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A stream of fluid flowing down a partially wetting inclined plane usually meanders,
unless the volume flow rate is maintained at a highly constant value. Here we
investigate whether the meandering of this stream is an inherent instability. In
our experiment, we eliminate meandering on several partially wetting substrates by
reducing perturbations entering the flow. By re-introducing controlled fluctuations,
we show that they are responsible for the onset of the meandering. We derive a
theoretical model for the stream shape, which includes stream dynamics and forcing
by external noise. The deviation h(x) from a straight linear stream h(x) = 0 shows
considerable variability as a function of downstream distance x. However, for an
ensemble average of stream shapes acquired at different times, the power spectrum
S(k) as a function of wavenumber k has a power-law scaling S(k) ∼ k5/2. Moreover,
the area A(x) swept by the stream at the distance x grows as A(x) ∼ x1.75.

1. Introduction
Studies of rivulets in the laboratory are in part driven by the visual similarity

between rivulet and ‘real’ river meanderings. Studying the latter is much harder due
to the relevance of many highly complex and intertwined phenomena, which are
difficult to control: turbulence in the water, soil erosion on the riverbed, variability
of the soil properties, seasonal variations of the flow rate, etc. Two approaches to
modelling of river meandering exist. First, there are derivations of dynamical equations
based on first principles (Leopold & Wolman 1960; Ikeda, Parker & Sawai 1981);
Seminara (2006) provides a thorough review. Second, there is a stochastic approach
with noise simulating the effects of turbulence and landscape variations (e.g. Birnir
2007; Birnir, Hernandez & Smith 2007).

With rivers as motivation, rivulets meandering on a partially wetting surface
(glass or specially fabricated plastics, e.g. Mylar or polyethylene terephthalate) have
attracted much recent attention (Davis 1980; Weiland & Davis 1981; Mizumura
1993; Mizumura & Yamasaka 1997; Le Grand-Piteira, Daerr & Limat 2006). The
connection to rivers, somewhat tenuous in view of many differences in the physics, is
often stated explicitly in these works, for example, by Mizumura (1993). Davis (1980)
and Weiland & Davis (1981) studied the stability of a rivulet with a fixed contact
line, a moving contact line with a fixed contact angle, and a moving contact line with
the angles dependent smoothly on velocity. They concluded that for the fixed contact
line, the straight rivulet is stable if the flow is slow enough. For the moving contact
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line with a fixed contact angle, the rivulet was unconditionally unstable. Finally, for
the contact angle α depending smoothly on the transverse rivulet velocity v, the
stability was found to depend strongly on the value of the derivative dα/dv . This
approach was further developed by Young & Davis (1987), who studied the effects
of contact line motion and slip at the surface on the stability. Here one must make a
distinction between studies focused on sinuous (meandering) instability (Nakagawa &
Scott 1984; Mizumura 1993), and on varicose and kinematic-wave instability (Davis
1980; Weiland & Davis 1981; Young & Davis 1987). While varicose (capillary)
instability plays an important role in droplet formation in our experiments, this
paper is concerned primarily with the behaviour of sinuous instabilities. In addition,
Culkin & Davis (1984) used different substrates (including acrylic) and discussed the
stability/instability conditions using a model of slender rivulets with a high Reynolds
number, pressure gradients generated by curvature, and surface tension and contact-
angle hysteresis balance (also see Kim, Kim & Kang 2004). Experiments and to some
extent theories (Nakagawa & Scott 1984; Schmuki & Laso 1990; Nakagawa 1992)
hinted at a stability boundary, beyond which there was a bifurcation to an unstable
regime. Such stability boundaries of different regimes, as well as various quantities
in a meandering stream on different substrates (e.g. the leading unstable wavelength),
were assessed by Mizumura & Yamasaka (1997) and Le Grand-Piteira et al.
(2006). Again, the latter study deemed the contact-angle hysteresis to play a major
role.

