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SUMMARY
A distributed control mechanism for ground moving nonholonomic robots is proposed. It enables
a group of mobile robots to autonomously manage formation shapes while navigating through
environments with obstacles. The mechanism consists of two stages, with the first being formation
control that allows basic formation shapes to be maintained without the need of any inter-robot
communication. It is followed by obstacle avoidance, which is designed with maintaining the
formation in mind. Every robot is capable of performing basic obstacle avoidance by itself. However,
to ensure that the formation shape is maintained, formation scaling is implemented. If the formation
fails to hold its shape when navigating through environments with obstacles, formation morphing
has been incorporated to preserve the interconnectivity of the robots, thus reducing the possibility of
losing robots from the formation.

The algorithm has been implemented on a nonholonomic multi-robot system for empirical
analysis. Experimental results demonstrate formations completing an obstacle course within 12 s
with zero collisions. Furthermore, the system is capable of withstanding up to 25% sensor noise.
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1. Introduction
In recent years there has been an increasing interest in automated control and coordination of multi
robot systems. The advancement in technology and increasing safety awareness have pushed for the
development of such systems, particularly in tasks where human lives are at stake such as in search
and rescue operations, environmental sensing, or reconnaissance. Existing solutions are often costly,
require nearly continuous monitoring from a base station, and/or only deploy small numbers of robots
with limited geographical coverage, therefore severely reducing their effectiveness. One solution to
this problem is to introduce a distributed swarm-based system. With multiple, structurally identical
lesser robots working as a group, a swarm is capable of performing tasks beyond the capabilities of
a single robot. Such a system would significantly drive down the cost of deployment as each robot
only requires the most basic sensor equipment. It also allows the system to be scalable and possess
self-repairing abilities should several robots within the swarm fail. This translates to a much higher
reliability and reduced risk of mission failure.1

Several investigations on this issue have been considered.2, 3 Shao et al.2 consider a one-
leader constraint formation control, which produces a non-rigid formation control graph. It
employs adjacency and parameter matrices which simplifies the definitions of local leader-follower
relationships and the overall formation shape. However, non-rigid formation control does not allow the
formation shape to be maintained as the formation moves. The obstacle avoidance method considered
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is also insufficient in dealing with more complex obstacles and may cause robots to be trapped behind
obstacles. Formation control with both one-leader and two-leaders constraints was presented in.3

Their work focuses on how transitions between formations can be realized via a transition matrix.
How control graphs can be classified on the basis of the number of followers with one and two leaders
is also investigated. However, as in,2 they do not explain how one can select ideal formation shapes
in environments with obstacles.

We have also looked into several obstacle avoidance methods in this research. Obstacles are
regarded as virtual leaders in,4, 5 forcing robots to maintain a distance from obstacles, in a manner
similar to how the robots maintain formation shapes by keeping a distance from their Local Leaders
(LL). The downside is that the formation may no longer be rigid as robots may have to sever the
connections with their LLs in order to apply the distance constraints for the obstacles. A behavior-
based formation control is proposed in,6 where a swarm of robots navigates about obstacles simply
by rotating and scaling the overall formation. However, rotating a formation of nonholonomic robots
can be time consuming and inefficient. Kuppan et al. proposes that on detection of an obstacle,
the robot is elected as the temporary Formation Leader (FL), allowing it to steer the formation
away from the obstacle.7 The drawback with this approach is that selecting the temporary leaders
complicates the control process significantly when the formation detects multiple obstacles from
different directions. A semi-rigid obstacle avoidance approach is presented in,8 where the follower is
allowed to vary the angle constraint from the leader in order to steer clear of obstacles. The downside
with this approach is that robots are unable to tackle obstacles efficiently when they have two or more
LLs, with multiple distance constraints to abide by. Another technique is to utilize potential fields
where interaction between robots and obstacles are represented by repulsive and attractive forces.9–12

However, the algorithms only considered the distances of the obstacles in determining the magnitude
of repulsive forces, which may cause the robots to slow down excessively even when the obstacles
are not necessarily blocking them.

The common problem with the techniques discussed above is that they have not been implemented
on real robots,1–6, 9–12 where issues such as sensor noise and kinematics must be considered in order
to accurately evaluate the performance of control mechanisms for the robots. The second problem
is the negligence of additional constraints posed by nonholonomic robots. The solutions to obstacle
avoidance are presented as net force vectors in,10–12 indicating the instantaneous velocity that a
robot should take. However, nonholonomic robots are not capable of switching from one state to
another arbitrary one immediately. In our work, we have explicitly detailed the algorithm and its
output in meaningful physical terms such as velocities and angular velocities, which can be included
effortlessly in the control systems of existing robots. We have implemented the control mechanisms
on the eBug multi robot system13 to properly evaluate the algorithm. Parameters for the algorithm
were determined more conservatively to minimize the impact of issues such as sensor noise, wheel
slippage and a noisy wireless channel.

