j ≥ 0.

PROPOSITION 3.7. Let α ∈ DC∞(γ , τ), γ > 0, 0 < σ0 < (1/10), τ > 1, η > 0,

Kj = {E ∈ � | there exists kj−1 ∈ Z∞∗ , with 0 < |kj−1|η ≤ Nj−1

such that ‖2ρ(Aj−1) − 〈kj−1, α〉‖R/Z < ε
1/12
j−1 }, j ≥ 1. (3.29)

Suppose that A0 ∈ SL(2, R), f0 ∈ Hσ0(T
∞, sl(2, R)), and |f |σ0 ≤ ε0. Then, the fol-

lowing conclusions hold. (1) The system (α, A0e
f0(x)) is almost reducible in the strip

|�x| < σ . Moreover, there exists B̃j−1 ∈ Hσj
(2T∞, SL(2, R)), such that

B̃j−1(x + α)A0e
f0(x)B̃j−1(x)−1 = Aje

fj (x), j ≥ 1 (3.30)

with estimates

‖B̃j−1(x)‖ ≤ ε
−1/320
j−1 , |fj |σj

≤ εj , j ≥ 1. (3.31)

Assume the (j� + 1)th KAM step is the �th resonant step with � = i, i + 1, then

N
(4+4η)/(4+3η)
ji

< |kji+1 |η ≤ Nji+1 . (3.32)

(2) There exist unitary matrices Uj ∈ SL(2, C) such that

UjAjU
−1
j =

(
ei2πρj cj

0 e−i2πρj

)
for all j ∈ N (3.33)

and

‖B̃j−1‖2 · |cj | ≤ 8‖A0‖ for all j ∈ N, (3.34)
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where B̃j−1 is the one in equation (3.30). Moreover, if E ∈ Kj , then

ρ(α, Aje
fj (x)) = ρ(α, Aj−1e

fj−1(x)) + 2−1〈kj−1, α〉,
|cj | < 4ε

1/12
j−1 .

(3.35)

In this case, set Aj = e
A′′

j , then

MA′′
jM

−1 =
(

itj vj

v̄j − itj

)
(3.36)

with

|tj | ≤ 4ε
1/12
j−1 , |vj | ≤ 2ε

1−1/240
j−1 e−2π |kj−1|ησj−1 , ‖A′′

j‖ ≤ 4ε
1/12
j−1 . (3.37)

(3) If there exists k ∈ Z∞∗ \ {0}, such that

ρ(α, A0e
f0(x)) = 2−1〈k, α〉, (3.38)

and (α, A0e
f0(x)) is not uniformly hyperbolic, then the resonant case defined in

Proposition 3.3 only happens finite times. Moreover, there exists B̃ ∈ Hσ (2T∞, SL(2, R))

such that

B̃(x + α)A0e
f0(x)B̃(x)−1 =

(
1 ζ

0 1

)
,

with estimate |ζ | ≤ 2ε
1−1/120
jn

e−(25/16)πσ0|k|η , and |B̃(x)|σ ≤ 4εjn
−1/320e(8/7)πσ |k|η , where

jn is the index of last resonant site kjn .

Proof. We give the conclusions in part (1) by induction.
First step. The estimate of ε0 defined by equation (3.25) enables us to apply

Proposition 3.3 to (α, A0e
f0(x)) and obtain the following. There exists B̃0 ∈ Hσ1(2T

∞,
SL(2, R)) such that

B̃0(x + α)(A0e
f0(x))B̃0(x)−1 = A1e

f1(x)

with the following estimates:

|f1|σ1 ≤ ε1, ‖B̃0‖ ≤ ε
−1/320
0 .

That is, we get a new cocycle (α, A1e
f1(x)) with estimates (3.30) and (3.31) with j = 1.

Moreover, if there exists k0 ∈ Z∞∗ , 0 < |k0|η ≤ N0, such that ‖2ρ − 〈k0, α〉‖R/Z < ε
1/12
0 ,

then

ρ(α, A1e
f1(x)) = ρ(α, A0e

f0(x)) + 〈k0, α〉
2

.

By Remark 3.6, we know that equation (3.28) holds with j = 0. That is, (α, A1e
f1(x))

satisfies the hypotheses of Proposition 3.3 with σ , δ and A, f being replaced by σ1, σ2 and
A1, f1, respectively.

Inductive step. Assume that we have completed the lth step and are at the (l + 1)th
KAM step with l ≥ 1, that is, we already construct B̃l−1 ∈ Hσl

(2T∞, SL(2, R)) such that
the estimates in equations (3.30) and (3.31) hold with j = 1, . . . , l. Now we consider

https://doi.org/10.1017/etds.2024.138 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.138


18 H. Zhao and H. Cheng

the (l + 1)th step. By Remark 3.6, we know that equation (3.28) holds with j = l − 1.
Then, by applying Proposition 3.3, we know that there exists Bl ∈ Hσl+1(2T

∞, SL(2, R)),
Al+1 ∈ SL(2, R), and fl+1 ∈ Hσl+1(T

∞, sl(2, R)) such that

Bl(x + α)(Ale
fl(x))Bl(x)−1 = Al+1e

fl+1(x).

If ‖2ρl − 〈k, α〉‖R/Z ≥ ε
1/12
l holds for any k ∈ Z∞∗ with 0 < |k|η ≤ Nl , then the

conclusions of the non-resonant case in Proposition 3.3 show

|Bl − Id|σl+1 ≤ ε
1/2
j , |fl+1|σl+1 ≤ 4ε3

l = εl+1, ‖Al+1 − Al‖ ≤ 2εl . (3.39)

However, if there exists kl ∈ Z∞∗ with 0 < |kl |η ≤ Nl such that

‖2ρl − 〈kl , α〉‖R/Z < ε
1/12
l , (3.40)

then the conclusions of the resonant case in Proposition 3.3 show

|Bl |σl+1 ≤ eπσl+1|kl |ηεl
−1/480, ‖Bl‖ ≤ ε

−1/480
l , |fl+1(x)|σl+1 < εl+1, (3.41)

ρ(α, Al+1e
fl+1(x)) = ρ(α, Ale

fl(x)) + 〈kl , α〉
2

,

and

Al+1 = eA′′
l+1 , ‖A′′

l+1‖ < 4ε
1/12
l , (3.42)

MA′′
l+1M

−1 =
(

itl+1 vl+1

v̄l+1 − itl+1

)
(3.43)

with

|tl+1| ≤ 4ε
1/12
l , |vl+1| ≤ 2ε

1−1/240
l e−2π |kl |ησl . (3.44)

Let B̃l = BlB̃l−1. Then, we get equation (3.30) with j = l + 1. Moreover, the estimates
in equation (3.31) with j = l and equations (3.39), (3.41), yield

‖B̃l(x)‖ ≤ ‖Bl(x)‖‖B̃l−1(x)‖ ≤ ε
−1/320
l .

That is the estimates in equation (3.31) hold with j = l + 1.
Inductively, we have proved that estimates in equations (3.30) and (3.31) hold for all

j ∈ N, which imply that (α, A0e
f0(x)) is almost reducible in the strip |�x| < σ (σ∞ > σ ).

Now, we will verify equation (3.32). We give the lower bound of ρji+1 first. Suppose
there are two resonance sites kji

, kji+1 , which happen at the KAM steps (ji + 1),
(ji+1 + 1), respectively. Thus, ‖2ρji+1 − 〈kji+1 , α〉‖R/Z < ε

1/12
ji+1

, which yields

2ρji+1 > ‖〈kji+1 , α〉‖R/Z − ε
1/12
ji+1

> 2−1‖〈kji+1 , α〉‖R/Z >
γ

2
(1 + |kji+1 |η)−c(η,τ)|kji+1 |1/(1+η)

η ,
(3.45)

where the last two inequalities above are given by equations (3.9) and (3.2).
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We consider the upper bound of ρji+1 . According to Proposition 3.3, after the (ji + 1)th
KAM step, we get cocycle (α, Aji+1e

fji+1), then Shur theorem implies that there exists a
unitary matrix Uji+1 such that

Uji+1A
′′
ji+1U

−1
ji+1 =

(
i2πρji+1 c′′

ji+1
0 − i2πρji+1

)
,

which, together with equation (3.42) yields (see the details to obtain equation (3.47))

|2πρji+1| ≤ ‖A′′
ji+1‖ < 4ε

1/12
ji

.