These works concentrated on the dynamical approach, treating meandering as an
inherent instability of the rivulet. Further development of the theory was inhibited
by the unresolved complexities of the contact-angle behaviour (see deGennes 1985
for fundamental reference). Nevertheless, by the end of 1990s it seemed that the
instability of the flow for high flow rates had been established and the problem was
solved at least in principle. Three major conclusions can be derived from earlier
works. First, above a certain flow rate, meandering is inevitable, at least for some
surfaces. Second, a dominant wavelength exists in the meandering regime. Third, a
regime of stationary meandering is realized for parameter values different from the
time-dependent meandering. Many of these earlier works, inasmuch as they deal with
the onset of meandering, examine a flow regime different from the one we focus on
here, as it will be explained later.

In a surprising (and largely unnoticed) work by Nakagawa & Nakagawa Jr (1996)
on re-stabilization of the rivulets in the regimes presumed unstable, the formation of
braids, or a varicose instability of the rivulet, close to the stream origin was reported
(the braids were called beads of a rosary in that paper). Mertens, Putkaradze &
Vorobieff (2004, 2005) observed rivulet re-stabilization for a large range of flow
parameters and explained braiding theoretically, finding the transition boundary
between the braiding and non-braiding regimes. The experiments described here are
a continuation of this work.

First, by eliminating flow rate disturbances, we can completely suppress the
meandering for all parameter values attainable in our experiment. Re-introducing
the disturbances back into the stream makes the stream meander; turning off the
disturbances reliably stabilizes the stream. The stabilization is achieved more easily
for higher flow rates. This applies to all the substrates we used (static contact
angles ranging from 57◦ to 99◦), and to all the water/glycerin mixtures we employed
(from pure water to 50/50 mixture). Second, we show that, while a large variety
of meandering profiles is realized, the power spectrum of even a small data set of
meandering flow fields shows a power-law behaviour and thus rules out the existence
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Figure 1. Schematic of the experimental arrangement.

of a dominant wavelength (although some leading wavelength still may characterize
the onset of meandering). In a sense, meandering is akin to turbulence, where all
wavelengths are present. Third, at flow rates attainable at our experiments (Reynolds
number 500–18 000), we were unable to produce repeatable observations of the
stationary meandering regime.

In our experiments, rivulet meandering on a partially wetting smooth surface is
triggered by disturbances in the flow. Thus it is necessary to use the stochastic
approach to the problem, which is the object of the theoretical part of the paper and
has not been considered before. There are two stochastic forces at work here: first,
the flow rate disturbances that cause the meandering; and second, the forcing of the
stream by droplets left on the surface by the previous meanderings. The final results
of our theory depend on the presence of these droplets, but are independent of the
exact nature of their distribution in the plane, as long as this distribution remains
more or less uniform downstream. With this approach, we formulate a stochastic
theory explaining all the available experimental data with no fitting parameters.

The proper choice of dimensionless parameters that uniquely characterize the flow
is not easy. To define the Reynolds number R = U∗L∗/ν, for U∗ and L∗ we could
use the velocity and diameter of the fluid jet contacting the incline at the source of
the rivulet. This leads to R ∼ 50–400. Alternatively, we can define U∗ as the terminal
velocity of the straight rivulet downstream and L∗ as the typical depth of this rivulet,
leading to R ∼ 200–5000, Finally, we could also define L∗ as the width of the rivulet,
leading to R ∼ 500–18 000. The Froude number is defined with less ambiguity as
F = g cos αH∗/U 2

∗ for velocity U∗ and depth H∗ far downstream: F ∼ 0.1–10.

2. Experimental setup and observations
The experimental arrangement (figure 1) provides a highly constant discharge rate

from a very tall cylindrical (2 m) top reservoir through a hole in its bottom connected
to a flexible plastic tube. The diameter of this tube, and the hole, is d = 3 mm. The
diameter of the container is D = 15 cm. Thus d � D, and the flow discharge rate
Q is well approximated by the formula originally introduced by Torricelli (Clanet
2000), Q = πd4/(4D2)

√
2gZ, where g is acceleration due to gravity and Z is the

height differential between the location of the hole and the free surface. Thus, if Z

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

20
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002000


404 B. Birnir, K. Mertens, V. Putkaradze and P. Vorobieff

1 2 3

Figure 2. Time sequence of images (left to right) showing meandering flow. The images are
processed with an edge-detection filter that emphasizes droplets deposited on the surface and
makes it possible to observe both the current and the former rivulet paths. Arrows denote the
current flow path. Interval between images is 7.5 s. Inset shows similar behaviour of simulated
meandering flow.

remains constant, Q ≡ const as well. For a fixed tube diameter, Q can be altered by
changing Z.