In Section 2, the proposed formation control method is described. Section 3 introduces the
implemented obstacle avoidance techniques, followed by a discussion of formation rebuilding in
Section 4. The performance of the algorithm measured from conducted experiments is discussed in
Section 5. Section 6 concludes the paper as well as the possible future research work that can be
done.

2. Formation Control
The proposed formation control algorithm is an improvement on the work presented in.14 It employs
graph theory based formation structures that branches out from a FL to Follower Robots (FR), which
are each assigned LLs according to their allocated positions in the formation, or Formation Position
(FP).

The inter-robot relationships are described with tree diagrams or directed graphs,2, 15, 16 as shown
in Fig. 1. If a path from the root (FL) to every vertex (all the other robots) exists, it implies that all
the robots are connected and are part of the formation. The directed edges indicate the direction of
the connection to be made. In other words, every FR only needs to know the positions of the LLs
relative to itself, in order to maintain the formation. The formation shape is formed by assigning
distance and angle constraints from the LLs, to every FP. To maintain the formation shape as the
formation moves, rigid graphs are used in the formation structure. A rigid graph can be thought of
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Fig. 1. Inter-robot relationships are represented as a directed graph, where the directed edges go from the
follower robots to their local leaders.

Fig. 2. Reducing discrepancy between FR and its FP with respect to LL.

as a network of agents which are interconnected to one another by rigid bars of length defined by
the assigned distance constraints to each agent.17 To further reduce the complexity of the network,
formation structures have been designed to be minimally rigid, such that if any edge is removed from
the graph, the formation will no longer be rigid.17 Anderson et al. state that the number of edges
(connections) required is defined by the number of vertices (robots) using

ne = 2nv (1)

where ne and nv are the number of edges and number of vertices respectively.

2.1. Formation position assignment
Before the formation control system can take effect, the robots have to be assigned to FPs. First, the
robot that is the closest to a predefined destination is automatically assigned as the FL, or the first
FP. This positions the other robots behind the FL relative to the destination, allowing the other robots
to easily get to their assigned FPs as the FL starts moving.9 Alternatively, if no destination has been
predefined, any robot can be elected as FL under the discretion of the user.

Next, the remaining robots are assigned to FPs sequentially, starting with the second FP whose LL
is the FL. Robots are assigned to FPs based on their individual character costs, which are the Euclidean
distance errors, derror between their current positions and a FP.18 An important improvement over
the work by Chen is that we only require local information to calculate the cost, rather than using
global coordinates, as seen in Fig. 2. These FPs are determined by predefined distance and angle
constraints (which are dependent on the starting formation shape chosen by the user) relative to the
corresponding LLs for the FPs. To begin, a robot first detects the distances and angles of the LLs
relative to it. If neither LLs can be detected, i.e. beyond the detection range of the FR, Rscan, it will
not be able to content for this FP. It then calculates the cost to the FP using equations by Barca
et al.14

eforward = lconstraint cos(θconstraint) − lactual cos(θactual) (2)

enormal = lconstraint sin(θconstraint) − lactual sin(θactual) (3)

derror =
√

e2
forward + e2

normal (4)
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where

eforward : distance error in direction of formation movement,
enormal : distance error in direction perpendicular to formation movement,
lconstraint : required distance between robot and LL for this FP,
lactual : actual distance between robot and LL for this FP,
θconstraint : required angle from robot to LL for this FP,
θactual : actual angle from robot to LL for this FP, and
derror : Euclidean distance error from robot to this FP.

Note that the angles under the formation control section are all measured with respect to the opposite
direction of where the formation is heading. This process is performed by every robot that has not
been assigned a FP and the FP is finally assigned to the robot with the lowest derror for that FP.
If a FP requires two LLs, the robots content for the FP with the average derror from both LLs.
The aforementioned steps are then repeated for the next FP, with its associated distance and angle
constraints. The assignments of FP are recorded in an adjacency matrix which describes the leader-
follower relationships, and a parameter matrix which stores the assigned constraints. These matrices
are described in detail by.2, 3

2.2. Control system
To maintain the shape of the formation as it moves, the FRs first calculates the eforward and enormal to
their FPs (Eqs. (2) and (3)). These values are then used by a Velocity Controller (VC) and an Angular
Velocity Controller (AVC) to calculate the required responses for reducing derror between a FR and
its FP.

2.2.1. Velocity controller. Velocities are calculated with a non-linear controller

v =
{

Vleader log10(eforward + 1) cos(θdesired − θheading) if eforward ≥ 0
Vleader log10(−eforward + 1) cos(θdesired − θheading) otherwise

(5)

where

v : velocity output,
Vleader : maximum velocity of formation leader,
eforward : distance error in direction of formation movement,
θdesired : angle of FP measured from FR, and
θheading : heading angle of FR,

to provide rapid convergence towards the desired FP. A cosine multiplier which considers the angle that
the FR faces is added to reduce unnecessary movements in the direction perpendicular to formation
movement.

