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Abstract

Eigenfunctions of the Fourier transform with prescribed zeros played a major role in the
proof that the E8 and the Leech lattice give the best sphere packings in respective dimensions
8 and 24 by Cohn, Kumar, Miller, Radchenko and Viazovska. The functions used for a
linear programming argument were constructed as Laplace transforms of certain modular
and quasimodular forms. Similar constructions were used by Cohn and Gonçalves to find
a function satisfying an optimal uncertainty principle in dimension 12. This paper gives a
unified view on these constructions and develops the machinery to find the underlying forms
in all dimensions divisible by 4. Furthermore, the positivity of the Fourier coefficients of the
quasimodular forms occurring in this context is discussed.

2020 Mathematics Subject Classification: 11F03, 11H31, 42B10 (Primary);
11F11 (Secondary)

1. Introduction

The sphere packing problem is one of those mathematical problems which are easy to
state and notoriously difficult to solve. A sphere packing P of Rd is a collection of congruent
non-overlapping balls. Its (upper) density
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�(P)= lim sup
r→∞

vold(P ∩ B(0, r))

vold(B(0, r))

is the amount of space covered by P (here B(0, r) denotes the euclidean ball of radius r
centered at 0; vold is the d-dimensional Lebesgue measure). The sphere packing problem
asks for the maximal value of �(P) and for which packing it is attained. Until 2017 the
answer was only known for dimensions 1, 2 (see [16]), and 3. In 1611, Kepler conjectured
that no sphere packing in R

3 has density greater than π
√

2/6 which is the density of the face-
centered cubic lattice and the hexagonal close packing. The proof of the Kepler conjecture by
Hales [19] was a major achievement and an endpoint of a long development (for a historical
exposition see [1]).

The solution of the sphere packing problem in dimension 8 in March 2016 by Viazovska
[32] and soon after in dimension 24 by Cohn, Kumar, Miller, Radchenko and Viazovska [11]
brought an enormous breakthrough in the application of linear programming techniques. For
a comprehensive overview of the proof and more background information we refer to [8, 13].

The proof was based on earlier work by Cohn and Elkies [7, 9], who provided the
underlying linear programming technique. More precisely, the following result was proved
there.

THEOREM 1·1 ([9, theorem 3·2]). Suppose f :Rd →R is an admissible function satisfy-
ing the following three conditions for some r > 0:

(i) f (0)= f̂ (0) > 0;
(ii) f (x)≤ 0 for ‖x‖ ≥ r ;

(iii) f̂ (t)≥ 0 for all t ∈R
d .

Then the density of sphere packings in R
d is bounded above by (r/2)d Bd, where Bd denotes

the volume of the d-dimensional unit ball.

A function f is admissible, if there exists a constant δ > 0 such that | f (x)| and | f̂ (x)| are
bounded above by a constant times (1 + ‖x‖)−d−δ. The admissibility condition implies the
validity the Poisson summation formula for f which plays a central role in the proof of the
above result and further shows that the bound is attained for the lattice packing

P =
⋃
x∈�

B
(

x,
r

2

)
for a lattice �, if and only if f (x)= 0 for all x ∈� \ {0} and f̂ (t)= 0 for all t ∈�∗ \ {0},
where �∗ denotes the dual lattice of �, and r is the minimal distance of �.

Of course, Schwartz functions are admissible. It is an important feature of the space of
real valued radial Schwartz functions that every element f can be written as f = f+ + f−,
where f̂+ = f+ and f̂− = − f− are eigenfunctions of the Fourier transform. This is one of the
key ingredients in the construction of functions f satisfying the assumptions of the theorem.

The functions constructed in [11, 32] were the first examples of Fourier eigenfunctions
with prescribed double zeros at the distances of a lattice. The construction was based on
Laplace transforms of certain weakly holomorphic modular forms and quasimodular forms.
The aim of this paper is to provide a unifying view on the modular forms behind these
constructions, to construct the Fourier eigenfunctions for all dimensions divisible by 4, and
to show that the underlying modular and quasimodular forms are uniquely determined by
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the requirements that their transform should be an eigenfunction of the Fourier transform
belonging to the Schwartz class.

Bourgain, Clozel and Kahane [3] studied an uncertainty principle for the last sign change
of even functions and their Fourier transforms on R. More precisely, for dimension d ≥ 1 let
A+(d) denote the set of functions f :Rd →R satisfying:

(i) f, f̂ ∈ L1(Rd) and f̂ real valued, thus f is even;
(ii) f is eventually non-negative, while f̂ (0)≤ 0;

(iii) f̂ is eventually non-negative, while f (0)≤ 0.

Similarly, denote by A−(d) denote the set of functions f :Rd →R satisfying:

(i) f, f̂ ∈ L1(Rd) and f̂ real valued, thus f is even;
(ii) f is eventually non-negative, while f̂ (0)≤ 0;

(iii) f̂ is eventually non-positive, while f (0)≥ 0.

For such functions define

r( f )= inf {R ≥ 0 | f (x) has the same sign for ‖x‖ ≥ R}
and set

A+(d)= inf
f ∈A+(d)

√
r( f )r( f̂ )

A−(d)= inf
f ∈A−(d)

√
r( f )r( f̂ ).

(1·1)

This question was originally motivated by the study of zeta functions of number fields which
have a real zero between 0 and 1.

Gonçalves, Oliveira e Silva and Steinerberger [17] studied the problem further and proved
that the extremal functions for the above properties are eigenfunctions of the Fourier trans-
form. Cohn and Gonçalves [10] used a construction similar to the ones in [11, 32] to
provide the optimal function for the above uncertainty principle in dimension 12. They found
A+(12)= √

2. Exact values of A+(d) and A−(d) are known only for very few dimensions
(see [10]).

A point configuration C ⊂R
d is said to have density ρ, if

ρ = lim
r→∞

#(C ∩ B(0, r))

vold(B(0, r))
,

meaning that C contains ρ points per unit volume. For a completely monotone function
p : (0,∞)→R the p-energy of C is given by

E p(C)= lim inf
r→∞

1

# (C ∩ B(0, r))

∑
x,y∈C∩B(0,r)

x=y

p(‖x − y‖),

which can be viewed as a thermodynamic limit of the sum of all mutual p-interactions
of distinct points in C. A configuration C of density ρ is called universally optimal, if it
minimises E p(·) amongst all configurations of density ρ and for all completely monotone
functions p simultaneously. Such configurations seem to exist only for special values of the
dimension; only very few examples are known.
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Radchenko and Viazovska [27] proved a remarkable interpolation theorem for functions
on the real line, with prescribed values of f and f̂ in the points ±√

n (n ∈N0). This idea
was taken further by Cohn, Kumar, Miller, Radchenko and Viazovska [12] in their proof of
universal optimality of the E8 and Leech lattices in respective dimensions 8 and 24. The
main ingredient of their proof is an interpolation formula for radial Schwartz functions in
these dimensions, which allows to interpolate values and first derivatives of f and f̂ in the
points

√
2n (n ∈N).

As we were completing this manuscript we became aware of the work by Rolen and
Wagner [28], who studied similar questions for dimensions divisible by 8. They were
focused on applications for proving packing bounds in these dimensions. These bounds
turn out to be asymptotically weaker than the bounds known from work of Kabatjanskiı̆ and
Levenšteı̆n [22]. Our paper gives more explicit results especially for the underlying mod-
ular and quasimodular functions, in particular we find recurrence relations defining these
functions.

In this paper the dimension d will always be a multiple of 4. It is organised as follows. In
Section 2 we provide a general study of functions of the form

U (s)= 4i sin
(π

2
s
)2
∫ i∞

0
ψ(z)eiπsz dz, (1·2)

for a class of functions ψ . Notice that the integral can be viewed as a Laplace transform
after replacing z = i t for t > 0. We study the analytic continuation of such functions, which
is already given in Viazovska’s work [32]. In Proposition 2·4 we formulate conditions on ψ
so that the function U (‖x‖2) is an eigenfunction of the Fourier transform. These conditions
turn out to be functional equations forψ and conditions on the asymptotic behaviour ofψ(z)
for z → 0 and z → i∞. Our main aim is to find the function ψ so that the last sign change
of U is as small as possible. This is motivated by the choice of functions in [11, 32], as well
as by the uncertainty principle [3] mentioned above.

In Section 3 we study the set of solutions of the functional equations given in Section 2
for the case of the eigenvalue (−1)

d
4 . We show that the solutions are weakly holomorphic

quasimodular forms of weight 4 − d/2 and depth 2. In order for the function U (‖x‖2) to have
the desired properties, we find conditions on these forms and show that these are uniquely
satisfied.

In Section 4 the solutions of the functional equations from Section 2 for the case of the
eigenvalue (−1)

d
4 +1 are investigated. These turn out to be weakly holomorphic modular

forms of weight 2 − d/2 for �(2), a principal congruence subgroup of SL(2,Z). Again we
characterise the functions ψ that yield the desired properties for the function U (‖x‖2).

In Section 5 we find differential equations satisfied by the forms obtained in Sections 3
and 4 and characterise them as certain solutions. Differential equations turn out to be a
convenient method to control vanishing orders of quasimodular forms. As a byproduct we
find linear recurrences for the forms.

In Section 6 we prove that all but possibly finitely many Fourier coefficients of the
quasimodular forms obtained in Section 3 are positive.

In Section 7 we discuss the modular and quasimodular forms obtained in Sections 3
and 4 for several small dimensions, where the corresponding Fourier eigenfunction exhibits
remarkable behaviour. These cases of course include dimensions 8, 12 and 24.
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In Appendix A we provide some basic information on modular functions and forms, as
well as quasimodular forms and derivatives of modular forms, that are needed for Sections 3
and 4.

Notation. Throughout this paper we will use notations that are common in the con-
text of modular forms. Especially, we denote the two generators of the modular group
� = PSL(2,Z) by

S : z �−→ −1

z
T : z �−→ z + 1.

Furthermore, we denote q = e2π i z , the nome, and use a slightly modified notation for
derivatives

f ′ = 1

2π i

df

dz
= q

df

dq
.

We will freely switch between dependence on z and q. The Landau symbol O(q	) is always
understood for z → i∞ which is q → 0.

In this paper we use the following notation for the Fourier transform of a function
f ∈ L1(Rd):

F( f )(t)= f̂ (t) :=
∫
Rd

f (x)e−2π i〈x,t〉 dx1 · · · dxd, (1·3)

where 〈x, t〉 denotes the standard scalar product in R
d . With this setting we have

F
(

eπ i z‖x‖2
)

= (−1)d/4z− d
2 eπ iSz‖t‖2

for the Fourier transform of a Gaussian for �z > 0. Here, and throughout this paper, ‖x‖2 =
〈x, x〉 denotes the euclidean norm.