The flow is carried to the incline by a flexible tube, necessary to prevent any
capillary instabilities forming on the free surface of the water jet. An electrically
driven valve can alter the flow rate by squeezing the tube, reducing its cross-section
by ∼ 20 %.

The inclined plane is a large (2.4 m long and 1.2 m wide) sheet of acrylic plastic
(3.2 mm thick) on top of a 2.4 m × 1.2 m × 2.5 cm polypropylene slab, which in turn
is mounted on a welded–steel frame. This frame is attached to two pivots, with a
screw arrangement controlling its angle of incline α with respect to the horizontal.

After the flow exits the tube, it runs down the incline and into a bottom reservoir,
from which it is recirculated with an electric pump connected to the top reservoir.
Note that the top and bottom reservoirs are also connected with an overflow tube,
which ensures that the free surface of the top reservoir remains at a constant level.

Figure 2 shows the flow of water with trace amounts of food colouring, captured
with a 4-megapixel greyscale digital camera mounted above the incline. The effective
resolution of the images is about 1 mm per pixel. Any optical distortions are removed
from these images as follows. An image of a rectangular grid is captured by the
camera. This bitmapped image with any distortions is then mapped to the bitmap
containing the undistorted image. The mapping procedure produces a bicubic spline
mapping scheme which is then used to process the experimental images. Prior to
each experimental run, a background image with no stream is captured, to be
subtracted from the images showing the stream and the droplets left in the process
of its meandering. Subsequently, the centreline of the stream is extracted from the
processed images. Our conservative estimate of the cumulative error of the extraction
and distortion correction for the centreline coordinates is of the order of one pixel
(about 20% of the characteristic stream width). The stream of fluid in this setup
is highly controllable. After some initial settling time, the stream flowing down the
plane assumes a straight shape for all the flow regimes we investigated. During
the settling time, three distinct flow regimes could be observed: first, a region in
the immediate downstream where stabilization had occurred; second, a region of
continuous meandering; and third, a region where the stream breaks up. In the third
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regime, stream splitting events usually occur at the inflection points of the stream.
Schmuki & Laso (1990) report that these events follow elegant scaling laws.

If the flow control valve remains open (no flow rate disturbances), the stream always
stabilizes to the stationary non-meandering shape. Note that the long and narrow
top reservoir stabilizing the flow is crucial for rivulet stabilization. If that reservoir
is removed, or a flat and shallow reservoir is used (even having the same volume
capacity), the meandering never stops owing to the inherent disturbances introduced
by the pump. Thus, careful attention to disturbances in the flow is imperative for this
experiment. For the same reason, we avoid intrusive flow-rate measurement devices
(e.g. rotameters). Flow rates are measured by collecting the fluid at the bottom
of the incline. Note also that even under ideal circumstances, the transient period
before the stabilization can be quite long, depending on the length of stable flow
desired.

The steady-state regime is described in our previous work, see Mertens et al. (2004,
2005). To destabilize the rivulet and produce continuous meandering, we added
an electronically operated valve to our original flow system, introducing flow rate
fluctuations at will, which destabilize the straight rivulet flow, producing meandering
at all the attainable flow rates. Several valve operation cycles were used, with the
valve compressing the tube for 0.1 s every 1 s, for 0.1 s every 3 s, and for 0.05 s
every 0.25 s. After the preliminary investigation showed no discernible differences
in the stream behaviour, the subsequent experiments were conducted with the 0.1 s
contraction in every 1 s cycle.