2.2.2. Angular velocity controller. The AVC has two states, which are

ω =
{

Kωα if derror > Rdzone

Kω

(
β − (β − α) derror

Rdzone

)
otherwise

(6)

with

α = θdesired − θheading (7)

β = 180◦ − θheading (8)
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where

θdesired : angle from FR to its FP,
θheading : heading angle of FR,
ω : angular velocity output,
Kω : angular velocity constant for angular velocity control,
derror : Euclidean distance error from FR to the its FP, and
Rdzone : radius of dead zone.

When the FR is at a Rdzone distance away from its FP, the controller steers the FR directly towards
the FP. However, as it enters the dead zone, the controller attempts to steer the FR in the direction
that the formation is travelling in. This second state is introduced to reduce the oscillations that arise
from the tendency of the AVC to overcorrect the heading angle of the FR when it is too close to the
FP. Rdzone should only be slightly wider than the diameter of a FR as the main function of AVC is to
maintain the formation shape by keeping the FR as close to its FP as possible.

3. Obstacle Avoidance
Our implementation of obstacle avoidance technique is detailed in this section. We first describe the
basic potential field based technique, followed by how it can be used to support formation scaling and
morphing, wall following and escaping from local minima. To better explain our obstacle avoidance
technique, we define three new zones around the robot with the radii being

Ravoid : robot starts avoiding detected obstacles,
Rwf : robot takes more evasive measures such as wall-following, and
Rstop : robot stops entirely as the output of VC is 0.

Obstacles detected in these zones will trigger the robot to behave differently as described above. The
radii of the three zones are dependent on the size of the robot and the formation velocity to ensure
that the robots have sufficient distance to perform obstacle avoidance.

3.1. Potential field based obstacle avoidance
The potential field based obstacle avoidance technique in9–12 considers two parameters:

1. how close the obstacle is to the robot (magnitude of repulsion force), and
2. where the obstacle is located in terms of angle relative to the robot (direction of repulsion force).

These parameters result in a net repulsion force with a magnitude and a direction. However, it is
difficult to expect a nonholonomic robot to react to the repulsion force by moving in the repulsed
direction instantaneously. Hence, in the following subsections, we provide the details of some
modifications to the VC and AVC that allow a nonholonomic robot to react as if there is a repulsion
force acting on it. Note that these modifications are only applied when the robot is required to perform
obstacle avoidance.

Obstacle avoidance is performed in two stages by considering the distance, dobject and the angle of
an object, θobject measured from the robot. The stages are:

1. Reducing velocity, and
2. Turning away

An object is deemed blocking the robot if it is within Ravoid from the robot, and is in the forward 180◦
arc of the robot. Forward is defined to be either at the front of the robot if the VC output is positive,
or back of the robot if the VC output is negative. In the first stage, the robot only considers the closest
object and reduces its velocity with a multiplier

vmultiplier1 = 1 − e
− Krise

Ravoid
(dobject−Rwf ) (9)
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Fig. 3. Measurements taken for obstacle avoidance.

where

Krise : exponential curve rising time constant,
Ravoid : radius of obstacle avoidance zone,
dobject : distance between robot and closest object, and
Rwf : radius of wall-following zone.

However, the reduction in velocity can be excessive if the object is located nearer to the side of the
robot rather than blocking it directly in the forward direction. Hence, a second multiplier is added to
dampen the effect of the first multiplier:

vmultiplier2 = |θobject|
90◦

(
1 − vmultiplier1

vmultiplier1

)
+ 1 (10)

where θobject is the angle of the closest object relative to the robot, with its value bounded by

−180◦ < θobject ≤ 180◦ (11)

Unlike in formation control, θobject is measured with respect to the centre of the robot’s forward arc
(see Fig. 3) as obstacle avoidance is performed on an individual basis rather than collectively as a
formation. If an obstacle is located at the side of the robot, with θobject being 90◦, vmultiplier2 would
have a value of 1

vmultiplier1
, hence completely negating the deceleration caused by vmultiplier1. The final

velocity is then calculated using

vfinal = v · max (0, vmultiplier1 · vmultiplier2) (12)

where v is the output of the VC.
The next step is to steer the robot away from the object. When avoiding an object, the robot

disregards the output of the AVC. Instead, for every object within Ravoid, the robot uses the θobject to
calculate a ωavoid,i with the equation

ωavoid,i =
{

90◦ − θobject,i if 0◦ < θobject,i ≤ 180◦

−90◦ − θobject,i otherwise.
(13)

This is further improved upon by considering the davoid in calculating the ωavoid,i, which gradually
turns the robot away more as the object approaches (14). The robot then finally calculates and turns
away with an angular velocity of ωfinal using

ωmultiplier,i = dobject,i

(
ωmin − ωmax

Ravoid

)
+ ωmax (14)

ωfinal =
n∑

i=1

ωmultiplier,i · ωavoid,i (15)
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where

θobject,i : angle from robot to object i,
dobject,i : distance between robot and objecti,
ωmin : minimum angular velocity output,
ωmax : maximum angular velocity output,
Ravoid : radius of obstacle avoidance zone, and
ωfinal : final angular velocity output.