Moreover, equations (2.7) and (3.39) imply

|ρji+1 − ρji+1| ≤
ji+1−1∑
m=ji+1

‖Am+1 − Am‖1/2 ≤ cε
3/2
ji

. (3.46)

The inequalities (3.9), (3.45), and (3.46) yield

γ

4
(1 + |kji+1 |η)−c(η,τ)|kji+1 |1/(1+η)

η < ρji+1 < 2ε
1/12
ji

<
γ

4
ε

1/24
ji

(1 + Nji
)
−10c(η,τ)N

1/(1+η)
ji .

Then, we have N
(4+4η)/(4+3η)
ji

< |kji+1 |η, and equation (3.32) is proved.
Now, we will verify the conclusions in (2). Obviously, equation (3.33) holds. Now, we

assume E ∈ Kj , then the estimates in equations (3.42)–(3.44) with l = j − 1 yield the
conclusions in equations (3.36) and (3.37). Moreover, for the unitary matrix Uj in equation
(3.33), we get

UjA
′′
jU

−1
j =

(
i2πρj c′′

j

0 − i2πρj

)
.

Thus, the estimates in equation (3.42) with l = j − 1 yield

|c′′
j |, |2πρj | ≤ ‖A′′

j‖ < 4ε
1/12
j−1 . (3.47)

Thus,

UjAjU
−1
j = e

Uj A′′
j U−1

j =
(

ei2πρj cj

0 e−i2πρj

)
,

where cj =∑+∞
n=0(1/(2n + 1)!)c′′

j (i2πρj )
2n. Then, |cj | ≤ |c′′

j | < 4ε
1/12
j−1 . That is, we get

the estimate about cj in equation (3.35). The equality about the rotation number in equation
(3.35) holds obviously, we omit the details.

Now, we come to the inequality in equation (3.34). Since the steps between ji + 1,
ji+1 + 1 are all non-resonant steps, then equation (3.31) with ji = j − 1, equation (3.42)
with l = ji , and equation (3.39) yield, for all ji + 1 < j < ji+1 + 1,

‖A′′
j‖ ≤ ‖A′′

ji+1‖ +
j−1∑

m=ji+1

‖Am+1 − Am‖1/2 ≤ 5ε
1/12
ji

,

|B̃j−1(x)|0 ≤ 2ε
−1/320
ji

.

(3.48)

https://doi.org/10.1017/etds.2024.138 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.138


20 H. Zhao and H. Cheng

The inequality above, together with equation (3.33), yields

|cj | ≤ 5ε
1/12
ji

, ji + 1 < j < ji+1 + 1. (3.49)

The estimates (3.31), (3.35), (3.48), and (3.49) enable us to get the following conclu-
sions.

(I) After each resonant step j, equations (3.31) and (3.35) yield

‖B̃j−1(x)‖2|cj | ≤ 4ε
37/480
j ≤ 8‖A0‖.

(II) After each non-resonant step j, we are able to use the estimates of the last resonant
step ji + 1 if it exists. Moreover, equations (3.48) and (3.49) imply

‖B̃j−1(x)‖2|cj | ≤ 20ε
37/480
ji

≤ 8‖A0‖.

(III) It is possible that no resonant steps happened within the first j steps. In this case,
each step is non-resonant and thus we can use the estimate ‖B̃j−1‖ < 2. Then,
|cj | ≤ ‖Aj‖ ≤ 2‖A0‖, which implies ‖B̃j−1‖2|cj | ≤ 8‖A0‖.

The discussions in conclusions (I)–(III) yield equation (3.34).
Finally, we come to part (3). Assume that the resonance occurs at jl + 1th step’s cocycle

(α, Ajl
efjl ), l ∈ N. For the k in equation (3.38), if there exists p ∈ N such that

Njp−1 < |k|η ≤ Njp , (3.50)

then, in the following, we will prove that there is no jp+1.
Assume there exists such jp+1 with 0 < |kjp+1 |η < ∞ satisfying

‖〈kjp+1 , α〉 − 2ρjp+1‖R/Z < ε
1/12
jp+1

.

In this case, the estimates in equation (3.47) with j = jp+1 + 1 and equation (2.7) show

|ρ(α, Ajp+1+1)| < ε
1/12
jp+1

and

|2ρ(α, Ajp+1+1e
fjp+1+1) − 2ρ(α, Ajp+1+1)| ≤ 2ε

1/2
jp+1+1,

respectively. The two inequalities above yield

|2ρ(α, Ajp+1+1e
fjp+1+1)| ≤ 4ε

1/12
jp+1

. (3.51)

However, the two inequalities in equation (3.32) imply, for 1 ≤ m ≤ p + 1,

m∑
l=1

|kjl
|η ≤

m−1∑
l=1

|Njl
|η + |kjm |η ≤

m−1∑
i=0

|kjm |((4+3η)/(4+4η))i

η ≤ 31
30

|kjm |η. (3.52)

Set k̃ := k +∑p+1
l=1 kjl

, then equations (3.52), (3.50), and (3.32) yield

16
15

Njp+1 ≥ |̃k|η =
∣∣∣∣kjp+1 + k +

p∑
l=1

kjl

∣∣∣∣
η

≥ |kjp+1 |η − 3Njp >
14
15

Njp . (3.53)
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Moreover, the estimates in equationsa (3.38) and (3.35) yield

2ρ(α, Ajp+1+1e
fjp+1+1) =

〈
k +

p+1∑
l=1

kil , α

〉
= 〈̃k, α〉,

which, together with equations (3.53) and (3.9), yields

2|ρ(α, Ajp+1+1e
fjp+1+1)| = ‖〈̃k, α〉‖R/Z ≥ γ (1 + 2Njp+1)

−c(η,τ)N
1/(1+η)
jp+1 > ε

1/120
jp+1

.

The inequality above, together with equation (3.51), implies

ε
1/120
jp+1

< 2ρ(α, Ajp+1+1e
fjp+1+1) ≤ 4ε

1/12
jp+1

,

which is a contradiction, so there is no jp+1. Thus, 2ρ(α, Ajp+1e
fjp+1) = 0, otherwise,

there exists the (p + 1)th resonance.
The discussions above mean that the resonant case occurs only finitely many times in

the above almost reducibility procedure. By the estimates of Bj in equation (3.39) and the
sequence (σj )j∈N given in equation (3.24), we see that the product

∏j

l=0 Bl converges to
some B ∈ Hσ (2T∞, SL(2, R)) such that B(x + α)A0e

f0(x)B(x)−1 = A∞, with

ρ(α, A∞) = ρ(α, Ajp+1e
fjp+1) = 0. (3.54)

Assuming that there are actually n times resonant steps, associated with integers vectors

kjl
∈ Z∞∗ with 0 < |kjl

|η ≤ Njl
, l = 1, . . . , n,

then, k = kj1 + · · · + kjn . In view of inequality (3.52), equation (3.32) with similar
calculation of equation (3.53), we get

14
15

|kjn |η ≤ |k|η ≤ 16
15

|kjn |η. (3.55)