When the valve is switched off, the stream returns to the straight shape, with long
relaxation times for smaller flow rates. In a few cases when a meandering pattern
became stationary without straightening out (stationary meandering, Le Grand-Piteira
et al. 2006) this effect could always be attributed to the sedimentation of dust particles
on the surface. Cleaning the surface and re-starting the experiment led to re-emergence
of the non-stationary meandering if flow rate disturbances were present in the flow.
Without disturbances, restarting the experiment produced a straight rivulet.

Some of the discrepancy between our findings and previous literature may be due
to the difference in the surface wetting properties. It was noted by Le Grand-Piteira
et al. (2006) that surface properties play a crucial role in this phenomenon. The
presence of the droplets could explain an apparent discrepancy between our results
and some earlier works, since the stream could deposit droplets in different fashions
for different surfaces. Note that, for all surfaces we have used (acrylic, acrylic with
hydrophobic coating, and polypropylene) the spectrum results reported in this paper
are identical, although individual meandering profiles, characteristic amplitudes, as
well as droplet distributions, are very different.

3. Governing equations
Consider the flow of fluid on an inclined plane at an angle α with the horizontal. Let

us define the (x, y) Cartesian coordinate system in this plane so that its origin coincides
with the origin of the stream, and the x-axis is pointing straight downstream (i.e. the
centreline of a non-meandering rivulet will follow the x-axis). Then the momentum
equation for the fluid in the rivulet can be written as

dU
dt

+ U · ∇U =
1

ρ
∇P + g sin αêx + ν∇2U + H, (3.1)
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where U is the fluid velocity vector, P is the pressure field, ρ the fluid density, ν

its kinematic viscosity, α the angle of the incline (α = 0 for a horizontal plane), and
êx the unit vector pointing downstream. H denotes additional forcing, whose nature
may vary depending on the specific problem. The dominant contributions to the force
balance come from surface tension, friction on the bottom of the stream, and internal
viscous dissipation, all of which work against fluid inertia and gravity.

We use the standard lubrication approximation to reduce the full three-dimensional
equations with boundary conditions (z-axis being normal to the plane of the flow)
to equations in two dimensions with z-dependence averaged out and the no-slip
boundary condition implicitly accounted for, in a way similar to that described in
detail in Part 1 (Mertens et al. 2005). The lubrication approximation is based on the
assumption that the vertical velocity profile in the fluid is parabolic, owing to the non-
slip boundary condition on the bottom of the stream, and the stress-free condition on
the top (free surface). With these assumptions, we can show the x-component of the
friction force to be Ff,0 = −3νu/l2, where u is the value of the x-component of velocity
averaged in the z-direction and l is the average stream depth. A similar parabolic-like
velocity profile is expected in the cross-stream (y) direction with velocity vanishing
at the contact lines (similar to theoretical results of Perazzo & Gratton 2004). The
cross-stream dependence on y over the width w can then also be averaged out.
The total friction terms in this direction are then Ff,x 
 −3νu(1/l2 + 1/w2) = −λu.
Thus we introduce averages of the velocity components (U = uêx + vêy) for a given
cross-section of the stream.

Let the stream discharge rate at a given location be Q = Au, where A is the
cross-sectional area of the stream in the plane normal to the x-axis. The simplest
possible form of the equation describing the free surface ζ in this plane is parabolic,
ζ = 3

2
l(1 − 4y2/w2). The area of this section (up to a prefactor depending on the contact

angle) is A = lw. Now, using Q = Au = lwu, we write the equation for the friction
force as Ff,x = −3νu2w

(
1 + l2/w2

)
/ (Ql). The ratio w/l is related to the contact

angle φ as follows. By evaluating ∂ζ/∂y at y = −w/2 (the edge of the stream),
we find its value to be 6l/w. But this slope equals tan φ. Thus w/l = 6/ tan φ

and Ff,x = −18u2(1 + (tan φ/6)2)/(Q tan φ). Let λ= 18ν(1 + (tan φ/6)2)/ (Q tan φ) 

18ν/ (Q tan φ). By performing a similar analysis for the y-component of the friction
force, we can write the components of the friction force in the two-dimensional
formulation of the problem as Ff,x = −λu2 and Ff,y = −λuv.