2. Laplace transforms and Fourier eigenfunctions

In this section we give a general study of functions given in the form (1·2). This rep-
resentation is one of the key ingredient of Viazovska’s construction of eigenfunctions of
the Fourier transform. We analyse these functions in some detail and provide their analytic
continuation to a right half-plane containing the imaginary axis. After these preparations
we compute the Fourier transform of the function U (‖x‖2) and use this to obtain necessary
and sufficient conditions for this function to be an eigenfunction of the Fourier transform
(Proposition 2·4). This is the starting point for the considerations in Sections 3 and 4. We
denote the non-negative imaginary axis by iR+ := i(0,∞) and let L1

loc(iR+) denote the
complex valued functions that are absolutely integrable with respect to Lebesgue measure
on any bounded interval i(0, b].
PROPOSITION 2·1. Suppose ψ ∈ L1

loc(iR+) is such that for some C > 0 and constants ak,
bk ∈C, k = 0, 1, . . . , n,

ψ(z)=
n∑

k=0

a−2π ikz
ke − iz

n∑
k=0

bke−2π ikz +O(eiCz) as z → i∞. (2·1)
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For �(s) > 2n, let

W (s) := −i
∫ i∞

0
ψ(z)eiπsz dz. (2·2)

Then

W (s)=
n∑

k=0

(
ak

π(s − 2k)
+ bk

π2(s − 2k)2

)

− i
∫ i∞

0

(
ψ(z)−

(
n∑

k=0

ake−2π ikz + z
n∑

k=0

bke−2π ikz

))
eiπsz dz

(2·3)

gives an analytic continuation of W to the half-plane �(s) >−C/π .

Proof. Let W̃ (s) be given by the right-hand side of (2·3). Then the local integrability of ψ
and the condition (2·1) imply that W̃ (s) is a well-defined meromorphic function on the half
plane �(s) >−C/π with (at most) double poles at s = 2k, k = 0, . . . , n. For an integer k
and �(s) > 2k, elementary computations show

−i
∫ i∞

0
e−2π ikzeiπsz dz = 1

π(s − 2k)

and

−
∫ i∞

0
ze−2π ikzeiπsz dz = 1

π2(s − 2k)2
,

and hence that W̃ (s) agrees with W (s) for �(s) > 2n.

We next assume that ψ is holomorphic on the upper half-plane.

PROPOSITION 2·2. Let ψ :H→C be holomorphic on H and bounded on the angular
region Rα,ε := {reit : 0< r < ε, α < t <π − α} for some ε > 0 and some 0<α <π/4.
Further suppose the restriction of ψ to iR+ and W are as in Proposition 2·1 and for
�(s) >−C/π let U (s) be defined by

U (s) := −4 sin
(π

2
s
)2

W (s). (2·4)

Then U (s) is holomorphic for �(s) >−C/π and

iU(s)=
∫ i

−1
ψ(Tz)eiπsz dz +

∫ i

1
ψ(T −1z)eiπsz dz

− 2
∫ i

0
ψ(z)eiπsz dz +

∫ i∞

i

(
ψ(Tz)− 2ψ(z)+ψ(T −1z)

)
eiπsz dz,

(2·5)

where the integrals are along straight line segments joining the endpoints.

Proof. Starting from (2·2) we derive a second form of the analytic continuation of
−4 sin(πs/2)2W (s), which is more suitable for the proof and will also be used later. We
write
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Fig. 1. Deforming the contour of integration.

iU(s)=
∫ i∞

0
ψ(z)

(
eiπs(z−1) − 2eiπsz + eiπs(z+1)

)
dz

=
∫ −1+i∞

−1
ψ(Tz)eiπsz dz − 2

∫ i∞

0
ψ(z)eiπsz dz

+
∫ 1+i∞

1
ψ(T −1z)eiπsz dz,

which follows by expressing the sine in terms of the exponential, expanding the square and
substituting in the integral. This expression is valid for �(s) > 2n. Since ψ is holomorphic
on H, bounded on Rα,ε and satisfies the growth condition (2·1), we may deform the contours
of integration as follows: the path from −1 to −1 + i∞ is deformed into a straight line from
−1 to i and then along the imaginary axis from i to i∞; similarly, the contour from 1 to
1 + i∞ is deformed into a straight line from 1 to i and then again along the imaginary axis
(see Figure 1).

Collecting terms with matching paths of integration gives (2·5) valid for �(s) > 2n. Since
the exponential terms in the asymptotic expansion (2·1) for z → i∞ cancel in the last inte-
gral, the new expression is also valid for �(s) >−C/π providing an alternative form for
expressing the analytic continuation of U (s). The integrals are all absolutely and uniformly
convergent for �(s)≥ 0.

PROPOSITION 2·3. Let ψ and U be as in Proposition 2·2, and let F :Rd →C be defined by

F(x) := U (‖x‖2), (x ∈R
d). (2·6)

If, in addition, ψ satisfies

ψ(z)=O(eiCSz) as z → 0 non-tangentially in H, (2·7)
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then F is a Schwartz function and can be written in the form

F(x)= −i

[∫ i

−1
ψ(Tz)eiπ‖x‖2z dz +

∫ i

1
ψ(T −1z)eiπ‖x‖2z dz

−2
∫ i

0
ψ(z)eiπ‖x‖2z dz +

∫ i∞

i

(
ψ(Tz)− 2ψ(z)+ψ(T −1z)

)
eiπ‖x‖2z dz

]
.

(2·8)

Consequently, the Fourier transform of F is given by

F̂(t)= −i(−1)d/4
[∫ i

−1
ψ(T −1Sz)eiπ‖t‖2z zd/2−2 dz

+ 2
∫ i∞

i
ψ(Sz)eiπ‖t‖2z zd/2−2 dz +

∫ i

1
ψ(TSz)eiπ‖t‖2z zd/2−2 dz

−
∫ i

0
(ψ(T −1Sz)− 2ψ(Sz)+ψ(TSz))eiπ‖t‖2z zd/2−2 dz

]
.

(2·9)

Proof. The representation (2·8) follows immediately from the definition (2·6) and the rela-
tion (2·5) of Proposition 2·2. Condition (2·7) implies that ψ vanishes to arbitrary order at
z = 0. Hence, using (2·2) it follows using well-known properties of the Laplace transform
(see [33]) that F and its derivatives all decay faster than any negative power of ‖x‖. Since
U is analytic, it follows that F is a Schwartz function.

Thus we can compute the Fourier transform of F by Fubini’s theorem

F̂(t)= − i

[∫ i

−1
ψ(Tz)eiπ‖t‖2 Sz(−iz)−

d
2 dz

+
∫ i

1
ψ(T −1z)eiπ‖t‖2 Sz(−iz)−

d
2 dz − 2

∫ i

0
ψ(z)eiπ‖t‖2 Sz(−iz)−

d
2 dz

+
∫ i∞

i

(
ψ(Tz)− 2ψ(z)+ψ(T −1z)

)
eiπ‖t‖2 Sz(−iz)−

d
2 dz

]
.

Substituting Sz in this expression and collecting signs gives (2·9).

PROPOSITION 2·4. Let ψ and F be as in Proposition 2·3 and ε ∈ {−1, 1}. Then F̂ =
ε(−1)

d
4 F if and only if

z
d
2 −2ψ(T −1Sz)= εψ(Tz) (2·10)

2z
d
2 −2ψ(Sz)= ε

(
ψ(Tz)− 2ψ(z)+ψ(T −1z)

)
, (2·11)

for all z ∈H.

Proof. We consider the auxiliary function

H(s)=
4∑
	=1

I	(s), (2·12)
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where

I1(s)=
∫ i∞

i

(
ψ(Tz)− 2ψ(z)+ψ(T −1z)− 2εzd/2−2ψ(Sz))

)
eiπsz dz

I2(s)=
∫ i

0

(
ε
(
ψ(TSz)− 2ψ(Sz)+ψ(T −1Sz)

)
zd/2−2 − 2ψ(z)

)
eiπsz dz

I3(s)=
∫ i

−1

(
ψ(Tz)− εψ(T −1Sz)zd/2−2

)
eiπsz dz

I4(s)=
∫ i

1

(
ψ(T −1z)− εψ(TSz)zd/2−2

)
eiπsz dz.

(2·13)

Then H(‖x‖2)= F(x)− ε(−1)
d
4 F̂(x). If F is an eigenfunction for the Fourier transform

with eigenvalue ε(−1)
d
4 , then H(s) vanishes on the positive real axis and thus for all s ∈C.

Now the functions I2, I3, I4 are entire functions of exponential type π (see [2]). Thus for
H(s) to vanish identically, I1(s) also has to be of exponential type. By the Paley–Wiener
theorem (see[26]) this implies that the integrand defining I1 has to have compact support.
Since the integrand is analytic it has to vanish identically giving

2z
d
2 −2ψ(Sz)= ε

(
ψ(Tz)− 2ψ(z)+ψ(T −1z)

)
. (2·14)

Since the integrand in the definition of I2 equals the integrand for I1 after a substitution
z �→ Sz, also I2 vanishes identically.

Now it remains H(s)= I3(s)+ I4(s)= 0. We observe that

lim
t→−∞ I3(t)= ∞, lim

t→∞ I3(t)= 0

lim
t→+∞ I4(t)= ∞, lim

t→−∞ I4(t)= 0.
(2·15)

Thus H(s)= 0 can only hold, if I3 and I4 vanish identically. Again both integrals I3 and I4

can be rewritten as Laplace transforms after a change of variables. It follows that

z
d
2 −2ψ(T −1Sz)= εψ(Tz) (2·16)

z
d
2 −2ψ(TSz)= εψ(T −1z). (2·17)

It is immediate that (2·16) and (2·17) are equivalent by substituting z �→ Sz.

3. The (−1)
d
4 eigenfunction

In this section we first prove that the function ψ in (2·2) has to be a quasimodular form
in order to make F given by (2·8) an eigenfunction of the Fourier transform for the eigen-
value (−1)

d
4 . The main ingredient for this fact is Proposition 3·1 below, which is essentially

equivalent to [12, proposition 4·7] except for different growth conditions on the func-
tion ψ . We developed this result independently, and keep the proof in order to make the
paper self-contained. In Section 3·1 we then use dimension arguments for the underlying
spaces of quasimodular forms to achieve the existence of such forms that are useful for the
construction of eigenfunctions with certain extremal properties.

PROPOSITION 3·1. Let ψ be as in Proposition 2·2. Then the corresponding function F
given by (2·6) is an eigenfunction for the Fourier transform with eigenvalue (−1)d/4, if
and only if z

d
2 −2ψ(Sz) is a weakly holomorphic quasimodular form of weight 4 − d/2
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and depth 2. More precisely, there are weakly holomorphic modular forms ψ1, ψ2, ψ3 of
respective weights 4 − d/2, 2 − d/2, and −d/2 such that

z
d
2 −2ψ(Sz)=ψ1(z)− 2E2(z)ψ2(z)+ E2(z)

2ψ3(z). (3·1)

This gives

ψ(z)= z2
(
ψ1(z)− 2E2(z)ψ2(z)+ E2(z)

2ψ3(z)
)

+ z
12i

π
(ψ2(z)− E2(z)ψ3(z))− 36

π2
ψ3(z).

(3·2)

Furthermore, ψ1, ψ2, and ψ3 have to satisfy

ψ1(z)− 2E2(z)ψ2(z)+ E2(z)
2ψ3(z)=O(e2π i z) (3·3)

for z → i∞ in order to fulfil (2·1) and (2·7).