Now we estimate the constant matrix A∞. The fact that we have assumed that the initial
cocycle (α, A0e

f0(x)) is not hyperbolic and equation (3.54) imply A∞ is a parabolic matrix.
As A∞ ∈ SL(2, R), we have A∞ = eA′′∞ with A′′∞ ∈ sl(2, R) and detA′′∞ = 0. Assume
that A′′∞ = (

a11 a12
a21 −a11 ), then there exists φ ∈ T such that RφA′′∞R−φ = ( 0 a12−a21

0 0 ). Let
B̃ = RφB, and ζ = a12 − a21, we can see that the cocycle (α, A0e

f0(x)) is conjugated to
A∞ = ( 1 ζ

0 1 ) by B̃(x).
To estimate |ζ |, let us focus on (α, Ajn+1e

fjn+1(x)), which is obtained by the last
resonant step. In the following, we will estimate the constant matrix A∞. Obviously,

A∞ = eA′′∞ = M−1 exp
(

iβ11 β12

β̄12 − iβ11

)
M ,

where β11 ∈ R, β12 ∈ C. Since by equations (3.36) and (3.37) with jn + 1 in place of j,
and Proposition 3.3, it follows that

|β12| = |(M(A′′∞ − A′′
jn+1)M

−1)12 + (MA′′
jn+1M

−1)12|
≤ 16ε3

jn
+ 2ε

1−1/240
jn

e−2π |kjn |ησjn ≤ ε
1−1/120
jn

e−2π |kjn |ησjn .
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Then, we have |β11| ≤ ε
1−1/120
jn

e−2π |kjn |ησjn since detA′′∞ = 0. Thus, by equation (3.55),

|ζ | = |a12 − a21| ≤ |β11| + |β12| ≤ 2ε
1−1/120
jn

e−2π |kjn |ησjn

≤ 2ε
1−1/120
jn

e−(25/16)πσ0|k|η < 2−1,

where the third inequality is by |k|η ≤ 16/15|kjn |η in equation (3.55) and σ∞ > 5σ0/6. In
view of Proposition 3.7, there exists B̃jn ∈ Hσjn+1(2T

∞, SL(2, R)), such that

B̃jn(x + α)A0e
f0(x)B̃jn(x)−1 = Ajn+1e

fjn+1(x).

By equation (3.8) and Proposition 3.7 with σ∞ > σ , we get

|B̃jn(x)|σ ≤ 2
n∏

i=1

|Bji
(x)|σ ≤ 2εjn

−1/320e(8/7)πσ |k|η .

Thus, |B̃(x)|σ ≤ 4εjn
−1/320e(8/7)πσ |k|η .

4. Pure absolutely continuous spectrum
In this section, we give the proof of Theorem 1.2, whose conclusions show that the operator
HV ,α,x has purely ac spectrum under some suitable hypotheses. The proof is based on the
conclusions in Proposition 3.7.

4.1. Auxiliary lemmas. Before giving the proof of Theorem 1.2, we give some auxiliary
lemmas to get some necessary estimates such as the growth of cocycle, the estimates of
integrated density of states, Lyapunov exponent, and rotation number. Moreover, we will
apply Lemmas 4.6–4.8 without proof in our topology since we equip T∞ with the product
topology of T, which is similar to the topology in [1]. Here and subsequently, we denote
�V ,α by the spectrum of HV ,α,x and we acquiesce in the equality SV

E (x) = A0e
f0(x).

LEMMA 4.1. Let Kj , j ∈ N be the sets defined by equation (3.29) and set E ∈ Kj . Then,
there exists m ∈ Z∞∗ with the estimate 0 < |m|η < 2Nj−1 such that

‖2ρ(α, A0e
f0) − 〈m, α〉‖R/Z ≤ ε

1/12
j−1 . (4.1)

Moreover,

sup
0≤n≤cε

−1/12
j−1

‖SV
E,n‖ ≤ cε

−1/160
j−1 . (4.2)

Proof. For l ∈ N, we assume that the lth resonance occurs at the (jl + 1)th step of KAM
iteration. For a given j , there exists p ∈ N such that jp + 1 = j . We just consider the case
p ≥ 2 since in the case p = 1, we just take m = kj1 .

Now, we assume p ≥ 2. Set m = kjp −∑p−1
l=1 kjl

and note

2ρ(α, Ajpe
fjp (x)

) = 2ρ(α, A0e
f0(x)) +

p−1∑
l=1

〈kjl
, α〉.
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Moreover, equations (2.7), (3.7), and (3.29) yield

‖2ρ(α, Ajpe
fjp (x)

) − 〈kjp , α〉‖R/Z < 2ε
1/12
jp

.

The inequalities above imply

‖2ρ(α, A0e
f0(x)) − 〈m, α〉‖R/Z < 2ε

1/12
jp

.

Moreover, for the m defined above, equation (3.32) yields

|m|η ≤
p∑

l=1

|kjl
|η <

p−1∑
i=0

N
((4+3η)/(4+4η))i

jp
≤ 2Njp .

Now we come to equation (4.2). First, equation (3.30) shows that

A0e
f0(x) = B̃j−1(x + α)−1Aje

fj (x)B̃j−1(x).

Moreover, equation (3.37) implies ‖Aje
fj (x)‖ ≤ 1 + ε

1/12
j−1 . The discussions above,

together with equation (3.31), yield

sup
0≤n≤cε

−1/12
j−1

‖SV
E,n‖ ≤ (1 + ε

1/12
j−1 )

cε
−1/12
j−1 ε

−1/160
j−1 ≤ cε

−1/160
j−1 .

LEMMA 4.2. The integrated density of states is 1
2 -Hölder for every 0 < ε ≤ ε

1/4
0 .

Moreover, if E ∈ �V ,α , then

L(α, SV
E ) = 0. (4.3)

Proof. We prove equation (4.3) first, which can be derived from the inequality

‖SV
E,n‖ ≤ nc, n ≥ 1, E ∈ �V ,α , (4.4)

where c is a positive constant. We distinguish the proof of equation (4.4) into two cases.
Case 1. If (α, A0e

f0(x)) is reducible, then there exists B̃ ∈ Hσ (2T∞, SL(2, R)) such
that

B̃(x + α)A0e
f0(x)B̃(x)−1 = A∞.

Since E ∈ �V ,α , the cocycle (α, A0e
f0(x)) is not uniformly hyperbolic [46], and hence

A∞ =
(

ei2πρ c

0 e−i2πρ

)
with ρ ∈ R. Then, ‖An∞‖ ≤ nc + 1, which implies that

‖SV
E,n(x)‖ ≤ ‖An∞‖‖B̃(x)‖2 ≤ (nc + 1)C ≤ Cn for all n ≥ 1.

Thus, equation (4.3) holds.
Case 2. If (α, A0e

f0(x)) is not reducible but almost reducible, we need the following
lemma to describe the growth of the cocycle.
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LEMMA 4.3. Suppose E ∈ �V ,α , then for all j ≥ 1, there exists B̃ ′
j−1, such that

B̃ ′
j−1(x + α)A0e

f0(x)B̃ ′
j−1(x)−1 =

(
ei2πρj cj

0 e−i2πρj

)
+ F̃j (x), (4.5)

where ρj ∈ R, with

‖F̃j (x)‖ ≤ ε
1/4
j , ‖B̃ ′

j−1(x)‖ ≤ ε
−1/320
j−1 , ‖B̃ ′

j−1(x)‖2|cj | ≤ 8‖A0‖. (4.6)

Proof. The conclusions in part (1) of Proposition 3.7 show that there exists B̃j−1 ∈
Hσj

(2T∞, SL(2, R)), such that equation (3.30) holds with equation (3.31). Then, there
exists unitary matrices Uj such that

UjAje
fj (x)U−1

j =
(

ei2πρj cj

0 e−i2πρj

)
+ Fj (x),

where ρj ∈ R ∪ iR with |Fj (x)|σj
< εj and the estimates in equations (3.31) and (3.34)

hold.
Case 1: ρj ∈ R. Let B̃ ′

j−1(x) = Uj B̃j−1(x), F̃j = Fj , then

B̃ ′
j−1(x + α)A0e

f0(x)B̃ ′
j−1(x)−1 =

(
ei2πρj cj

0 e−i2πρj

)
+ F̃j (x).