In the pressure term, the pressure can be inferred from the influence of surface
tension. Let the variation of the width of the stream w(x, t) be small enough for
the width to be represented by its characteristic value w. In reality, the shape of
the cross-sectional area of the stream changes with time, and the contact angle is
subject to hysteresis. However, if the movement of the stream is gradual (characteristic
contact-line velocities associated with meandering are much lower than U = |U |), it
is reasonable to assume that the variation of this shape is commensurately small, and
so are the variations of w and l. For this and the subsequent derivations, we also
regard the downstream velocity components as uniquely defined by the downstream
distance x.

Let the deviation of the centreline of the stream from the x-axis be h(x, t). For a
straight rivulet, h(x, t) ≡ 0. Then the length of the centreline of the stream between
downstream locations x1 and x2 is L =

∫ x2

x1

√
1 + h2

xdx, where hx = ∂h/∂x. For a
partially wetting surface with φ � 90◦, the stream is shallow (l = w tan φ/6). Thus
the surface area of the stream between x1 and x2 is roughly the same as the wetted
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area S = wL = w
∫ x2

x1

√
1 + h2

xdx. The surface tension will tend to minimize this surface
area, thus the surface tension force per unit length is Fs = γ δS/δh. Here γ is the coeffi-
cient of surface tension. Thus, the corresponding capillary force per unit volume is

Fs

A
=

Fs

wl
= −γ

l

∂

∂x

(
hx√

1 + h2
x

)
.

The component form of the equations of motion (3.1) is

∂u

∂t
+ u

∂u

∂x
= −λu2 +

1

Aρ

δS

δh
cos θ + g sin α + ν

∂2u

∂x2
+ ηx, (3.2)

∂v

∂t
+ u

∂v

∂x
= −λuv +

1

Aρ

δS

δh
sin θ + ν

∂2u

∂x2
+ ηy. (3.3)

arise from the terms containing λ are added as the result of our use of the lubrication
approximation. Angle θ in the terms representing the components of the pressure i.e.
surface tension) force is the angle between the direction of the stream and the x-axis:
tan θ = hx . The components of the random force H are ηx = η cos θ and ηy = η sin θ .
We must also add the continuity equation, represented as a kinematic condition for
h(x, t):

∂h/∂t + u ∂h/∂x = v. (3.4)

The system (3.2)–(3.4) can be further simplified by considering the order of magnitude
of various terms under the assumption that v � u. Then, hx � 1 and the surface
tension term linearizes as follows:

δS

δh
= − hxx√

1 + h2
x


 −hxx . (3.5)

An important part of the subsequent discussion is the structure of the noise term
η. There are two possibilities. First, one can takeq η(x, t) as white noise with the
correlation 〈η(x, t)η(x ′, t ′)〉 = Aδ(x − x ′, t − t ′). This assumption leads to an analytical
solution (in a stochastic sense) for the system (3.2)–(3.4), assuming that the friction
coefficient λ in (3.2)–(3.3) vanishes. The solution (presented later) yields a 1/6
meandering exponent.

Flux Q in the model is held constant. Removing the noise term we see that
(3.2), (3.3) are stable, and variations in Q(t) lead to small but persistent oscillations
of the flow that disappear when Q is again held constant. The noise due to droplets
amplifies these small flow perturbations to the amplitude, greatly exceeding that caused
directly by Q(t) fluctuations. Thus in the model Q = const, with flow rate fluctuations
present only implicitly, as a necessary factor to trigger the larger perturbations due to
spatial noise. A consistent time-resolved model of meandering onset/cessation would
require detailed knowledge of transient contact angle behaviour and is beyond the
scope of this paper.