Proof. By Proposition 2·4 a function F given in the form (2·4) is an eigenfunction of the
Fourier transform for the eigenvalue (−1)

d
4 (this is ε= 1) if and only if (2·10) and (2·11)

hold. From (2·10) we obtain

ψ(z)= (z + 1)
d
2 −2ψ(TSTz)

and then

(z + 1)
d
2 −2ψ(STz)= z

d
2 −2ψ(TSTSTz)= z

d
2 −2ψ(Sz),

where we have used that (TS)3 = id. Thus the function

φ(z)= z
d
2 −2ψ(Sz)

is periodic with period 1.
Now we write (2·11) as

ψ(Tz)− 2ψ(z)+ψ(T −1z)= 2φ(z) (3·4)

and set

f (z)=ψ(Tz)−ψ(z)− (2z + 1)φ(z). (3·5)

Then we have

f (z)− f (T −1z)

=ψ(Tz)− 2ψ(z)+ψ(T −1z)− (2z + 1)φ(z)+ (2z − 1)φ(T −1z).

Using the periodicity of φ and (3·4) gives the periodicity of f . Now we set

g(z)=ψ(z)− z2φ(z)− z f (z). (3·6)

We compute

g(Tz)− g(z)=ψ(T z)−ψ(z)− ((z + 1)2 − z2)φ(z)− ((z + 1)− z) f (z)= 0,

where we have used the periodicity of φ and f as well as the definition of f . This shows
that also g is periodic.
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Thus ψ satisfies the relation

ψ(z)= z
d
2ψ(Sz)+ z f (z)+ g(z) (3·7)

for two (yet unknown) periodic functions f and g. We now use definitions (3·5) and (3·6) to
express g in terms of ψ

g(z)= (z + 1)ψ(z)− zψ(Tz)+ z(z + 1)z
d
2 −2ψ(Sz). (3·8)

Substituting STz and multiplying through the denominator yields

(z + 1)
d
2 g(STz)= z(z + 1)(z + 1)

d
2 −2ψ(STz)

+ (z + 1)(z + 1)
d
2 −2ψ(ST−1Sz)− zψ(Tz),

(3·9)

where we have used TST = ST−1S. We have already established the periodicity of φ(z)=
z

d
2 −2ψ(Sz). This allows to replace the first and the second term to yield

g(STz)= (z + 1)z
d
2 −1ψ(Sz)+ (z + 1)ψ(z)− zψ(Tz)= g(z).

Using the already established periodicity of g this gives

z
d
2 g(Sz)= g(z); (3·10)

together with the growth condition (2·1) this shows that g is a weakly holomorphic modular
form of weight −d/2.

Applying z �→ Sz to (3·7) and adding this to (3·7) (divided by z
d
2 ) yields

z
d
2 −2 f (Sz)= f (z)+ 2

z
g(z); (3·11)

f is a weakly holomorphic quasimodular form of weight 2 − d/2 and depth 1 (again using
(2·1)).

We set

h(z)= f (z)− π i

3
E2(z)g(z)

and use z−2 E2(z)= E2(z)− 6i/π z to obtain

z
d
2 −2h(Sz)= h(z),

which together with the obvious periodicity and the growth condition (2·1) yields that h is
a weakly holomorphic modular form of weight 2 − d/2. Inserting this into (3·7) gives the
quasimodularity of z

d
2 −2ψ(Sz) with weight 4 − d/2 and depth 2. By the structure theorem

of quasimodular forms (see [25, 29, 36]), z
d
2 −2ψ(Sz) can then be written as (3·1), where we

have set

ψ1(z)= z
d
2 −2ψ(Sz)− E2(z)h(z)− E2(z)

2g(z)

ψ2(z)= −π i

12
h(z)

ψ3(z)= −π
2

36
g(z).
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Table I. The choices of ωm

m ωm

0 1

1 − j ′ = E2
4 E6

� = E6
E4

j

2 E4
3 E6

4 E2
4

5 E4 E6
6 �=�ω0

7 E2
4 E6 =�ω1

In order to satisfy condition (2·1), the term multiplied by z2 in (3·2) has to tend to 0 for
z → i∞, which gives (3·3). By (3·1) this implies that (2·1) and (2·7) are satisfied for any
0<C < 2π .

3·1. Determining ψ

In a next step we want to determine ψ (or equivalently ψ1, ψ2, ψ3) to satisfy (3·3).
Since ψ1, ψ2 and ψ3 are weakly holomorphic modular forms of respective weights 4 − d/2,
2 − d/2, and −d/2, we express these forms as

ψ1 = 1

�	
ωk+2 P (k)

n ( j)

ψ2 = 1

�	
ωk+1 Q(k)

n ( j)

ψ3 = 1

�	
ωk R(k)

n ( j),

(3·12)

for 	 ∈N chosen so that ψm�
	 (m = 1, 2, 3) are weakly holomorphic modular forms of

positive weight; P (k)
n , Q(k)

n and R(k)
n are polynomials, which have to be determined. The

parameter n is an ordering parameter related to the degrees of these polynomials. It will be
determined by (3·15) in the course of the following discussion.

The minimal possible choice of 	 is then

	=
⌈

d

24

⌉
.

Furthermore, we set

k = 6	− d

4
,

which gives 0 ≤ k ≤ 5. The forms ωm in (3·12) are modular forms of weight 2m
(m = 0, . . . , 7), which are given in Table I; these forms are uniquely determined by the
requirement to be holomorphic, or to have a pole of minimal order at i∞. The parameter
n refers to the order of the pole of ωk+2 P (k)

n ( j), ωk+1 Q(k)
n ( j), or ωk R(k)

n ( j). Notice that for
m = 1 the form ωm has a simple pole at i∞, whereas for m = 6, 7 it has a simple zero there.
This affects the possible degrees of the polynomials P (k)

n , Q(k)
n , and R(k)

n , see Table II. This
table also gives the dimension of the space Q(2k+2)

n of weakly holomorphic quasimodular
forms of weight 2k + 2 and depth 2, which have a pole of order at most n at i∞. The table
also gives the definition of the quantity a(k), which will be needed in the sequel.
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Table II. Degrees of the polynomials P(k)n , Q(k)
n , and R(k)n

k deg P(k)n deg Q(k)
n deg R(k)n dim Q(2k+2)

n a(k)

0 n n − 1 n 3n + 2 1
1 n n n − 1 3n + 2 1
2 n n n 3n + 3 2
3 n n n 3n + 3 2
4 n + 1 n n 3n + 4 3
5 n n + 1 n 3n + 4 3

In light of (3·2) and the asymptotic behaviour of ψ (2·1) used in Proposition 2·1 we
require that the polar order of ψ2(z)− E2(z)ψ3(z) (the term multiplied by z in (3·2)) is 1
less than the polar order of ψ3(z). This ensures by (2·3) that the largest real second order
pole of W (s) is 2 less than the largest real first order pole. Notice that condition (3·3) ensures
that W (s) has no third order poles in the right half plane. Together this ensures that the polar
order of ψ at i∞ corresponds to the desired sign change of the function F given by (2·6).

In order to achieve the behaviour of ψ described in the last paragraph, we use the degrees
of freedom given by dim Q(2k+2)

n to first ensure that

ωk+1 Q(k)
n ( j)− E2ωkR

n(k)
( j)=O(q−n+1) (3·13)

and second to eliminate as many Laurent series coefficients of

ωk+2 P (k)
n ( j)− 2E2ωk+1 Qn(k)

( j)+ E2
2ωk R(k)

n ( j)

as possible. By solving the according linear equations we can achieve

ωk+2 P (k)
n ( j)− 2E2ωk+1 Q(k)

n ( j)+ E2
2ωk R(k)

n ( j)=O(q2n+a(k)−1). (3·14)

In order for ψ to satisfy (3·3) we have to choose n so that

2n + a(k)− 1> 	;
the minimal possible choice for n is then

n =
⌈
	− a(k)+ 2

2

⌉
. (3·15)

Condition (3·13) ensures that there is a sign change of F(x) at ‖x‖2 = 2n + 2	 and
F(x) = 0 for ‖x‖2 = 2n + 2	− 2. Expressing 	, k, and n in terms of d yields 2n + 2	=
2�d + 4/16� + 2.

Summing up, we have proved most of the following theorem. For the sake of simplicity,
we abuse notation by writing f (x)= f (‖x‖), whenever f is a radial function and the context
is clear.

THEOREM 3·2. For d ≡ 0 (mod 4) set n+ = �d + 4/16� + 1. Then there exists a radial
Schwartz function F+ :Rd →R satisfying

F+(x)= (−1)
d
4 F̂+(x) for all x ∈R

d

F+(
√

2n+)= 0 and F ′
+(
√

2n+) = 0

F+(
√

2m)= F ′
+(

√
2m)= 0 for m > n+, m ∈N.

(3·16)
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Table III. The polynomials P(k)n , Q(k)
n , and R(k)n ; the dimensions in the left column are

those covered by Remark 3·3
d n P(k)n (w) Q(k)

n (w) R(k)n (w)

k = 0 24 1 w− 3528 1 w+ 1800

48 72 2 175w2

−1840638w
−475793136

175w+ 497922 175w2

+2534082w
+111078000

k = 1 20 1 w− 1008 w− 1368 1

44 68 2 25w2 − 167286w
−10456992

25w2 − 18966w
−41044752

25w+ 172554

k = 2 0 1 1 1
16 40 1 w− 5628 w+ 420 w+ 4740

64 88 2 21w2 − 277373w
−147949620

21w2 + 104155w
+2942940

21w2 + 449395w
+62398380

k = 3 0 1 1 1
12 36 1 w− 2548 w− 1588 w+ 1100

60 84 2 7w2 − 63953w
−13216476

7w2 + 3079w
−26138316

7w2 + 82207w
+2838660

k = 4 8 0 w− 1728 1 1

32 56 1 5w2 − 39879w
−3302208

5w+ 6741 5w+ 44721

k = 5 4 0 1 w− 864 1

28 52 1 w− 4473 w2 − 1413w
−453600

w+ 3375

If Conjecture 1 stated below holds, then
√

2n+ is the last sign change of the function F+.
This is the case for all dimensions ≤ 312 by Remark 6·3 stated below.

Proof. It only remains to show that F ′
+(

√
2n+) = 0. This follows from the discussion of

the vanishing orders in Section 5·1, especially equation (5·5) and the explanation following.
More precisely, (5·5) implies that an+ = 0 in (2·1), whereas (5·4) implies that bn+ = 0. This
shows by (2·3) that W has a simple pole at s = 2n+, which gives a simple zero of U at this
point.

Remark 3·3. Notice that by (3·14) the order increases by 2, if n increases by 1. Together
with (3·15) this gives that for certain d (mod 48) the order of vanishing of ψ is one more
than required. This means that for these values of the dimension there is one extra degree of
freedom, that can be used for instance to require F(0)= 0. This is the case for dimensions

d ≡ {0, 12, 16, 28, 32, 44} (mod 48). (3·17)

4. Eigenfunctions for eigenvalue (−1)
d
4 +1

In this section we consider eigenfunctions of the Fourier transform with eigenvalue
(−1)

d
4 +1 of the form (1·2). We show in Proposition 4·1 that, in this case, the function ψ

can be expressed in terms of weakly holomorphic modular forms for � and �(2). This
proposition is essentially equivalent to [12, proposition 4·8], except for different growth
conditions in the assumptions. This result was found independently; we keep the proof in
order to keep the presentation self-contained. We then explore explicit representations of
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these forms and show the existence of eigenfunctions satisfying similar extremal properties
as in Section 3.