Moreover, the estimates in equation (4.6) are also satisfied.
Case 2: ρj ∈ iR. We first assume |ρj | > ε

1/4
j . Let

Qj =
(

qj 0
0 q−1

j

)
,

where qj = ‖B̃j−1‖ε1/4
j . Then, we have

Qj

[(
ei2πρj cj

0 e−i2πρj

)
+ Fj (x)

]
Q−1

j =
(

ei2πρj 0
0 e−i2πρj

)
+ F ′

j (x),

where

F ′
j (x) =

(
0 cj q

2
j

0 0

)
+ QjFj (x)Q−1

j .

Moreover, equation (3.34) yields

|cj |q2
j = |cj |‖B̃j−1‖2ε

1/2
j ≤ 8‖A0‖ε1/2

j , ‖QjFjQ
−1
j ‖ ≤ ε

1/2
j ,

then we have ‖F ′
j‖ ≤ cε

1/2
j . We will show that this implies that the system is uniformly

hyperbolic.
More precisely, given a non-zero vector ( a

b ) ∈ R2with |a| ≥ |b|, let(
a′
b′
)

=
[(

ei2πρj 0
0 e−i2πρj

)
+ F ′

j (x)

] (
a

b

)
=
(

ei2πρj a

e−i2πρj b

)
+ F ′

j (x)

(
a

b

)
.
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Without loss of generality, assume i2πρj > 0, then

|a′| ≥ (ei2πρj − 2‖F ′
j‖)|a|, |b′| ≤ e−i2πρj |b| + 2‖F ′

j‖|a|.
Therefore, |a′| − |b′| ≥ (i4πρj − 4cε

1/2
j )|a| > 0, which, together with the cone field

criterion (compare, e.g., [71]), implies (α, A0e
f0) is uniformly hyperbolic. This conflicts

with our assumption that E ∈ �V ,α . So we have |ρj | ≤ ε
1/4
j . We put it into the perturbation

to obtain the following:

B̃ ′
j−1(x + α)A0e

f0(x)B̃ ′
j−1(x)−1 =

(
1 cj

0 1

)
+ F̃j (x)

with ‖F̃j‖ ≤ ε
1/4
j . Thus, we get the new cocycle with ρj = 0 and the perturbation being

given above. So we have ρ ∈ R.

To control the growth of the cocycle, we need the following lemma proved by Avila,
Fayad, and Krikorian [7].

LEMMA 4.4. We have that

Ml(id + ξl) · · · M0(id + ξ0) = M(l)(id + ξ (l)),

where M(l) = Ml · · · M0 and

‖ξ (l)‖ � e
∑l

k=0 ‖M(k)‖2‖ξk‖ − 1.

Now, we come back to the proof of Case 2 of Lemma 4.2. Let

Mk = UjAjU
−1
j =

(
ei2πρj cj

0 e−i2πρj

)
, ξk = UjA

−1
j U−1

j F̃j (x + kα).

Apply Lemma 4.4 to the Mk given above and equation (4.5), so that we obtain

SV
E,n(x) = B̃ ′−1

j−1(x + (n + 1)α)UjA
n
jU

−1
j (id + ξ (n))B̃ ′

j−1(x + α),

where ‖ξ (n)‖ ≤ e
∑n

k=1 ‖Uj Ak
j U−1

j ‖2‖ξk‖ − 1. Since ρj ∈ R, we have ‖UjA
k
jU

−1
j ‖ ≤ 1 +

k|cj |, which, together with |F̃j | ≤ ε
1/4
j , yields

‖SV
E,n‖ ≤ ‖B̃ ′

j−1‖2(1 + n|cj |) · e
∑n

k=1(1+k|cj |)2(1+|cj |)ε1/4
j

≤ ‖B̃ ′
j−1‖2(1 + n|cj |)en3ε

1/4
j .

The inequality above, together with equation (4.6), implies

sup
0≤n≤cε

−1/12
j−1

‖SV
E,n‖ ≤ 2‖B̃j−1‖2(1 + n|cj |) ≤ 2ε

−1/160
j−1 + 16n. (4.7)

Since we are at the almost reducible situation, for any fixed large n ∈ N, there exists i
such that n ∈ [ε−1/36

i−1 , ε
−1/12
i−1 ], then equation (4.7) shows that

sup
0≤n≤cε

−1/12
i−1

‖SV
E,n‖ ≤ 2n9/40 + 16n ≤ 17n.
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The above equation yields

lim
n→∞

1
n

ln ‖SV
E,n(x)‖ ≤ lim

n→∞
1
n

ln(17n) = 0.

So we get equation (4.3) for E ∈ �V ,α .
Next, we will prove the conclusion of Lemma 4.2 about the integrated density of states.

To this end, let Ij � (ε
1/4
j , ε

1/15
j−1 ), j ≥ 1. Then, for any small 0 < ε < ε

1/15
0 , there exists j

such that ε ∈ Ij . Moreover, we also need the lemma below.

LEMMA 4.5. There exists W ∈ Hσ (2T∞, GL(2, C)) such that

Q(x) = W(x + α)A0e
f0(x)W(x)−1, (4.8)

with

‖W‖ ≤ ε−1/4, ‖Q‖ ≤ 1 + cε1/2. (4.9)

Proof. Let B̃ ′
j−1 and F̃j be those in Lemma 4.3, so

B̃ ′
j−1(x + α)A0e

f0(x)B̃ ′
j−1(x)−1 =

(
ei2πρj cj

0 e−i2πρj

)
+ F̃j (x).

Let D = diag{d , d−1}, W(x) = DB̃ ′
j−1 with d = ε1/4‖B̃ ′

j−1‖. Then, we have

W(x + α)A0e
f0(x)W(x)−1 =

(
ei2πρj 0
0 e−i2πρj

)
+ F̃ ′

j (x),

where

F̃
′
j (x) =

(
0 ‖B̃ ′

j−1‖2ε1/2cj

0 0

)
+ DF̃jD

−1.

Since ε ∈ Ij , we have d < 1, which implies ‖W‖ ≤ ε−1/4. Moreover, equation (4.6) and
the fact that ε ∈ Ij imply ‖F̃ ′

j (x)‖ < cε1/2 and ρj ∈ R. Let

Q(x) = W(x + α)A0e
f0(x)W(x)−1,

then ‖Q‖ ≤ 1 + cε1/2.

Now, we prove conclusions about the integrated density of states. Notice

L(α, SV
E ) = lim

n→∞
1
n

ln ‖SV
E,n(x)‖.

Abbreviate L(α, SV
E ) to L(E, V ) and by the Thouless formula, we obtain

L(E + iε, V ) − L(E, V ) =
∫
R

1
2

ln
(

1 + ε2

(E′ − E)2

)
dN(E′)

≥
∫ E+ε

E−ε

(
1
2

ln 2
)

dN(E′),

≥ 1
2

ln 2(N(E + ε) − N(E − ε)).

(4.10)

So it is enough to show that for 0 < ε ≤ ε
1/4
0 , L(E + iε) < Cε1/2.
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Notice that

SV
E+iε(x) =

(
E + iε − V (x) − 1

1 0

)
= SV

E (x) +
(

iε 0
0 0

)
and there exists Ij such that ε ∈ Ij , then by equations (4.8) and (4.9), we get

W(x + α)SV
E+iε(x)W(x)−1 = Q(x) + W(x + α)

(
iε 0
0 0

)
W(x)−1,

� S̃(x).

The Lyapunov exponent is clearly invariant under conjugacies, so we have
L(E + iε, V ) = L(α, SV

E+iε) = L(α, S̃). Thus,

‖S̃(x)‖ ≤ 1 + cε1/2 + ε · ε−1/2 = 1 + cε1/2,

which implies

L(α, S̃) = lim
n→∞

1
n

ln ‖S̃n(x)‖ ≤ lim
n→∞

1
n

n∑
i=1

ln ‖S̃(x + (i − 1)α)‖ ≤ cε1/2,

which, together with equation (4.10), implies that integrated density of states is 1
2 - Hölder

continuous.