However, assuming η(x, t) to be white noise is not adequate for the explanation
of experimental results; the white noise character for η(x, t) can only be assumed
if there are many droplets of random sizes distributed all over the length of the
meandering stream, affecting it at all times. We believe that this assumption is correct
for large-scale flows, where there is continuous random forcing on all scales. However,
in our experiment at each given time instant the stream encounters only a very limited
number of droplets. Thus, we use the assumption that η(x, t) is a ‘spike’ appearing

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

20
00

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002000


408 B. Birnir, K. Mertens, V. Putkaradze and P. Vorobieff

100

10–2

S 
(k

)

10–4

10–6

10–1 10–1 100

Downstream distance (cm)
101 102

102

100

10–2

10–4

100

k (cm–1)

101

A
re

a 
(c

m
2 )

–5/2 slope 7/4 slope
Experiment
Model

Figure 3. Comparison of experiments and theory (experimental data for acrylic surface).
(a) Power spectra of the deviation of the stream from the centreline. Solid line represents
α = −5/2 power law. The noise amplitude in the model (a universal constant for all experiments)
is fixed to achieve agreement at small wavenumbers k, which continues over all the k values of
physical relevance. (b) Area between the stream and the centreline as a function of downstream
distance. Solid line shows power law with exponent 7/4 = 1.75. The deviation of the model
from experiment is observed for distances comparable to the width of noise forcing, equal to
the diameter of the stream.

at a random sequence of times t1, . . . tn, . . .. At each time tn, the position of the spike
xn is also chosen at random. We have tried several distributions of these droplets in
space, and as long as they are more or less uniform in space, the results we report
below do not change for wavelengths corresponding to scales larger than droplet size.
In addition, our results do not depend on the shape of each droplet as long as it is
localized. We have tried a rectangular pulse function of width l, inverse Helmholtzian
exp(−|x − xn|/l) and Gaussian exp(−(x − xn)2/l2). Note that in experiments, droplet
size distribution changes with the substrate (Birnir et al. 2008), but all experimental
droplet distributions on different substrates lead to the same power spectra as shown
in figure 3.

Also note that all the modelling results presented here assume uniform distribution
of droplet times t1, . . . tn, . . .; for each time tn the distribution of droplets xn is uniform
in space. The shape of the forcing is Gaussian, with width l equal to the cross-section
of the stream (2 mm). Several examples of profiles for the deviation from the centreline
h(x, t) are given in figure 2.

4. Quantitative analysis of experiments and comparison with theory
Our analysis is based on 105 flow images on acrylic substrate (the behaviour of

the flow on other partially wettable substrates is remarkably similar statistically, see
Birnir et al. 2008). The time intervals between the pictures were random and long
enough for the flow patterns to be statistically independent. From each image at time
tm, we extracted the deviation of the stream from the centreline hm(x). From members
of the ensemble hm(x), m = 1, . . . , 105, we computed power spectra Sm(k), where
wavenumber k = 2π/λ corresponds to a spatial wavelength λ. While the power spectra
Sm(k) based on single images are rather noisy, the spectrum produced by averaging
over the ensemble S(k) is a smooth graph with apparent power-law scaling S(k) ∼ k−5/2

over the span of about two decades (figure 3a). Fitting the data with a −5/2
power law yields a coefficient of determination R2 = 0.999 (power-law fits presented
subsequently have similar R2 values). Averaging over as few as 30 realizations from
the ensemble produces a smooth graph with the same power-law exponent. Deviation
from this scaling is noticeable only for k � kmax 
 5 cm−1, corresponding to physical
scales smaller than the characteristic stream width. The largest physical scale we can
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acquire (and thus the smallest wavenumber) is constrained by the 2.4 m streamwise
extent of our experiment. This scaling behaviour persists for all of our experiments,
representing a universal characteristic of the problem of the flow down a partially
wetting incline. One important conclusion from the power-law behaviour is that for
continuously meandering stream profiles, no single leading wavelength is apparent.
The results were repeated for three surfaces: acrylic (contact angle 57 ± 2◦) , acrylic
with hydrophobic coating (contact angle 74 ± 5◦) and polypropylene (contact angle
99 ± 4◦). The results for spectra and ‘basin area’ (see below) for these surfaces appear
indistinguishable.

To compare the experimental results with our theory presented in § 3, we performed
numerical simulation of (3.2)–(3.4) over a time up to t ∼ 10 000 and computed
an average of the spectrum for the deviation of the centreline for an ensemble
hm(x) = h(x, tm) using a sequence of time points tm. This spectrum is also presented in
figure 3(a). The only fitting parameter is the normalization for noise strength η(x, t),
taken as a constant for all runs. Our theory faithfully reproduces the scaling behaviour
up to the largest physically relevant values of k corresponding to the droplet forcing
width.