In the following the function log λ (λ being the Hauptmodul for �(2)) will play an
important role. Properties of this function are discussed in Appendix A.

PROPOSITION 4·1. Letψ be as in Proposition 2·2. Then the corresponding function F given
by (2·6) is an eigenfunction of the Fourier transform with eigenvalue (−1)

d
4 +1 if and only if

there exists a weakly holomorphic modular form f of weight 2 − d/2 for � and ω a weakly
holomorphic modular form of weight 2 − d/2 for �(2) such that

ψ(z)= f (z) · log λ(z)+ω(z), (4·1)

ω(z)= z
d
2 −2ω(Sz)+ω(Tz), (4·2)

where log λ is defined in (A·18).

Proof. By Proposition 2·4 with ε = −1, F is an eigenfunction of the Fourier transform with
eigenvalue (−1)

d
4 +1 iff ψ satisfies the two equations:

z
d
2 −2ψ(TSz)= −ψ(T −1z), (4·3)

2z
d
2 −2ψ(Sz)= −(ψ(Tz)− 2ψ(z)+ψ(T −1z)). (4·4)

To solve these we first consider H(z) := z
d
2 −2ψ(Sz) which by (4·3) gives

H(Tz)= (Tz)
d
2 −2ψ(STz)= (Tz)

d
2 −2ψ(T −1TSTz)

= −(Tz)
d
2 −2(TSTz)

d
2 −2ψ(TSTSTz)

= −z
d
2 −2ψ(Sz)= −H(z),

(4·5)

where we used the property (T S)3 = id in the middle line. Iterating this property once gives
that H(z + 2)= H(z) and unravelling this statement in terms of ψ gives

(2z − 1)
d
2 −2ψ(ST 2Sz)=ψ(z). (4·6)

Substituting z → ST z in (4·4) and applying (4·3) repeatedly to get

2ψ(Tz)= −(Tz)
d
2 −2
(
ψ(T −1STz)− 2ψ(STz)+ψ(T ST z)

)
=ψ(T 2z)+ 2(Tz)

d
2 −2ψ(STz)+ψ(z)

=ψ(T 2z)− 2z
d
2 −2ψ(Sz)+ψ(z)

=ψ(T 2z)+ψ(T z)−ψ(z)+ψ(T −1z).

(4·7)

So, altogether we have that ψ(T 2z)−ψ(Tz)−ψ(z)+ψ(T −1z)= 0. Defining G(z) :=
ψ(Tz)−ψ(T −1z) implies G(z + 1)= G(z). Furthermore using (4·3) we obtain

z
d
2 −2G(Sz)= z

d
2 −2(ψ(TSz)−ψ(T −1Sz))

= −ψ(T −1z)+ψ(Tz)

= G(z).

(4·8)
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Therefore, G is weakly holomorphic modular of weight 2 − d/2 for the full modular group
using the growth condition (2·1). We now define

ω(z) :=ψ(z)− 1

π i
G(z) · log λ(z) (4·9)

and from (A·17) we see that ω is a weakly holomorphic modular form of weight 2 − d/2 for
�(2) (again using (2·1)). Moreover, plugging this relationship into (4·3) gives

ω(z)= z
d
2 −2ω(Sz)+ω(Tz). (4·10)

Finally, setting f := 1/π i · G we get the desired conclusions.

4·1. Determining ψ

In this step our goal will be determining ψ given its representation in terms of f and ω.
We use the fact that C(λ) is a field extension of C( j) to characterise the solutions of (4·10).
Then using linear algebra, we ensure that conditions (2·1) and (2·7) hold. We will show that
due to (4·10), achieving the former condition will give the latter.

To begin, we recall f and ω are weakly holomorphic modular forms of weight 2 − d/2 for
the groups � and �(2) respectively. There are no modular forms of negative weight because
such forms must have poles on either H or at the cusps. The contour integration arguments
from Proposition 2·2 rule out the former and so f and ω must and can only have poles at the
cusps. To continue, define

	=
⌈

d − 4

24

⌉
k = 6	− d − 4

4
,

which gives 0 ≤ k ≤ 5. From this we set

f = ωk

�	
P (k)( j) (4·11)

ω= ωk

�	
R(k)(λ), (4·12)

where we recall from Table I that ωk is a weakly holomorphic modular form for the full
modular group of weight 2k. P (k) is a polynomial associated with each k, and R(k) is a ratio-
nal function depending on our choice of k. This representation follows because f · (�	/ωk)

is a weakly holomorphic form of weight 0 and using the fact that j is Hauptmodul for �,
this implies that it must be rational function in j . Moreover, since such a rational function
can only have poles at ∞, it must be a polynomial. Analogously, since λ is Hauptmodul
for �(2) we can similarly conclude that ω · (�	/ωk) must be a rational function in λ. What
differs here however is that �(2) has three cusps (namely 0, 1 and i∞). From our contour
integration argument in Proposition 2·2 we see that we cannot have a pole at the origin (in
fact (2·7) implies we must have a zero here), we can (in fact must) have a pole at i∞, and
we may have unprescribed behaviour at ±1. This implies that the most we can conclude is
that the denominator of such a rational function, say R(x), can only have factors of the form
xa(1 − x)b because λ(0)= 1, λ(1)= ∞, and λ(i∞)= 0.
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Table IV. The choices for the forms χ(k)1 and χ(k)2

k χ
(k)
1 χ

(k)
2

0 (1+λ)(1−λ)(1−λ+λ2)
λ2

(1+λ)(1−λ+λ2)
λ(1−λ)

1 θ4
00(1 − λ) θ4

00
(1−λ)3(2+3λ+2λ2)

λ2

2 θ8
00(1 − λ2) θ8

00
(1+λ)(1+3λ−7λ2+3λ3+λ4)

λ(1−λ)

3 θ12
00 (1 − λ)(1 − λ+ λ2) θ12

00
(1−λ+λ2)(1+3λ−10λ2+3λ3+λ4)

λ(1−λ)

4 θ16
00λ(1 + λ)(1 − λ) θ16

00
(1+λ)(1−λ+λ2−λ3+λ4−λ5+λ6)

λ(1−λ)

5 θ20
00λ(1 − λ)(1 − 4λ+ λ2) θ20

00
1−32λ3+60λ4−32λ5+λ8

λ(1−λ)

To continue, we will use (4·10) to analyse the possible choices for R(k). Combining (4·10)
and (4·12) yields

R(k)(λ(z))= R(k)(λ(Sz))+ R(k)(λ(Tz)). (4·13)

We note that the field of meromorphic functions C(λ) is a degree 6 field extension over the
field of meromorphic functions C( j) with the minimal polynomial of λ over C( j) given by:

λ6 − 3λ5 + (6 − j)λ4 − (7 − 2 j)λ3 + (6 − j)λ2 − 3λ+ 1 = 0. (4·14)

Therefore, R(k) can be expressed in a unique way as

R(k)(λ)=
5∑

m=0

R(k)
m ( j)λm (4·15)

for rational functions R(k)
m . Inserting this into (4·13) we get

5∑
m=0

((1 − λ)5λm − (1 − λ)5+m + (−1)mλm(1 − λ)5−m)R(k)
m ( j)= 0. (4·16)

We can use the minimal polynomial (4·14) to write all powers of λ larger than 5 by linear
combinations of {1, λ, . . . , λ5}. This gives a linear system of 6 equations for the 6 unknown
functions R(k)

m , k = 0, . . . , 5. It can be checked directly that this system has rank 4 and hence
has a 2 dimensional kernel. This supports an ansatz of the form

ωk R(k)(λ)= χ
(k)
1 Y (k)( j)+ χ

(k)
2 Z (k)( j), (4·17)

where the Y (k) and Z (k) are polynomials and χ(k)1 and χ(k)2 are two linearly independent
solutions of

χ(z)= z−2kχ(Sz)+ χ(Tz). (4·18)

Table IV gives solutions of minimal orders at z = 0 and z = i∞.
Putting all this information together we get that ψ has the form

ψ = 1

�	

(
X (k)( j)ωk log λ+ χ

(k)
1 Y (k)( j)+ χ

(k)
2 Z (k)( j)

)
(4·19)
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for polynomials X (k), Y (k), Z (k) that depend on the value of k. Our next step will be to choose
the degrees of X (k), Y (k) and Z (k) and use the degrees of freedom given by the coefficients
so that (4·19) satisfies (2·7). In particular this implies that we need to choose their degrees
so that ψ vanishes to sufficiently large order at i∞. In particular, we want

ϕ(z) := z−2k(X (k)( j)ωk(Sz) log λ(Sz)

+ χ
(k)
1 (Sz)Y (k)( j (z))+ χ

(k)
2 (Sz)Z (k)( j (z)))=O(q	+ 1

2 ).
(4·20)

Before continuing in this direction however, we show two short lemmas.

LEMMA 4·2. Suppose ϕ(z) is as in (4·20). Then it has only half integer exponents in its
Fourier expansion.

Proof. Let

χ(z)= χ
(k)
1 (z)Y (k)( j (z))+ χ

(k)
2 (z)Z (k)( j (z))),

denote sum of the last two terms on the right side of (4·20). Then χ satisfies (4·18) and so

z−2kχ(Sz)= χ(T z)− χ(z),

which implies that all terms in the Fourier expansion of z−2kχ(Sz) with integer exponents
vanish. Moreover, we see from (A·19) that the expression z−2k X (k)( j)ωk(Sz) log λ(Sz) has
only half integer exponents in its Fourier expansion, giving the claim.

LEMMA 4·3. Let ψ be given by (4·19) with polynomials X, Y , Z such that (2·7) holds.
Then the principal part of ψ at i∞ has only integer exponents of q.

Proof. By our assumption z
d
2 −2ψ(Sz)=O(q 1

2 ). Since ψ can be written as

ψ(z)=
∞∑

k=−m

a
k
2
kq − iz

∞∑
k=−n

bk
kq =ψ1 + zψ2,

(4·4) implies that ψ1 satisfies

ψ(Tz)− 2ψ(z)+ψ(T −1z)=ψ1(Tz)− 2ψ1(z)+ψ1(T
−1z)

= 2ψ1(Tz)− 2ψ1(z)=O(q 1
2 ),

which gives the assertion of the lemma.

In light of Lemmas 4·2 and 4·3, we first assume that (2·7) holds and define the subscript
n for the polynomial X (k)

n so that the following polar order is achieved.