LEMMA 4.6. [1] We have μ(E − iε, E + iε) ≤ Cε sup0≤m≤Cε−1 ‖SV
E,m‖2, where C > 0

is a universal constant.

LEMMA 4.7. [1] If E ∈ �V ,α , then for 0 < ε ≤ ε
1/4
0 , N(E + ε) − N(E − ε) ≥ cε3/2.

Let B′ be the set of E ∈ �V ,α such that (α, SV
E (x)) is bounded, and R′ be the set of

E ∈ �V ,α such that (α, SV
E (x)) is reducible. Then, we have two lemmas below, which are

the basis of the proof of Theorem 1.2.

LEMMA 4.8. [1] Let B′ be the set of E ∈ R such that the cocycle (α, SV
E ) is bounded.

Then, μV ,α,x |B′ is absolutely continuous for all x ∈ R.

LEMMA 4.9. If E ∈ R′ \ B′, then there exists a unique k ∈ Z∞∗ such that 2ρ(α, SV
E (x)) =

〈k, α〉mod 1.

Proof. If E ∈ R′, then there exist at most finitely many resonance sites kj0 , . . . , kjl
. Since

there exists B ∈ Hσ (2T∞, SL(2, R)) such that

B(x + α)A0e
f0(x)B(x)−1 = A∞,

with ‖B‖ ≤ 2ε
−1/320
jl

, then by equation (3.35) and E /∈ B′, we have

ρ(α, A∞) = ρ(α, A0e
f0(x)) +

l∑
i=0

〈kji
, α〉

2
= 0,

which yields 2ρ(α, SV
E (x)) = 〈k, α〉mod 1 for some k ∈ Z∞∗ .
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4.2. Proof of Theorem 1.2. Once we get the conclusions in §4.1, we are ready to
prove Theorem 1.2. First, Lemma 4.8 shows that to prove Theorem 1.2, it is enough
to prove μ(�V ,α \ B′) = 0. Moreover, Lemma 4.9 shows that R′ \ B′ is countable. The
definition of R′ implies that if E ∈ R′, any non-zero solution HV ,α,xu = Eu satisfies
infn∈Z{|un|2 + |un+1|2} > 0. Thus, if, furthermore, E ∈ R′ \ B′, then u /∈ �2(Z). That is,
there are no eigenvalues in R′ \ B′ and μ(R′ \ B′) = 0. So it is enough to prove that
μ(�V ,α \ R′) = 0.

Actually, E ∈ �V ,α \ R′ and μ(�V ,α \ R′) = 0 are equivalent to E ∈ lim supj→∞ Kj

and μ(lim supj→∞ Kj) = 0, respectively. Moreover, by the Borel–Cantelli lemma,
μ(lim supj→∞ Kj) = 0 is equivalent to

∑
j μ(Kj ) < ∞. So, the last thing is to show∑

j

μ(Kj ) < ∞. (4.11)

We will devote ourselves to proving equation (4.11) in the rest of this section.
Let Jj (E) = (E − cε

1/18
j−1 , E + cε

1/18
j−1 ), j ≥ 1. Lemma 4.6 and E ∈ Kj yield

μ(Jj (E)) ≤ cε
1/18
j−1 sup

0≤n≤cε
−1/18
j−1

‖SV
E,n‖2 ≤ cε

31/720
j−1 . (4.12)

Thus, Kj ⊂⋃r
l=0 Jj (El) since Kj is compact, where El ∈ Kj , l = 0, . . . , r . Refine this

subcover if necessary, then we can assume that any x ∈ R is contained in at most two
different Jj (El). Thus, N(Kj ) ⊂⋃r

i=0 N(Jj (Ei)).
We see that N(E) = 1 − 2ρ(α, SV

E ) and equation (4.1) yield

‖N(E) − 〈m, α〉‖R/Z ≤ ε
1/12
j−1 for all E ∈ Kj . (4.13)

For m(l) ∈ Z∞∗ satisfying equation (4.13), set

Tl = (〈m(l), α〉 − ε
1/12
j−1 , 〈m(l), α〉 + ε

1/12
j−1 ). (4.14)

For the fixed Tl defined above, we have

|Tl | = 2ε
1/12
j−1 = 2c−1|Jj (E)|3/2 ≤ 2c−1|N(Jj (E))| for all E ∈ Kj , (4.15)

where the last inequality is by Lemma 4.7. For the constant c in equation (4.15),
set Nc = [4(c−1 + 1)] + 1, where [·] denotes the integer part. Then, for the fixed Tl ,
select {El,s}Nc

s=1 ⊂ Kj such that N(Jj (El,s)), s = 1, . . . , Nc, intersects Tl with Jj (El,s) ∈
{Jj (Ei)}ri=0. Thus,

N(Kj ) ⊂
r⋃

i=0

N(Jj (Ei)) ⊂
Ñ⋃

l=0

Nc⋃
s=1

N(Jj (El,s)), (4.16)

where Ñ is the number of such m(l) satisfying equation (4.13).
Note for fixed Ei ∈ Kj , there exists l ∈ N such that N(Ei) ∈ Tl , and thus N(Jj (Ei))

intersects Tl , which, together with the selection of {El,s}Nc

s=1 above, yields the second
relation in equation (4.16).

We, in the lemma below, give the upper bound of Ñ , which is the number of such m(l)

satisfying equation (4.13).
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LEMMA 4.10. Ñ satisfies the following inequality:

Ñ < ε
−1/40
j−1 . (4.17)

Proof. For E ∈ Kj , Lemma 4.1 implies that there exists m ∈ Z∞∗ such that equation (4.1)
holds (thus, this m satisfies equation (4.13) since N(E) = 1 − 2ρ(α, SV

E )) with

|m|η =
∑
s∈N

〈s〉η|ms | < 2Nj−1. (4.18)

Moreover, we assume j is large enough such that 1 ≤ η <
√

1 + log2 Nj−1 − 1.
For the m satisfying equation (4.18), denote M̃m by the number of its non-zero

components. Then, we have the following estimates:

2Nj−1 ≥ |m|η =
M̃m∑
j=1

〈ij 〉η|mij | ≥
M̃m∑
j=1

〈ij 〉η ≥
M̃m∑
j=1

jη �
1

1 + η
M̃1+η

m ,

and thus,

M̃m ≤ (2η + 2)1/(1+η)(2Nj−1)
1/(1+η) < 2(2Nj−1)

1/(1+η) < (2Nj−1)
1/η, (4.19)

where the last inequality is by η <
√

1 + log2 Nj−1 − 1. The second inequality above
shows that 2(2Nj−1)

1/(1+η) is the uniform bound of the M̃m for all m given by equation
(4.13). Set C

j
n , n ≥ j , to be the notation of combination, which denotes the prescribed size

of taking j numbers from the given set {1, 2, . . . , n}.
Now, we are ready for proving the inequality in equation (4.17). First, equa-

tion (4.18) shows that ms = 0 for s ≥ (2Nj−1)
1/η. Thus, we are restricted to the

(2Nj−1)
1/η-dimensional tori, which, for the fixed j ∈ N, is finite dimensional. Moreover,

equation (4.19) shows that the uniform bound of the number of non-zero components of
m satisfying equation (4.13) is 2(2Nj−1)

1/(1+η). That is, there are at least (2Nj−1)
1/η −

2(2Nj−1)
1/(1+η) many components being zero. So for these m satisfying equation (4.13),

we just need to consider its 2(2Nj−1)
1/(1+η) many components, which are allowed to be

non-zero. Second, equation (4.18) also yields |ms | < 2Nj−1|s|−η, s ≥ 1. Thus, for fixed
s ≤ (2Nj−1)

1/η, ms can take any of the values below:

{±[2Nj−1|s|−η], ±([2Nj−1|s|−η] − 1), . . . , ±2, ±1, 0}.
Set

{n1, n2, . . . , n2(2Nj−1)1/(1+η)}. (4.20)

We consider these m values, which satisfy equation (4.13) and whose indexes set
of 2(2Nj−1)

1/(1+η) many components, which may not be zero, is set above. By the
discussions above, we know that the number of these m is less than

2(2Nj−1)
1/(1+η)∏

s=1

(4Nj−1〈ns〉−η + 1).
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Note the elements of the index set defined in equation (4.20) are taken from the set
{0, 1, . . . , (2Nj−1)

1/η}, and thus we have the estimate

Ñ < C
2(2Nj−1)

1/(1+η)

(2Nj−1)1/η

2(2Nj−1)
1/(1+η)∏

s=1

(4Nj−1〈ns〉−η + 1)

≤ C
2(2Nj−1)

1/(1+η)

(2Nj−1)1/η

2(2Nj−1)
1/(1+η)∏

s=0

(4Nj−1〈s〉−η + 1) < ε
−1/40
j−1 ,

where the second inequality is by the fact that 〈ns〉−η ≤ 〈s〉−η and the last inequality is by
the second inequality in equation (3.9).

Now, we continue the estimation of μ(Kj ). First, equation (4.16) shows that there are at
most NcÑ intervals Jj (Ei). Then equations (4.16) and (4.17) yield

μ(Kj ) ≤
r∑

i=0

μ(Jj (Ei)) < Ncε
−1/40
j−1 · cε31/720

j−1 ≤ cε
13/720
j−1 ,

where the second inequality is by equation (4.12).

5. Homogeneous spectrum
In this section, we will prove our main result about the homogeneous spectrum, that is,
Theorem 1.4.

5.1. Gap estimate. The proof of Theorem 1.4 is based on the gap estimates via the
Moser–Pöschel argument, see Theorem 5.1. Thus, we will give a brief introduction about
the gap estimate and the conclusion in our setting.

In [53], Moser and Pöschel consider a continuous quasi-periodic Schrödinger operator
with small analytic potential V and show that |Gk(V )| is exponentially small with |k|
for large enough |k|. Later, in [36, 59], Eliasson and Puig follow the work in [53] and
show Gm(V ) is at least sub-exponentially small with respect to m under some hypotheses.
In [43, 60], Hadj-Amor, and Shi and Yuan consider the discrete Schrödinger operator
and the extended Harper model, showing the sub-exponential smallness with respect to
m of Gm(V ). Damanik and Goldstein, in [26], give a sharper upper bound 2εe−r0|m|/2

of |Gk(V )|. Leguil et al, in [48], give the upper bound of |Gk(V )| with the Liouvillean
frequency, and, in the Diophantine frequency case, the authors extend the result in [26] by
giving a sharper upper bound ε2/3e−2πr|m| for all r ∈ (0, r0). In [24, 50], Damanik, and
Liu and Yuan prove the gap labeling theorem for ergodic Schrödinger operators and give
the estimate of spectral gaps of AMO in the exponential regime. Our result is the following.

THEOREM 5.1. Let α ∈ DC∞(γ , τ) and V ∈ Hσ0(T
∞, R) with η > 0. There exists

0 < ε0(γ , τ , η, σ0) < 1 such that if |V |σ0 ≤ ε0, then for the discrete Schrödinger operator
HV ,α,x , we have |Gk(V )| ≤ ε

3/4
0 e−(5/4)πσ0|k|η .

For any r0 > 0, under the Diophantine frequency case, the estimate of gap in [48] is
ε2/3e−2πr|m| for all r ∈ (0, r0). However, the weight in our Theorem 5.1 is 5

4πσ0. The
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main reason that we lose much more analytic radius is that, with the infinite dimensional
frequency, the estimate of the resonant site given by equation (3.32) is much worse than
that in [48]. Consequently, we can only get much worse estimates about ζ and B̃ in part
(3) of Proposition 3.7.

5.2. Proof of Theorem 1.4. We will apply the estimate in Theorem 5.1 to prove Theorem
1.4. Set

E = min �V ,α , E = max �V ,α , G0(V ) = (−∞, E) ∪ (E, +∞).

Moreover, given any E ∈ �V ,α and any ε > 0, set

M = M(E, ε) � {m ∈ Z∞∗ \ {0} | Gm(V ) ∩ (E − ε, E + ε) �= ∅},
and let m0 ∈ M be such that |m0|η = minm∈M |m|η. Since E ∈ �V ,α , it is obvious that

|Gm0(V ) ∩ (E − ε, E + ε)| ≤ ε,

|(−∞, E) ∩ (E − ε, E + ε)| ≤ ε,

|(E, +∞) ∩ (E − ε, E + ε)| ≤ ε.

Moreover, by the definition of M, we know that

dist(Gm(V ), Gm′(V )) ≤ 2ε for all m, m′ ∈ M. (5.1)

Now, we assume 0 < ε ≤ ε0 and separate the discussions into the following three cases.
Case 1: G0(V ) ∩ (E − ε, E + ε) = ∅. Consider two different gaps Gm(V ) and

Gm′(V ). Without loss of generality, we assume that E+
m ≤ E−

m′ . Hence,

dist(Gm(V ), Gm′(V )) = E−
m′ − E+

m .

Thus, by Lemma 4.2, the equality above with equation (5.1), we have

|N(E−
m′) − N(E+

m)| ≤ c(E−
m′ − E+

m)1/2,

where c is independent of E. Since α ∈ DC∞(γ , τ), according to equation (2.6) and
Lemma 4.9, gap labeling [46], we have

|N(E−
m′) − N(E+

m)| = ‖〈m′ − m, α〉‖R/Z ≥ γ (1 + |m′ − m|η)−c(η,τ)(|m′−m|η)1/(1+η)

.

The three inequalities above show, for all m′ �= m ∈ Z∞∗ \ {0},

2ε ≥ dist(Gm(V ), Gm′(V )) ≥ γ 2

c2 (1 + |m′ − m|η)−2c(η,τ)(|m′−m|η)1/(1+η)

. (5.2)

By equation (5.2) we get, for all m ∈ M \ {m0},

2ε ≥ dist(Gm(V ), Gm0(V )) ≥ γ 2

c2 (1 + |2m|η)−2c(η,τ)(|2m|η)1/(1+η)

, (5.3)
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which, together with 0 < ε ≤ ε0, yields |m|η > c1 ln(1/ε) with c1 = c1(η, τ , γ ). More-
over, Theorem 5.1 shows |Gm(V )| ≤ ε

3/4
0 e−(5/4)πσ0|m|η . Thus, with direct calculations,

we get ∑
m∈M\{m0}

|Gm(V ) ∩ (E − ε, E + ε)| ≤
∑

m∈M\{m0}
|Gm(V )|

≤
∑

|m|η>c1 ln(1/ε)

ε
3/4
0 e−(5/4)πσ0|m|η ≤ ε

4
,

where the last inequality is by ε ≤ ε0 and with the similar calculations in the proof of
Lemma 4.10, we omit the details. Then we have, for any 0 < ε ≤ ε0,

|�V ,α ∩ (E − ε, E + ε)| ≥ 2ε − |Gm0(V ) ∩ (E − ε, E + ε)|
−

∑
m∈M\{m0}

|Gm(V ) ∩ (E − ε, E + ε)| ≥ 3
4
ε.