As another test of our theory, in figure 3(b) we plot the area between the meandering
stream and its centreline as a function of downstream distance. The deviation of the
model from the power law is probably due to the length scale associated with the
forcing (characteristic droplet size 1–5 mm). The area grows as x7/4 = x1.75 with the
distance, consistent with the power law k−5/2 of the spectrum. Surprisingly, it is the
same as the growth law for a river basin versus length of the river discovered by
Hack (1957), although at the large scale this law seems to cross over to the general
scaling law for correlated surfaces (Montgomery & Dietrich 1992; Dodds & Rothman
2000b). In our case, there is clearly no basin per se and no side streams forming that
basin. We do not plot Hack’s law data for rivers here for fear of implying that our
experiment is describing river basin erosion. However, the overlap of the properly
scaled data for Hack’s law in figure 3 with certain river data from Rigon et al. (1996)
would be nearly perfect. Another reason to avoid comparing our data with those
from rivers is the reported variation of the exponent in Hack’s law with river type
(Dodds & Rothman 2000a). Also, the areas spanned by rivulets and the basin of
rivers are very different. Basins fan out from their outlet whereas the rivulets here fan
out from their source. There are no side streams on our rivulets, nor multiple sources
of water (like rain) in our experiments. The coincidence of the scaling exponents is
nevertheless interesting.

Thus we can conclude that the behaviour of a stream meandering down an inclined
plane is dominated by the effects of the stream interacting with droplets on the plane,
which can be modelled by including appropriate random forcing into the equations.

It is interesting to compare the numerical results of the model with the exact
analytical solution in a stochastic sense for (3.2)–(3.4). Following previous arguments,
we assume that the noise is quenched, or coloured, as in turbulence. This implies
that both u and v scale as the solutions of the noise-driven Navier–Stokes equation
in one-dimensional turbulence, see Birnir (2007). The stochastic solution proceeds
as follows. First, we assume ht in (3.4) to be negligible compared to uhx and v.
Then hx = v/u. We define second-order structure functions sf =

∫
|f (x +�)−f (x)|2dx

(as in Frisch 1995; Birnir et al. 2007) and assume scaling sh ∼ �2ph , su ∼ �2pu and
sv ∼ �2pv . The powers are related as ph = pv −pu +1. We can disregard the lubrication
friction terms in (3.2), (3.3) by setting λ= 0, and setting η to be white noise. Then,
the u equation (3.2) is simply a noise-driven Burgers equation which can be solved
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exactly, giving pu = 2/3. On the other hand, (3.3) can be solved exactly under these
assumptions using the Feynman–Kac technique as in Simon (2005), yielding pv = 3/4,
and from the equation for ph we conclude that ph = 1/12 and hence sh = 1/6.

Sadly, in our case setting any realistic value of λ> 0 in (3.2), (3.3) destroys the
scaling sh = 1/6. Also, numerics show that the characteristic time for the system to
evolve sh = 1/6 scaling for any realistic initial conditions is so large that it can only
be observed several km downstream. It is nevertheless interesting that the meandering
exponent sh +1 
 1.16 agrees with that of mature rivers (1.1–1.2, Maritan et al. 1996).

5. Conclusions and further work
Our paper elucidates the role of disturbances in the flow rate in triggering the

meandering of a fluid stream, which is then sustained by the presence of droplets
left behind by earlier meanderings. We derive a model that provides an accurate
description of the stochastic behaviour of the stream for all choices of parameters
investigated. These results show there that is underlying structure inherent to all such
partially wetting flows. Interestingly, some of the results of the model fit not only our
simple experiment, but also well-established results for river morphology.

We thank Professors T. Bohr and J. Krug for fruitful discussion. V.P. is grateful
for the support of the Humboldt foundation and the hospitality of the Institute for
Theoretical Physics, University of Cologne.
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