X (k)
n ( j)ωk =O(q−n), (4·21)

We note that this implies that for each k = 1 the degree of the polynomial X (k)
n is at most n

and for k = 1 that it has degree at most n − 1. We similarly adopt the notations Y (k)
n and Z (k)

n
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Table V. Degrees of the polynomials X (k)n , Y (k)n , and Z (k)n

k deg X (k)n deg Y (k)n deg Z (k)n b(k)

0 n n n − 1 3

1 n − 1 n n 3

2 n n + 1 n 5

3 n n + 1 n 5

4 n n + 2 n + 1 7

5 n n + 2 n + 1 7

to refer to the polynomials that give us:

χ
(k)
1 (z)Y (k)

n ( j (z))+ χ
(k)
2 (z)Z (k)

n ( j (z))=O(q−n−1) (4·22)

z−2k(χ
(k)
1 (Sz)Y (k)

n ( j (z)))=O(q−n+ 1
2 ) (4·23)

z−2k(χ
(k)
2 (Sz)Z (k)

n ( j (z)))=O(q−n+ 1
2 ). (4·24)

We observe that (4·22), (4·23) and (4·24) are sufficient to put upper bounds on the degrees
of polynomials Y (k)

n and Z (k)
n . With b(k) as in Table V we can use the degrees of freedom

gained from the coefficients of X (k)
n , Y (k)

n , and Z (k)
n so that

z−2k(X (k)
n ( j)ωk(Sz) log λ(Sz)+ χ

(k)
1 (Sz)Y (k)

n ( j (z))+ χ
(k)
2 (Sz)Z (k)

n ( j (z)))=O(q2n+ b(k)
2 ),

(4·25)

which is a strengthening of our hypothesis that (2·7) is satisfied. We then observe that (4·21)
and (4·22) ensure by (2·3) that the largest real second order pole of W (s) is 2 less than
the largest real first order pole. Altogether, this will give us the desired sign change of the
function F given by (2·6). The degrees of these polynomials are also detailed in Table V.

We now need to choose n so that

2n + b(k)

2
> 	 (4·26)

so that (2·7) is satisfied. This then gives that the minimal choice of n is then

n =
⌈

2	− b(k)

4

⌉
. (4·27)

Then conditions (4·21) and (4·22) ensure that there is a sign change of F(x) at ‖x‖2 =
2n + 2	+2 and F(x) = 0 for ‖x‖2 = 2n + 2	. Expressing 	, k, and n in terms of d yields
2n + 2	= 2�d/16�.

Summing up, we have proved most of the following theorem. The theorem is formulated
with some abuse of notation, which is justified by the fact that it discusses radial func-
tions: we write F−(x)= F−(‖x‖) and consider F− as multivariate and univariate function as
appropriate.
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Table VI. The polynomials X (k)n , Y (k)n , and Z (k)n ; the dimensions in the left column are
those covered by Remark (4·29)

d n X (k)n (w) Y (k)n (w) Z (k)n (w)

k = 0 4 28 0 2 1 0

52 76 1 120(7w+ 384) 63w+ 171776 91392

k = 1 24 0 0 0 1

48 72 1 840 514304 − 840w 63w+ 131584

k = 2 20 44 0 6144 5w+ 8192 −1280

68 92 1 53760×
(3w+ 512)

33w2 + 202688w
+117014528

−256×
(33w+ 88256)

k = 3 16 40 0 1536 5w− 9856 640

64 88 1 215040×
(3w+ 128)

231w2 − 26752w
−1267400704

128 × (231w
+1002752)

k = 4 12 −1 0 w+ 768 −256

36 60 0 7864320 −7w2 − 14080w
−3670016

256(7w+ 8704)

k = 5 8 −1 0 w+ 1408 −256

32 56 0 55050240 −35w2 −19456w
+89587712

256×
(35w− 29824)

THEOREM 4·4. For d ≡ 0 (mod 4) set n− = �d/16� + 1. Then there exists a radial
Schwartz function F− :Rd →R satisfying

F−(x)= (−1)
d
4 +1 F̂−(x) for all x ∈R

d

F−(
√

2n−)= 0 and F ′
−(
√

2n−) = 0

F−(
√

2m)= F ′
−(

√
2m)= 0 for m > n−, m ∈N.

(4·28)

Proof. It remains to show that F ′
−(

√
2n−) = 0. This follows from the discussion of van-

ishing orders in Section 5·2, especially equation (5·24) and the discussion following. More
precisely, (5·24) implies that an− = 0 in (2·1), whereas (5·25) implies that bn− = 0. This
shows by (2·3) that W has a simple pole at s = 2n−, which gives a simple zero of U at this
point.

Remark 4·5. Notice that by (4·25) the order increases by 2, if n increases by 1. Together
with (4·27) this gives that for certain d (mod 48) the order of vanishing of ψ is one more
than required. This means that for these values of the dimension there is one extra degree of
freedom. This is the case for dimensions

d ≡ {0, 4, 16, 20, 32, 36} (mod 48). (4·29)

5. Modular differential equations

In Section 3·1 we discussed the existence of the form ψ(Sz)z
d
2 −2 given by (3·1) in

Proposition 3·1 by a simple dimension count. A similar argument was used in Section 4·1 to
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obtain certain modular forms for �(2) that satisfy the requirements of Proposition 4·1. In this
section we give a direct construction by an explicit linear recurrence, which we obtain via
modular differential equations. For this purpose we set

f12n+2k+4 =�n
(
ωk+2 P (k)

n ( j)− 2ωk+1 E2 Q(k)
n ( j)+ωk E2

2 R(k)
n ( j)

)
, (5·1)

where P (k)
n , Q(k)

n , and R(k)
n are the polynomials used in the ansatz (3·12) studied in

Section 3·1. Similarly, we set

φ12n+2k+12 =�n+1
(
ωk X (k)

n log λ+ χ
(k)
1 Y (k)

n ( j)+ χ
(k)
2 Z (k)

n ( j)
)
, (5·2)

where X (k)
n , Y (k)

n , and Z (k)
n are the polynomials used in the ansatz (4·19) in Section 4·1. In

this section we use the weight w= 12n + 2k + 4 of the form fw and w= 12n + 2k + 12 of
the form φw as the parameter.

5·1. Differential equations for quasimodular forms

The quasimodular form fw of weight w and depth 2 is then given by the three
requirements

fw =O(q3n+a(k)−1)=O(q� w4 �−1) (5·3)

gw =�n
(
ωk+1 Q(k)

n ( j)−ωk E2 R(k)
n ( j)

)=O(q) (5·4)

hw =�nωk R(k)
n ( j)=O(1). (5·5)

The third equation (5·5) is of course trivially satisfied, we mention it only, because we will
show in the sequel that (5·3)–(5·5) give the exact order for z → i∞ of the functions fw, gw,
and hw obtained by our construction and that the solution is uniquely characterised by these
conditions. We notice that forms satisfying fw =O(q� w4 �) are called extremal quasimodular
forms; they were studied in [23, 34]. We will adapt the methods used in these two papers to
our situation.

In [24] third order linear differential equations are characterised, whose solution set is
invariant under the modular group. Especially, several cases of third order linear differential
equations are shown to have modular or quasimodular solutions. In [18] modular differential
equations of orders ≤ 5 having quasimodular solutions are fully characterised. Such differ-
ential equations are especially useful for finding quasimodular forms fw with prescribed
behaviour of fw, gw and hw for q → 0, because the corresponding orders have to be solu-
tions of the indicial equation. In this section we will present this approach to finding the
quasimodular forms satisfying the requirements of Proposition 3·1.

Assuming the defining properties of the forms fw for even weights w≥ 8, there exist
coefficients aw, bw, cw such that

fw+4 = aw E4 fw + bw E2
4 fw−4 + cw� fw−8. (5·6)

This comes from considering the orders of the three forms on the right hand side: the last
two terms have the same orders for q → 0, thus the coefficients bw and cw can be chosen
so that the order of the sum bwE2

4 fw−4 + cw� fw−8 equals the order of E4 fw. Then aw can
be chosen to again increase the order by 1. Since the corresponding functions gw and hw
satisfy the same recurrence relation, these functions automatically satisfy (5·4) and (5·5) by
induction. At this moment this argument involves some heuristics, namely that there is no
higher order of vanishing in any term than expected. We will make this rigorous by showing
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that the solutions of the linear recurrence satisfy certain differential equations, which show
that they have precisely the assumed order of vanishing. This will then allow us to find values
for aw, bw, and cw and suitable initial values for fw.

For the purpose of the proof we recall the definition of the Serre derivative (see [36])

∂w f = f ′ − w

12
E2 f. (5·7)

Notice that the Serre derivative ∂w applied to a modular form of weight w gives a modular
form of weight w+ 2; similarly, the Serre derivative ∂w−2 applied to a quasimodular form
of weight w and depth 2 gives a quasimodular form of weight w+ 2 and depth ≤ 2; this can
be seen from

∂w−2

(
Aw + E2 Bw−2 + E2

2Cw−4

)= ∂w Aw − 1

12
E4 Bw−2

+ E2

(
1

6
Aw + ∂w−2 Bw−2 − 1

6
E4Cw−4

)
+ E2

2

(
1

12
Bw−2 + ∂w−4Cw−4

)
,

(5·8)

where Aw, Bw−2, and Cw−4 are modular forms of respective weights w, w− 2, and w− 4.
Furthermore, we recall the definition of the Rankin–Cohen bracket (see [35])

[
f, g
](k,	)

n
=

n∑
i=0

(−1)i
(

n + k − 1

n − i

)(
n + 	− 1

i

)
f (i)g(n−i). (5·9)

The cases w≡ 0 (mod 4) (this corresponds to k = 0, 2, 4) and w≡ 2 (mod 4) (this corre-
sponds to k = 1, 3, 5) have to be treated slightly differently. In the second case the underlying
modular differential equation takes a somehow non-standard form, which was not covered
by the general study [24].

PROPOSITION 5·1. Consider the sequence ( fw)w, (w≡ 0 (mod 4), w≥ 8) given by the
initial elements

f8 = E2
4 − 2E2 E6 + E2

2 E4 = 36

5
E ′′

4

f12 = 1

6000
(E2

6 − 2E2 E4 E6 + E2
2 E2

4)=
1

3000
(E2

4)
′′ − 4

25
�

f16 = 1

2540160000

(−25E4
4+ 49E4 E2

6− 48E2 E2
4 E6+ E2

2(49E3
4− 25E2

6)
)

= (25E2
6 − 49E3

4)
′′

2751840000
− �E4

45500

(5·10)

and the recurrence

fw+4 = 1

16000(w+ 2)(w− 3)(w− 5)(w− 9)(w− 10)(w− 11)

×
(

200(w− 8)(w− 9)(w2 − 15w+ 38)E4 fw

− 5

8
(w− 8)(w− 12)E2

4 fw−4 +� fw−8

)
.

(5·11)
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Then for every w≡ 0 (mod 4), w≥ 8 the quasimodular form fw satisfies (5·3) and the
corresponding functions gw and hw satisfy (5·4) and (5·5), where q

w
4 −1, q, and 1 are the

exact orders of these functions for q → 0.

Proof. We will prove the proposition by showing that fw satisfies the differential equation

f ′′′ − w

4
E2 f ′′ +

(
w− 4

4
E4 + w(w− 1)

4
E ′

2

)
f ′

−
(
(w− 2)(w− 4)

16
E ′

4 + w(w− 1)(w− 2)

24
E ′′

2

)
f = 0.

(5·12)

This is the case α = w−4
4 and β = 0 of the general form of linear differential equations admit-

ting modular and quasimodular solutions given in [24, theorem 1]. We will write (5·12) w
to indicate the dependence on the parameter w (so, fw−4 is a solution of (5·12)w−4). The
indicial equation of (5·12) then reads as

μ3 − w

4
μ2 + w− 4

4
μ=μ (μ− 1)

(
μ− w− 4

4

)
= 0. (5·13)

The roots of this equation correspond to the exponents in (5·3)–(5·5).
The differential equation (5·12) can be rewritten in terms of the Serre derivative as

∂w+2∂w∂w−2 f − 3w2 − 36w+ 140

144
E4∂w−2 f

− (w− 2)(w− 5)(w− 14)

864
E6 f = 0.

(5·14)

The following lemma can be checked by direct computation.