Case 2: (−∞, E) ∩ (E − ε, E + ε) �= ∅. In this case, for any m ∈ M,

|E−
m − E| ≤ 2ε. (5.4)

Using the same way to get equation (5.3), we also get

|E−
m − E| ≥ γ 2

c2 (1 + |m|η)−2c(η,τ)(|m|η)1/(1+η)

. (5.5)

Then, equations (5.4) and (5.5) imply |m|η > 2c1 ln(1/ε). Similarly, we have∑
m∈M

|Gm(V ) ∩ (E − ε, E + ε)| ≤
∑

|m|η>2c1 ln(1/ε)

ε
3/4
0 e−(5/4)πσ0|m|η ≤ ε

4
,

provided ε ≤ ε0. So we have, for any 0 < ε ≤ ε0,

|�V ,α ∩ (E − ε, E + ε)| ≥ 2ε − |(−∞, E) ∩ (E − ε, E + ε)|
−
∑

m∈M
|Gm(V ) ∩ (E − ε, E + ε)| ≥ 3

4
ε.

Case 3: (E, +∞) ∩ (E − ε, E + ε) �= ∅. The proof is similar to that of Case 2, so we
omit the details.

Finally, we get

|�V ,α ∩ (E − ε, E + ε)| ≥ 3
4ε for all 0 < ε ≤ ε0, for all E ∈ �V ,α .

As for the case ε ∈ (ε0, diam�V ,α), we have

|�V ,α ∩ (E − ε, E + ε)| ≥ 3
4
ε0 ≥ 3ε0

4diam�V ,α
ε.

Choose μ = min{3/4, 3ε0/4diam�V ,α} and this concludes the proof.

5.3. Proof of Theorem 5.1. In this subsection, we give the proof of Theorem 5.1. To this
end, we give the lemma below.
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LEMMA 5.2. Let α ∈ DC∞(γ , τ), κ ∈ (0, 1
4 ), and V ∈ Hσ0(T

∞, R), η > 0, be a
non-constant function. Assume that E+

k is a right edge point of the spectral gap Gk(V ),
and there are ζ ∈ (0, 1

2 ) and B ∈ Hσ (2T∞, SL(2, R)) such that

B(x + α)−1SV

E+
k

(x)B(x) = X :=
(

1 ζ

0 1

)
. (5.6)

If

|B|6σ ζ κ ≤ 1
16C̃2

, (5.7)

then |Gk(V )| ≤ ζ 1−κ .

We postpone the proof of Lemma 5.2 to Appendix and now we apply Lemma 5.2 to
prove Theorem 5.1. First, according to the conclusions in part (3) of Proposition 3.7, we
have

|B|6σ0/24ζ
1/5 ≤ 46(εjl

)−3/160e(48/7)π(σ0/24)|k|η · 41/5ε
1/5−1/600
jl

e−(5/16)πσ0|k|η ,

≤ 46+(1/5)ε
6/25−49/2400
jl

e−(3/112)πσ0|k|η ≤ (4C̃)−2.

Thus, we can apply the conclusion of Lemma 5.2 and get

|Gk(V )| ≤ ζ 4/5 ≤ 44/5ε
4/5−4s/50
jl

e−(5/4)πσ0|k|η ≤ ε
3/4
0 e−(5/4)πσ0|k|η .

6. Deift’s conjecture—proof of Theorem 1.1
To prove Theorem 1.1, we describe the spectral conditions of Jacobi operator induced by
the Toda lattice in equation (1.1) based on the discussions in [63, 64, 69].

Set

(P (t)u)n := −an−1(t)un−1 + an(t)un+1, (6.1)

and cite J (t) defined by equation (1.2),

(J (t)u)n = an−1(t)un−1 + bn(t)un + an(t)un+1. (6.2)

Then, equation (1.1) can be rewritten as a Lax pair:

d

dt
J (t) = P(t)J (t) − J (t)P (t). (6.3)

Consider the self-adjoint almost periodic Jacobi matrix J defined by equation (6.2) and
denote by J0 = J (0) the Jacobi operator corresponding to the initial data (an, bn)(0) =
(1, V (x + nα)). The spectrum � := σ(J0) is compact, and thus, can be denoted as
� = [inf �, sup �] \⋃k∈Z Gk(V ).

We assume � is homogeneous, and let J� and π1(C \ �) be the class of reflectionless
Jacobi matrices with spectrum � and the fundamental group of C \ �, respectively. By
π∗(C \ �), we denote the group of unimodular characters of π1(C \ �) endowed with the
topology induced by the metric

d(ω, ω̃) =
∑
j∈I

min{|ωj − ω̃j |, |Gj |}, ω, ω̃ ∈ π∗(C \ �),
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where |Gj | = E+
j − E−

j . Furthermore, we will use the additive form of notation for the
compact abelian group π∗(C \ �):

π∗(C \ �) = {K : π1(C \ �) → T,

K(γ1γ2) = K(γ1)K(γ2), γj ∈ π1(C \ �), j = 1, 2}.
Note π1(C \ �) is a free group admitting a set of generators {ck}k∈Z, where ck is a

counterclockwise simple loop intersecting R at inf � − 1 and 2−1(E+
k + E−

k ). Moreover,
any K ∈ π∗(C \ �) is uniquely determined by its action on loops ck , so it can be written
as K = (K(ck))k∈Z = (ei2πK̃k )k∈Z. See the discussions in [14, 48, 63, 64] for details.

THEOREM 6.1. [63] There is a continuous one-to-one correspondence between almost
periodic Jacobi matrices J ∈ J� and characters K ∈ π∗(C \ �).

Now, we consider the Jacobi matrix J given in equation (6.2) with (a, b) ∈ �∞(Z) ×
�∞(Z), then Theorem 6.1 implies that there exists a continuous map H : T∞ → �∞(Z) ×
�∞(Z) such that one can find a unique K ∈ π∗(C \ �) with

(a, b) = H((K(ck))k∈Z) = H((e−i2πK̃k )k∈Z). (6.4)

We will consider a more general Lax pair rather than equation (6.3). More concretely,
for � ⊂ X and any g ∈ L∞(X, R), we define the infinite dimensional matrix g(J ) in
the sense of standard functional calculus and decompose it into g+(J ) + g−(J ), where
g+(J )(g−(J )) is an upper triangular matrix (a lower triangular matrix). Moreover, set
Mg(J ) := g+(J ) − g−(J ). Thus, for any almost periodic Jacobi matrix J0 ⊂ J� , we can
define the Lax pair

d

dt
J (t) = Mg(J )(t)J (t) − J (t)Mg(J )(t), J (0) = J0. (6.5)

THEOREM 6.2. [69] Assume that � is homogeneous and the almost periodic Jacobi matrix
J0 ∈ J� has pure absolutely continuous spectrum. Given g ∈ L∞(X, R) with � ∈ X, the
following hold.
(1) There exists a unique solution J = J (t) of equation (6.5), well defined for all

t ∈ R. Moreover, for every t , J (t) is an almost periodic Jacobi matrix with constant
spectrum �.

(2) For t ∈ R, let Kt ∈ π∗(C \ �) be the character corresponding to J (t). There
exists a homomorphism ξ : π1(C \ �) → R, depending on g, such that Kt (ck) =
K0(ck)e

−i2πtξ(ck).