LEMMA 5·2. If Fw is a solution of (5·12) w, then the function

1

�

(
[Fw, E4](w−2,4)

2 + 5

3
[Fw, E6](w−2,6)

1

)
(5·15)

is a solution of (5·12) w−4.

We now proceed by induction to show that the right-hand side of (5·11) is a solution of
(5·12)w+4. Assume that we have proved that fm is a solution of (5·12) m and that

� fm−4 = [ fm, E4

](m−2,4)

2
+ 5

3

[
fm, E6

](m−2,6)

1
(5·16)

for 12 ≤ m ≤w, m ≡ 0 (mod 4). Inserting (5·16) for m =w− 4 and m =w into (5·11) and
using that fw−4 and fw are solutions of (5·12)w−4 and (5·12) w gives that the right-hand side
of (5·11) equals

(w− 5)(w− 6)E4 fw − 36∂w∂w−2 fw
120(w+ 2)(w− 3)(w− 5)(w− 10)

. (5·17)

This can be checked to be a solution of (5·12)w+4. In order to complete the induction step, we
verify (5·16) for m =w+ 4 inserting the expression (5·17). This shows that indeed (5·11)
holds.
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The solution of the recurrence (5·11) is thus also a solution of the differential equation
(5·12). Since fw vanishes to at least second order in q for q → 0, it can only be the solution
of (5·12) associated to the root μ=w− 4/4 of the indicial equation. Thus (5·3) holds.
Similarly, since gw and hw satisfy the same linear recurrence relation, we prove that (5·4)
and (5·5) hold.

PROPOSITION 5·3. Consider the sequence ( fw)w, (w≡ 2 (mod 4), w≥ 10) given by the
initial elements

f10 = −E4 E6 + 2E2 E2
4 − E2

2 E6 = −24

7
E ′′

6

f14 = − 1

8400

(
E2

4 E6 − E2(E
3
4 + E2

6)+ E2
2 E4 E6

)
= − 3

19250
(E4 E6)

′′ − 36

875
E2�

f18 = − 1

237600

(
5E3

4 E6 + 7E3
6 − E2(5E4

4 + 19E4 E2
6)+ 12E2

2 E2
4 E6

)
= − 1

28875
(E2

4 E6)
′′ + 2�(181E6 − 185E2 E4)

9625

(5·18)

and the recurrence

fw+4 = 1

16000(w− 3)(w− 4)(w− 5)(w− 9)(w− 11)(w− 16)

×
(

200(w− 9)(w− 10)(w2 − 21w+ 92)E4 fw

− 5

8
(w− 10)(w− 14)E2

4 fw−4 +� fw−8

)
.

(5·19)

Then for every w≡ 2 (mod 4), w≥ 10 the quasimodular form fw satisfies (5·3) and the
corresponding functions gw and hw satisfy (5·4) and (5·5), where q

w−6
4 , q, and 1 are the

exact orders of these functions for q → 0.

Proof. We will prove the proposition by showing that fw satisfies the differential equation

E6 f ′′′ −
(
w− 2

4
E2

4 + w

2
E ′

6

)
f ′′

+
(
w− 6

4
E4 E6 + (w− 1)(w− 2)

8
E4 E ′

4 + w(w− 1)

14
E ′′

6

)
f ′

−
(
(w− 2)(w− 6)

24
E4 E ′

6 + 5(w− 8)(w− 9)(w− 10)

384
(E ′

4)
2

+w
3 + 105w2 − 1162w+ 3576

480
E4 E ′′

4 + w(w− 1)(w− 2)

336
E ′′′

6

)
f = 0.

(5·20)

The extra factor E6 in front of the highest derivative is motivated by the computations in
[34]. The indicial equation is then given by

μ3 − w− 2

4
μ2 + w− 6

4
μ=μ(μ− 1)

(
μ− w− 6

4

)
= 0.
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The equation (5·20) can be written in terms of Serre derivatives as

E6∂w+2∂w∂w−2 f + 1

2
E2

4∂w∂w−2 f − 3w2 − 48w+ 224

144
E4 E6∂w−2 f

−
(

3w2 − 48w+ 224

288
E3

4 + w3 − 33w2 + 300w− 896

864
E2

6

)
f = 0

(5·21)

Then a relation similar to Lemma 5·2 holds.

LEMMA 5·4. If Fw is a solution of (5·20)w, then the function

1

�

(
[Fw, E4](w−2,4)

2 + 5

3
[Fw, E6](w−2,6)

1

)
(5·22)

is a solution of (5·20)w−4.

We proceed in a similar manner as in the proof of Proposition 5·1. The main equation
after inserting (5·22) into the recurrence and using that fw is a solution of (5·20) reads

fw+4 = (w− 8)(w− 9)E4 fw − 36∂w∂w−2 fw
120(w− 3)(w− 4)(w− 5)(w− 16)

(5·23)

This can be checked again to satisfy (5·20)w+4 and (5·16) w+4. The remaining arguments are
also similar.

5·2. Differential equations for �(2)-modular forms

The forms φw are given by the requirements

φw(z)=O(1) (5·24)

φw(z)− φw(Tz)=O(q) (5·25)

z−wφw(Sz)=O(q� w4 �− 1
2 ). (5·26)

Notice that (5·25) is equivalent to f�n+1, with f as in (4·1), being a cusp form. Furthermore,
we will show that the orders of vanishing for z → i∞ given in (5·24)–(5·26) are exact.
Similarly to (5·6) we expect a linear recurrence equation for φw by the same heuristic
argument. The fact that such recurrences indeed hold, is the content of the following two
propositions. Their proofs follow exactly the same lines as the proofs of Propositions 5·1
and 5·3.

PROPOSITION 5·5. Consider the sequence (φw)w, (w≡ 0 (mod 4), w≥ 8) given by the
initial elements

φ8 = θ12
01

(
θ4

01 + 2θ4
10

)
φ12 = 8

175
� log λ+ θ12

01

11200

(
2θ12

10 + 3θ4
01θ

8
10 + 3θ8

01θ
4
10 + θ12

01

)
φ16 = 1

231000
�E4 log λ

+ θ12
01

1419264000

(
24θ20

10 + 60θ4
01θ

16
10 + 68θ8

01θ
12
10 + 42θ12

01 θ
8
10

)
(5·27)
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and the recurrence (for w≥ 16)

φw+4 = 1

16000(w+ 4)(w− 1)(w− 3)(w− 7)(w− 8)(w− 9)

×
(

200(w− 6)(w− 7)(w2 − 11w+ 12)E4φw

− 5

8
(w− 6)(w− 10)E2

4φw−4 +�φw−8

)
.

(5·28)

Then for every w≡ 0 (mod 4), w≥ 8 the modular form φw satisfies (5·24), (5·25)
and (5·26), where 1, q, and q

w−2
4 are the exact orders of these functions for q → 0.

Proof. As pointed out, the proof follows the same lines as the proof of Proposition 5·1; it
only has to be shown that φw satisfies (5·12) w+2. This is done by showing the relation

φw+4 = (w− 3)(w− 4)E4φw − 36∂w+2∂wφw

120(w+ 4)(w− 1)(w− 3)(w− 8)
. (5·29)

PROPOSITION 5·6. Consider the sequence (φw)w, (w≡ 2 (mod 4), w≥ 10) given by the
initial elements

φ10 = θ12
01

(
5θ8

10 + 5θ4
01θ

4
10 + 2θ8

01

)
φ14 = θ20

01

13440

(
7θ8

10 + 7θ4
01θ

4
10 + 2θ8

01

)
φ18 = 1

600600
�E6 log λ

+ θ12
01

1845043200

(
−12θ24

10 − 36θ4
01θ

20
10 − 13θ8

01θ
16
10 + 34θ12

01 θ
12
10

+ 68θ16
01 θ

8
10 + 45θ20

01 θ
4
10 + 10θ24

01

)
(5·30)

and the recurrence (for w≥ 18)

φw+4 = 1

16000(w− 1)(w− 2)(w− 3)(w− 7)(w− 9)(w− 14)

×
(

200(w− 7)(w− 8)(w2 − 17w+ 54)E4φw

− 5

8
(w− 8)(w− 12)E2

4φw−4 +�φw−8

)
.

(5·31)

Then for every w≡ 2 (mod 4), w≥ 10 the modular form φw satisfies (5·24), (5·25)
and (5·26), where 1, q, and q

w−4
4 are the exact orders of these functions for q → 0.

Proof. The proof is again similar to the proof of Proposition 5·3; it only has to be shown
that φw satisfies (5·20) w+2. This is done by showing the relation

φw+4 = (w− 6)(w− 9)E4φw − 36∂w+2∂wφw

120(w− 1)(w− 2)(w− 3)(w− 14)
. (5·32)
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6. Positivity of the coefficients

In this section we will show that the forms fw obtained in Propositions 5·1 and 5·3 can be
written in the form

fw = (−1)w/2
144μw

(w− 3)(w− 4)
E ′′
w−4 +� f̃w−12, (6·1)

where f̃w−12 is a quasimodular form of weightw− 12 and depth 2. The factorμw is given by

μw =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3(w/4 − 2)!

80w/4−2(w− 7)!!(w/2 − 1)!! for w≡ 0 (mod 4)

3((w− 10)/4)!
80(w−10)/4(w− 7)!!(w/2 − 4)!! for w≡ 2 (mod 4),

(6·2)

where m!! = m(m − 2)(m − 4) . . . denotes the double factorial. From this we derive the
following proposition.

PROPOSITION 6·1. Let fw be the quasimodular form given by Propositions 5·1 and 5·3.
Then all Fourier coefficients of fw are positive with possibly finitely many exceptions.

Proof. We set

fw = Aw + E2 Bw−2 + E2
2Cw−4. (6·3)

Applying (5·8) twice we obtain

∂w∂w−2

(
Aw + E2 Bw−2 + E2

2Cw−4

)
= 1

72

(
72∂w+2∂wAw − E4 Aw − 12E4∂w−2 Bw−2 + 2E6 Bw−2 + E2

4Cw−4

)
+ E2

36
(12∂wAw + 36∂w∂w−2 Bw−2 − E4 Bw−2 − 12E4∂w−4Cw−4 + 2E6Cw−4)

+ E2
2

72

(
Aw + 12∂w−2 Bw−2 + 72∂w−2∂w−4Cw−4

− E4Cw−4

)
.

(6·4)

Setting aw, bw−2, and cw−4 for the constant coefficients of Aw, Bw−2, and Cw−4 and using
(5·17) we obtain

⎛⎜⎝aw+4

bw+2

cw

⎞⎟⎠=

⎛⎜⎝3w2 − 46w+ 122 −2w −2

4w 3w2 − 42w+ 124 8 − 4w

−2 2(w− 2) 3w2 − 38w+ 114

⎞⎟⎠
⎛⎜⎝aw

bw−2

cw−4

⎞⎟⎠
480(w− 10)(w− 5)(w− 3)(w+ 2)

,

from which we obtain ⎛⎜⎝aw
bw−2

cw−4

⎞⎟⎠=μw

⎛⎜⎝ 1

−2

1

⎞⎟⎠
for w≡ 0 (mod 4); using (5·23) for w≡ 2 (mod 4) gives a similar recursion. This shows
that all three forms Aw, Bw−2, and Cw−4 have non-vanishing Eisenstein parts.
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The form fw can be rewritten as

fw = α′′
w−4 + β ′

w−2 + γw (6·5)

with forms αw−4, βw−2, and γw of respective weights w− 4, w− 2, and w. The two
representations (6·3) and (6·5) are related byv

αw−4 = 144

(w− 3)(w− 4)
Cw−4

βw−2 = 12

w− 2

(
Bw−2 − 24

w− 4
∂w−4Cw−4

)
γw = Aw − 12

w− 2
∂w−2 Bw−2 + 1

w− 3
E4Cw−4

+ 144

(w− 2)(w− 3)
∂w−2∂w−4Cw−4.