Now, we give the proof of Theorem 1.1. By setting g(x) = x and assuming that all
the diagonal elements of Mg(J ) vanish, we get the Lax pair in equation (6.3) or, with
further discussions, the Toda flow in equation (1.1). Set 0 < ε∗ ≤ ε0, where ε0 is defined
by equation (3.25). Thus, the conclusions of Proposition 3.7 hold. Consequently, the
conclusions of Theorems 1.2 and 1.4 hold. That is, the spectrum set �V ,α of operator
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HV ,α,x is homogeneous and purely absolute continuity. Moreover, LV ,α(E) = 0, which
implies

m+
HV ,α,x

= −m−
HV ,α,x

. (6.6)

Later, in [1, Theorem 2.2], Avila shows that the equality in equation (6.6) holds for all
x ∈ T∞, which, together with equation (2.3), implies that HV ,α,x is reflectionless for every
x ∈ T∞. (In [1], the base point x ∈ T. However, the proof of [1, Theorem 2.2] is based
on Kotani theory, which also holds in the T∞ setting. So, the conclusions in Theorem 2.2
will also hold in T∞). Thus, Theorems 6.1 and 6.2 are applied. The assertion of part (1) of
Theorem 6.2 yields the conclusions (1) and (2) of Theorem 1.1. Moreover, the conclusion
of part (2) of Theorem 6.2 and equation (6.4) also yield

(a(t), b(t)) = H((e−i2πK̃t
k )k∈Z) = H((e−i2π [K̃0

k +tξ(ck)])k∈Z), (6.7)

which implies the time almost periodicity of solutions of equation (1.1). Thus, the
conclusion (3) of Theorem 1.1 is shown with M = H.
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Appendix. Proof of Lemma 5.2
In this section, we will give the proof of Lemma 5.2. We start from (α, SV

E+
k

(x)) and

conclusion (3) of Proposition 3.7 shows that the cocycle (α, SV

E+
k

) is reducible, that is,

there are B ∈ Hσ (2T∞, SL(2, R)) for some 0 < σ < σ0 and a constant matrix X, such
that equation (5.6) holds with 0 ≤ ζ < 1

2 . Moreover, ζ = 0 if and only if the corresponding
gap is collapsed (see [58] for details). We will show that the size of the gap is determined
by B and ζ .

To prove the inequality |Gk(V )| ≤ ζ 1−κ , we first make some technical preparations. For
any 0 < δ < 1, a direct calculation and equation (5.6) yield

B(x + α)−1SV

E+
k −δ

(x)B(x) = X − δP (x) (A.1)

with

P(x) :=
(

B11(x)B12(x) − ζB2
11(x) − ζB11(x)B12(x) + B2

12(x)

−B2
11(x) − B11(x)B12(x)

)
.

Obviously,

|P |r ′′ ≤ (1 + ζ )|B|2r ′′ < 2|B|2r ′′ for all r ′′ ∈ (0, σ ]. (A.2)

In fact, moving the energy E from the right end of the gap E+
k to E+

k − δ, we can
determine the other edge point of the spectral gap according to the variation of the rotation
number ρ(α, B(x + α)−1SV

E+
k −δ

(x)B(x)). Note, the rotation number of the constant

cocycle (α, X) vanishes since X is parabolic, then we know that if the rotation number
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of (α, B(x + α)−1SV

E+
k −δ

(x)B(x)) is positive, then E+
k − δ1 is beyond the left edge of

Gk(V ), and thus |Gk(V )| < δ1. We give some auxiliary lemmas first.

LEMMA A.1. Given α ∈ DC∞(γ , τ) with 0 < σ < σ0, if 0 < δ < (1/2C̃)|B|−2
σ , C̃ �

C(σ , η, τ , γ ) = ((c(σ , η, τ)/40γ 3) + 1), then there exist B̃ ∈ Hσ/2(2T∞, SL(2, R)) and
P1 ∈ Hσ/2(T

∞, gl(2, R)) such that

B̃(x + α)−1(X − δP (x))B̃(x) = eb0−δb1 + δ2P1(x) (A.3)

with

|B̃ − Id|σ/2 ≤ 2C̃δ|B|2σ , |P1(x)|σ/2 ≤ 2C̃2|B|4σ + (4δ)−1ζ 2|B|2σ , (A.4)

where

b0 :=
(

0 ζ

0 0

)
, b1 :=

⎛⎜⎝[B11B12] − ζ

2
[B2

11] − ζ [B11B12] + [B2
12]

−[B2
11] − [B11B12] + ζ

2
[B2

11]

⎞⎟⎠.

The construction of B̃ in equation (A.3) and calculations to get the estimates in equation
(A.4) are similar to [48, the proof of Lemma 6.1], we omit the details. Moreover, B̃ in
equation (A.3) is homotopic to identity by its construction, then we have

ρ(α, X − δP (x)) = ρ(α, eb0−δb1 + δ2P1(x)). (A.5)

LEMMA A.2. For any B ∈ Hσ (2T∞, SL(2, R)), [B2
11] ≤ (2|B|T∞)−2.

The proof of this lemma is similar the proof of [48, Lemma 6.2], we omit the details.

LEMMA A.3. [48] For any κ ∈ (0, 1
4 ), if

|B|σ ζ κ/2 ≤ 1
4 ,

then the following hold:

0 <
[B2

11]

[B2
11][B2

12] − [B11B12]2
≤ 1

2
ζ−κ , (A.6)

[B2
11][B2

12] − [B11B12]2 ≥ 8ζ 2κ . (A.7)

Now, we give the proof |Gk(V )| ≤ ζ 1−κ in Lemma 5.2. Set

d(δ) := det(b0 − δb1) + δ2ζ 2

4
[B2

11]2. (A.8)

As we will show, d(δ) is the key quantity in determining the gaps. Moreover, fix κ ∈ (0, 1
4 )

and let δ1 = ζ 1−κ . Here, 1 − κ ∈ ( 3
4 , 1), so ζ 1−κ < ζκ . If ζ > 0 satisfies equation (5.7),

then it is obvious that
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δ1 = ζ 1−κ < ζκ < (2C̃)−1|B|−2
σ . (A.9)

Hence, we can apply Lemma A.1 and conjugate (α, X − δ1P(x)) to the cocycle
(α, eb0−δ1b1 + δ2

1P1(x)) (that is equation (A.3)) with estimates given in equation (A.4).
Recall equation (A.8),

d(δ1) = −δ1[B2
11]ζ + δ2

1([B2
11][B2

12] − [B11B12]2)

= δ1([B2
11][B2

12] − [B11B12]2)

(
δ1 − [B2

11]ζ

[B2
11][B2

12] − [B11B12]2

)
.

To prove |Gk(V )| ≤ δ1, it is sufficient to show that ρ(α, eb0−δ1b1 + δ2
1P1(x)) > 0. By

equation (5.7), one has |B|σ ζ κ/2 ≤ 1
4 , then Lemma A.3 is applied and yields

[B2
11]ζ

[B2
11][B2

12] − [B11B12]2
≤ 1

2
δ1.

The two inequalities yield

d(δ1) ≥ ζ 1−κ · 8ζ 2κ · 2−1ζ 1−κ = 4ζ 2 (A.10)

and

det(b0 − δ1b1) ≥ 4ζ 2 − 4−1δ2
1ζ 2|B|4σ > 3ζ 2 > 0. (A.11)

Following the expressions of b0 and b1 in Lemma A.1, we have

|b0 − δ1b1| ≤ ζ + δ1(1 + ζ )|B|2σ ≤ 3
2
ζ 1−κ |B|2σ . (A.12)

In view of [45, Lemma 8.1], if det(b0 − δ1b1) > 0, then there exists P ∈ SL(2, R) with

|P | ≤ 2
( |b0 − δ1b1|√

det(b0 − δ1b1)

)1/2
(A.13)

such that

P −1eb0−δb1P =
(

cos
√

det(b0 − δ1b1) sin
√

det(b0 − δ1b1)

− sin
√

det(b0 − δ1b1) cos
√

det(b0 − δ1b1)

)
.

Combining equations (A.11)–(A.13), we have

4−1|P |2 ≤ |b0 − δ1b1|√
det(b0 − δ1b1)

≤ ζ−κ |B|2σ .

The two inequalities above, and equations (A.4) and (2.7), yield

|ρ(α,eb0−δ1b1 + δ2
1P1(x)) −√det(b0 − δ1b1)|

≤ |P −1{eb0−δ1b1 + δ2
1P1(x)}P − P −1eb0−δb1P |

= |P −1δ2
1P1(x)P | ≤ δ2

1 |P1|0|P |2 < 16C̃2ζ 2−3κ |B|6σ .

Under the assumption (5.7), combining with equation (A.10), we have

16C̃2ζ 1−3κ |B|6σ < 1,
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which, together with the inequality above and equation (A.5), implies that

ρ(α, X − δP (x)) >
√

det(b0 − δ1b1) − ζ > 0.

Thus, we finish the proof of the upper bound estimate.
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