(6·6)

Inserting our previous result that the constant coefficients of Aw,Bw−2, and Cw−4 are propor-
tional to (1,−2, 1) yields that βw−2 and γw are cusp forms, thus multiples of �. This yields
the decomposition (6·1) and more precisely

fw = (−1)w/2
144μw

(w− 3)(w− 4)
E ′′
w−4 + α̃′′

w−4 + β ′
w−2 + γw (6·7)

with cusp forms α̃w−4, βw−2, and γw.
The Fourier coefficients of E ′′

w−4 are −2(w− 4)/n2σw−5(n)/Bw−4 and thus of order nw−3

(here Bw−4 denotes the Bernoulli numbers). Using Deligne’s estimate (see [14]) for the
coefficients of cusp forms to estimate the coefficients of α̃′′

w−4 + β ′
w−2 + γw gives an estimate

of order n
w−1

2 σ0(n) (σ0(n) being the number of positive divisors of n) for the coefficients of
� f̃w−12 in (6·1). Thus the coefficient of the second term in (6·1) is of smaller order than the
coefficient of the first term, which then determines the sign of all but possibly finitely many
Fourier coefficients.

We explain shortly, how to prove positivity of all coefficients for a fixed value of w: we start
from (6·7). Then the coefficients of the cusp forms can be estimated by an explicit bound
obtained in [21].

THEOREM 6·2 ([21, theorem 1]). Let

G(z)=
∞∑

n=1

g(n)qn

be a cusp form of weight w. Then

|g(n)| ≤√logw

⎛⎝11

√√√√ 	∑
m=1

|g(m)|2
mw−1

+ e18.72(41.41)w/2

w(w−1)/2

∣∣∣∣∣
	∑

m=1

g(m)e−7.288m

∣∣∣∣∣
⎞⎠ n

w−1
2 σ0(n),

(6·8)

where 	 is the dimension of the space of cusp forms of weight w.
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Using this bound we obtain that the coefficients of α̃′′
w−4, β ′

w−2, and γw are bounded by

Ci n
w−1

2 σ0(n) for i = α, β, γ

for explicit constants Cα, Cβ , and Cγ . Then the coefficients of fw are positive for all n
satisfying

144μw
(w− 3)(w− 4)

2(w− 4)

|Bw−4| n2σw−5(n) > (Cα + Cβ + Cγ )n
w−1

2 σ0(n). (6·9)

Estimating σw−5(n)≥ nw−5 and σ0(n) < 2
√

n, this can be solved explicitly for the minimal
value of n; the remaining finitely many values of n can be checked with the help of a com-
puter. The number of coefficients to be checked was up to 3300 in the cases we studied. For
the values w≤ 22 the cusp forms are either trivial or Hecke eigenforms, because the space
of cusp forms has dimension ≤ 1. In this case Deligne’s estimate can be used directly, and
the number of coefficients to be checked is less than 10.

Remark 6·3. We have checked the positivity of the Fourier coefficients of the forms fw for
evenw in the range 8, . . . , 94, which corresponds to dimensions d = 4, . . . , 312 (d divisible
by 4). Notice that the weight depends on dimension by the relation

w= 12

⌊
d + 4

16

⌋
− d

2
+ 16.

As pointed out in Theorem 3·2 this implies that F+(x)≤ 0 for ‖x‖2 ≥ 2n + 2	− 2 for these
dimensions.

The numerical experiments support the following conjecture.

CONJECTURE 1. Let fw (w≡ 0 (mod 2)) be the quasimodular form given by
Propositions 5·1 and 5·3. Then

fw =
∞∑

m=� w4 �−1

aw(m)q
m

with aw(m) > 0 for m ≥ �w4 � − 1.

This conjecture is similar to [23, conjecture 2], which states the positivity of the Fourier
coefficients of extremal quasimodular forms of depth ≤ 4.

Remark 6·4. The Fourier coefficients of the modular forms φw do not seem to be positive
for small values of w. Numerical experiments indicate that the functions φw(it) are positive
for t > 0. Except for w= 8, 10, 14 (corresponding to dimensions 8, 12 and 24) this seems
to be difficult to prove due to the presence of the log λ-term.

7. Examples: small dimensions

For some small dimensions the functions we constructed in Sections 3·1 and 4·1 are of
special interest. These of course include the dimensions 8, 12 and 24 studied in [10, 11, 32].
In the following we express all �(2)-modular functions in terms of θ-functions by replacing
λ using (A·11).
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Dimension 4

The function λ maps the positive imaginary axis to the interval (0, 1). Thus the function
log λ produces a non-positive +1 eigenfunction for the Fourier transform. The function χ(0)1

turns into a +1 eigenfunction vanishing at 0 and having a last sign change at distance
√

2.
This shows A+(4)≤

√
2

The function

8400
f14

�
= E2

4 E6 − E2(E3
4 + E2

6)+ E2
2 E4 E6

�

produces a Fourier eigenfunction for the eigenvalue −1, which does not vanish at 0 and has
a last sign change at distance

√
2. This shows A−(4)≤

√
2.

Dimension 8

Our results recover the functions used in [32] to prove the optimal upper bound for sphere
packings in dimension 8: the quasimodular form used there is

6000
f12

�
= E2

6 − 2E2 E4 E6 + E2
2 E2

4

�
.

The second modular form giving the −1 Fourier eigenfunction is

φ10

�
= θ12

01

(
5θ8

10 + 5θ4
01θ

4
10 + 2θ8

01

)
�

.

Dimension 12

Similarly, the function used in [10] to show an optimal uncertainty principle in dimension
12 is given by

φ8

�
= θ12

01

(
θ4

01 + 2θ4
10

)
�

.

The function

C22
f22

�2
= 1

�2

(
205E4

4 E6 − 637E4 E3
6 + E2(70E5

4 + 794E2
4 E2

6)+ E2
2(275E3

6 − 707E3
4 E6)

)
(C22 being some large integer constant) provides a −1 eigenfunction, which does not vanish
at 0 and has a last sign change at 2. In this case Remark 3·3 applies and we can achieve
a more suitable function by forming a linear combination of f22 and E4 f18 to obtain the
function

1

�2

(
415E4

4 E6 + 161E4 E3
6)− 2E2

(
431E2

4 E2
6 + 145E5

4

)+ E2
2

(
451E3

4 E6 + 125E3
6

))
,

which transforms into an eigenfunction vanishing at 0 and having a last sign change at
distance 2. This shows A−(12)≤ 2.

Dimension 16

This is the smallest dimension for which both Remarks 3·3 and 4·5 apply.
The function

C20
f20

�2
= 1

�2

(
−469E2

4 E2
6 + 325E5

4 + E2

(
358E3

4 E6 − 70E3
6

)+ E2
2

(
395E4 E2

6 − 539E4
4

))
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transforms into a Fourier eigenfunction for the eigenvalue 1, which has a last sign change
at distance 2. By Remark 3·3 we have an extra degree of freedom by forming a linear
combination of f20 and E4 f16 to obtain the function

1

�2

(
203E2

4 E2
6 + 85E5

4 − 2E2

(
211E3

4 E6 + 77E3
6

)+ E2
2

(
239E4 E2

6 + 49E4
4

))
,

which transforms into a Fourier eigenfunction vanishing at 0 and having a last sign change
at distance 2. This shows A+(16)≤ 2.

The functions

C18
φ18

�2
= 3072E6

�
log λ+ θ12

01

�2

(
−12θ24

10 − 36θ4
01θ

20
10 − 13θ8

01θ
16
10

+ 34θ12
01 θ

12
10 + 68θ16

01 θ
8
10 + 45θ20

01 θ
4
10 + 10θ24

01

)
and

C14
E4φ14

�2
= θ4

01

(
θ8

01 + θ4
01θ

4
10 + θ8

10

) (
7θ8

10 + 7θ4
01θ

4
10 + 2θ8

01

)
θ16

10 θ
16
00

both transform into Fourier eigenfunctions with last sign change at distance 2. The transform
of the second function vanishes at 0. This shows A−(16)≤ 2.

Dimension 20

The function

C18
f18

�2
= 1

�2

(
5E3

4 E6 + 7E3
6 + E2

(−19E4 E2
6 − 5E4

4

)+ 12E2
2 E2

4 E6

)
transforms into a Fourier eigenfunction for eigenvalue −1, which has its last sign change at
distance 2. This eigenfunction does not vanish at 0. This shows A−(20)≤ 2.

The functions

C16
φ16

�2
= 3

E4

�
log λ

+ 32
(
5θ20

01 + 20θ16
01 θ

4
10 + 42θ12

01 θ
8
10 + 68θ8

01θ
12
10 + 60θ4

01θ
16
10 + 24θ20

10

)
θ4

01θ
16
10 θ

16
00

and

C12
E4φ12

�2
= E4

�
log λ+ 128(θ4

01 + 2θ4
10)
(
θ8

01 + θ4
01θ

4
10 + θ8

10

)2
θ4

01θ
16
10 θ

16
00

both transform into Fourier eigenfunctions with a last sign change at distance 2. Forming
the linear combination

θ4
01

(
θ12

01 + 4θ8
01θ

4
10 + 6θ4

01θ
8
10 + 4θ12

10

)
θ16

10 θ
16
00

gives a function, which transforms into a Fourier eigenfunction vanishing at 0 and having
sign changes exactly at distances

√
2 and 2. This shows A+(20)≤ 2.
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Dimension 24

The functions used in [11] to obtain the optimal upper bound for sphere packings in
dimension 24 were

2540160000
f16

�2
= −25E4

4+ 49E4 E2
6− 48E2 E2

4 E6+ E2
2(49E3

4− 25E2
6)

�2

and

13440
φ14

�2
= θ20

01

(
7θ8

10 + 7θ4
01θ

4
10 + 2θ8

01

)
�2

.

Dimension 48

The function

C28
f28

�4
= 1

�4

(
−9565298E4

4 E2
6 + 1101373E4 E4

6 + 7254325E7
4

+ 48E2

(
133387E5

4 E6 − 82987E2
4 E3

6

)
+ E2

2

(
10650578E3

4 E2
6 − 11603053E6

4 − 257125E4
6

))
(C28 being some large integer constant) transforms into a Fourier eigenfunction for the eigen-
value 1, which has a last sign change at distance

√
8. In this case Remark 3·3 applies and

we can achieve a more suitable function by forming a linear combination of f28 and E4 f24

to obtain the function

1

�4

(
−21672478E4

4 E2
6 + 29822429E4 E4

6 + 16373825E7
4

+ 24E2

(
53329E5

4 E6 − 2096977E2
4 E3

6

)
+ E2

2

(
58616494E3

4 E2
6 − 23223893E6

4 − 10868825E4
6

))
,

which transforms into a Fourier eigenfunction vanishing at 0 with last sign change at
√

8.
This shows A+(48)≤ √

8.
The functions

C26
φ26

�3
= 267

E2
4 E6

�2
log λ+ 2048

θ12
01 θ

24
10 θ

24
00

×
(

570θ40
01 + 3705θ36

01 θ
4
10 + 14204θ32

01 θ
8
10 + 41639θ28

01 θ
12
10

+ 71710θ24
01 θ

16
10 + 50531θ20

01 θ
20
10 − 26351θ16

01 θ
24
10 − 88288θ12

01 θ
28
10

− 86152θ8
01θ

32
10 − 42720θ4

01θ
36
10 − 8544θ40

10

)
and

C22
E4φ22

�3
= 3

E2
4 E6

�2
log λ+ 1024

(
θ8

01 + θ4
01θ

4
10 + θ8

10

)
θ12

01 θ
24
10 θ

24
00

×
(

30θ32
01 + 165θ28

01 θ
4
10 + 395θ24

01 θ
8
10 + 636θ20

01 θ
12
10 + 566θ16

01 θ
16
10 − 240θ12

01 θ
20
10

− 976θ8
01θ

24
10 − 768θ4

01θ
28
10 − 192θ32

10

)
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transform into Fourier eigenfunctions with a last sign change at distance
√

6. The linear
combination

θ16
01

θ24
10 θ

24
00

(
170θ24

01 + 1105θ20
01 θ

4
10 + 2678θ16

01 θ
8
10

+ 2574θ12
01 θ

12
10 − 143θ8

01θ
16
10 − 1716θ4

01θ
20
10 − 572θ24

10

)
of these two functions transforms into a Fourier eigenfunction vanishing at 0 with sign
changes exactly at distances

√
2, 2 and

√
6. This shows A−(48)≤ √

6.
This should be compared to [28]. There it is erroneously stated that for dimension 48 only

a +1 eigenfunction with last sign change at distance
√

6 can be obtained by this method.
Our result shows that this method produces a −1 eigenfunction with last sign change at

√
6,

whereas the optimal +1 eigenfunction obtained by this method has its last sign change at
distance

√
8.

Appendix A. Some preliminaries on modular forms and functions

In this appendix we provide some basic facts about modular and quasimodular forms,
which are required as background for Sections 3 and 4. For further reading and more details
we refer to [4] and [6, 15, 20, 30, 31]. For introductions to quasimodular forms we refer to
[5, 29, 36].

We recall the definition of the modular group

� = PSL(2,Z)= SL(2,Z)/{±I }
and the congruence subgroup

�(2)= {γ ∈ SL(2,Z) | γ ≡ I (mod 2)}/{±I },
where I denotes the identity matrix. We also recall that � is generated by T : z �→ z + 1 and
S : z �→ −1/z; �(2) is generated by ST 2S = −z/(2z − 1) and T 2 : z �→ z + 2.

A·1. Modular forms for �, Eisenstein series

A holomorphic function f :H→C is called a weakly holomorphic modular form of
weight k, if it satisfies

(cz + d)−k f

(
az + b

cz + d

)
= f (z) (A·1)

for all z ∈H and all
(

a b
c d

) ∈ �. The space of weakly holomorphic modular forms is denoted
by M!

k(�). This space is non-trivial only for even values of k. A form f is called
holomorphic, if

f (i∞) := lim
�z→+∞

f (z)

exists. The subspace Mk(�) of holomorphic modular forms is non-trivial only for even
k ≥ 4. Its dimension equals
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dim Mk(�)=
⎧⎨⎩
⌊

k
12

⌋
for k ≡ 2 (mod 12)⌊

k
12

⌋+ 1 otherwise.

A holomorphic form f is called a cusp form, if f (i∞)= 0. The space of cusp forms is
denoted by Sk(�).

Prototypical examples of modular forms of weight 2k are given by the Eisenstein series

E2k(z)= 1

2ζ(2k)

∑
(m,n)∈Z\{(0,0)}

1

(mz + n)2k
= 1 − 4k

B2k

∞∑
n=1

σ2k−1(n)q
n (A·2)

for k ≥ 2 with

σ2k−1(n)=
∑
d|n

d2k−1

and B2k denoting the Bernoulli numbers. As usual in the context of modular forms we use
the notation q = e2π i z; q is called the nome.

The two forms

E4(z)= 1 + 240
∞∑

n=1

σ3(n)q
n, E6(z)= 1 − 504

∞∑
n=1

σ5(n)q
n, (A·3)

of respective weights 4 and 6 are especially important, since they generate the ring of all
holomorphic modular forms

∞⊕
k=0

M2k(�)=C[E4, E6].

The modular discriminant is the prototype of a cusp form

�(z)= 1

1728
(E4(z)

3 − E6(z)
2)= q

∞∏
n=1

(1 − qn)
24
. (A·4)

Its weight is 12. The relation

S2k(�)=�M2k−12(�)

characterises the spaces of cusp forms. Furthermore, we have

M2k(�)=CE2k ⊕ S2k(�).

This decomposition is used in Section 6 to split forms into an Eisenstein part (a form with
non-vanishing constant coefficient, for instance a multiple of E2k) and a cusp form.

Klein’s modular function

j (z)= E4(z)3

�(z)
(A·5)

generates the field of all modular functions (forms of weight 0)

{ f :H→C | ∀γ ∈ � : f (γ z)= f (z) and f meromorphic} =C( j).

This fact is expressed by calling j a Hauptmodul for �.
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A·2. Modular forms for �(2), Theta series

Powers of the Jacobi theta functions

θ00(z)=
∞∑

n=−∞
eπ in2z

θ01(z)=
∞∑

n=−∞
(−1)neπ in2z

θ10(z)=
∞∑

n=−∞
eπ i(n+ 1

2 )
2z

are examples of modular forms for �(2). From these definitions it follows that

θ00(z)
4 = 1 +

∞∑
n=1

r4(n)q
n
2

θ01(z)
4 = 1 +

∞∑
n=1

(−1)nr4(n)q
n
2 ,

(A·6)

where

r4(k) := |{x ∈Z
4 | ‖x‖2 = k}|, (A·7)

denotes the number of possibilities to express n as a sum of four squares. Jacobi’s famous
four-square theorem gives the following representation of r4(k)

r4(k)= 8σ1(k)− 32σ1

(
k

4

)
, (A·8)

where we use the convention for arithmetic functions that they are defined to be 0 for non-
integer arguments.

The θ-functions satisfy the transformation formulas

θ00(T z)4 = θ01(z)
4, z−2θ00(Sz)4 = −θ00(z)

θ01(T z)4 = θ00(z)
4, z−2θ01(Sz)4 = −θ10(z)

4

θ10(T z)4 = −θ10(z)
4, z−2θ10(Sz)4 = −θ01(z)

4

(A·9)

and Jacobi’s famous relation

θ01(z)
4 + θ10(z)

4 = θ00(z)
4. (A·10)

The modular λ-function

λ(z)= θ10(z)4

θ00(z)4
= θ10(z)4

θ01(z)4 + θ10(z)4
(A·11)

is a Hauptmodul for �(2) and satisfies

j = 256
(1 − λ+ λ2)3

λ2(1 − λ)2
. (A·12)
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The fact that [
C(λ) :C( j)

]= 6

is used in Section 4. The following transformation formulas follow from (A·9)

λ(T z)= λ(z)

λ(z)− 1

λ(Sz)= 1 − λ(z).
(A·13)

The function λ is holomorphic on H, attains the value 1 at z = 0, and has no zeros in H.
Hence, we may define a holomorphic logarithm of λ by

log λ(z) := 2π i
∫ z

0

λ′(w)
λ(w)

dw= π i
∫ z

0
θ4

01(w) dw, (A·14)

where the second equation follows from (A·23). Notice that log λ(i t) ∈R<0 for t ∈R>0. We
observe via direct computation with the contour integral and the properties of λ that:

log λ(T 2z)= log λ(z)+ 2π i (A·15)

2 log λ(Sz)= log λ(T −1z)− 2 log λ(z)+ log λ(T z). (A·16)

Notice that these equations imply

log λ(z)= log λ(T z)+ log λ(Sz)+ π i, (A·17)

which is used in Section 4.
Using the second equality of (A·14) and (A·6) we obtain the following expansion of log λ

at the cusp i∞:

log λ(z)= π i z + 4 log(2)+
∞∑

k=1

(−1)k
r4(k)

k
q

k
2 , (A·18)

where r4 is defined in (A·7). Then (A·16), (A·18) together with (A·8) give the expansion

log λ(Sz)= −16
∞∑

k=0

σ1(2k + 1)

2k + 1
qk+ 1

2 . (A·19)

A·3. Derivatives of modular forms and quasimodular forms

The ring of modular forms is not closed under differentiation, which can be seen by dif-
ferentiating (A·1). Notice that it is common and convenient in the context of modular forms
to set f ′ = (1/2π i)(d f /dz)= qd f /dq . By adjoining the Eisenstein series of weight 2

E2(z)= 1 − 24
∞∑

n=1

σ1(n)q
n, (A·20)

which satisfies the transformation formula

z−2 E2(Sz)= E2(z)+ 6

π i z
, (A·21)
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we obtain the ring C[E2, E4, E6] of quasimodular forms, which is closed under differentia-
tion. This can be seen from Ramanujan’s identities

E ′
2 = 1

12

(
E2

2 − E4

)
E ′

4 = 1

3
(E2 E4 − E6)

E ′
6 = 1

2

(
E2 E6 − E2

4

)
.

(A·22)

Furthermore, we have

j ′ = − E2
4 E6

�
= − E6

E4
j

and

λ′(z)= 1

2
θ4

01(z)λ(z), (A·23)

as well as (
θ4

00

)′ = 1

6

(
E2θ

4
00 − θ8

01 + θ8
10

)
(
θ4

01

)′ = 1

6

(
E2θ

4
01 − θ8

01 − 2θ4
01θ

4
10

)
(
θ4

10

)′ = 1

6

(
E2θ

4
10 + 2θ4

01θ
4
10 + θ8

10

)
.

(A·24)

A quasimodular form f of weight 2k can be written as

f (z)=
k∑
	=0

E	
2(z) f2k−2	(z), (A·25)

where f2k−2	 is a modular form of weight 2k − 2	; the term for 	= k − 1 is of course trivial.
Quasimodular forms are invariant under T and transform under S by

z−2k f (Sz)=
k∑

m=0

(
6

π i z

)m k−m∑
	=0

(
m + 	

	

)
E	

2(z) f2k−2	−2m(z).

Notice that the terms

k−m∑
	=0

(
m + 	

	

)
E	

2(z) f2k−2	−2m(z)

are quasimodular forms of weight 2k − 2m. The largest value 	, for which f2k−2	 in (A·25)
is non-zero is called the depth of the quasimodular form.

The derivative of a quasimodular form of weight 2k and depth s is a quasimodular form
of weight 2k + 2 and depth at most s + 1. In particular, the derivative of a modular form of
weight 2k is a quasimodular form of weight 2k + 2 and depth 1 for k > 0.
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