3.2. Formation scaling
Formation scaling reduces the size of the formation when confronted with external objects. This
reduces the repulsive forces experienced by the formation and allows the robots to maintain their
original formation shape for a longer period. Scaling is triggered whenever any robot detects obstacles
within Rscan. This information is conveyed to all other robots within the formation and the distance
constraints on the robots are continuously reduced by a factor of Kscale till a minimum value of
Kscale min is reached, as expressed by

lconstraint(t + 1) =
{

lconstraint(t) · Kscale if lconstraint(t)
Kscale min

> lconstraint(0)

lconstraint(t) · Kscale min otherwise
(16)

where

lconstraint(t) : required distance between robot and its LL at time t,
Kscale : rate at which formation size scales, and
Kscale min : minimum formation scaling factor.

Kscale min is selected such that the robots do not get within Ravoid of other robots. When no obstacles
are detected, the process is reversed using

lconstraint(t + 1) =
{

lconstraint(t)
Kscale

if lconstraint(t)
Kscale

< lconstraint(0)

lconstraint(0) otherwise
(17)

Kscale governs the rate at which the formation size scales, hence its value is empirically determined
based on the environment layout.

3.3. Formation morphing
When subjected to environments with obstacles, repulsive forces from objects cause the robots
to deviate from their ideal FPs even with formation scaling. This may lead to some FRs being
disconnected from their LLs. Formation morphing is introduced as a fail-safe should formation
scaling fails to maintain the formation structure. The use of character costs and character set matrix
for every formation shape forms the basis of the implemented formation morphing solution as in.17

Whenever a robot detects an object within Ravoid, it broadcasts a signal to trigger the consideration
for formation morphing. The robots go through the same sequence as when assigning FPs (see Section
2.1) multiple times for all predefined formation shapes. For every formation shape, the distance error
to ideal FPs of each robot is shared so that the total distance error for every formation shape is
calculated and recorded. The robots then select the shape that has the lowest distance error and
the new FP constraints are assigned to them. To ensure that formation morphing occurs successfully
without the risk of losing any robots, a transition matrix is applied to the adjacency matrix as described
in.3

However, experiments show that the formation may alternate rapidly between two formation shapes
which have similar total distance errors. Two mechanisms are introduced to prevent this issue. The
first mechanism is a morph timer which prevents the formation from morphing to another shape if
the elapsed time of the morph timer is less than Tmorph. This timer resets whenever the formation
successfully morphs to a different shape. The second mechanism makes use of hysteresis when
deciding on a new formation shape to morph to. The formation will only morph to a new shape if the
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Fig. 4. Situation where a robot may not be able to move forward.

(a) (b) (c)

Fig. 5. Finding θescape: (a) search begins from the centre of the front arc and gradually expands in both left and
right directions by one resolution each iteration, (b) the aim is to find an angle where all obstacles within Ravoid
are beyond �side, and (c) this angle is set to be θescape.

total distance error of the current shape is greater than the total distance error of the new shape by a
factor of Kmorph. Both Tmorph and Kmorph are determined empirically and are proportional to the size
of the formation.

3.4. Wall following
A robot may occasionally find itself in a situation where it is facing roughly 90◦ away from its FP,
and that there are obstacles in between the robot and its FP, as depicted in Fig. 4. While the AVC tries
to turn the robot towards its FP, the obstacle would in return push the robot in the opposite direction.
Coupled with the small output from the VC, the robot is unable to move to its FP. To overcome this,
a wall following technique based on19 has been implemented. When an obstacle is detected within
Rwf and sits beyond a threshold angle, �side (measured from the centre of the forward arc), the robot
is forced to travel in the forward direction at Vlock, which a sufficiently small value which allows it to
navigate around tight corners. However, should any obstacle angles falls within �side or the obstacle
distance is within the safety margin of Rstop from the robot, wall following will be aborted to prevent
potential collisions. �side should be set such that the robot has a sufficiently wide opening to move
forward without colliding into the obstacles when they are initially detected at Rwf .

3.5. Escaping local minima
There is always a possibility that the robot will be trapped in local minima, where it is unable to move
towards its FP. To address this issue, a robot first has to recognize that it is trapped by monitoring
its velocity constantly. Should the velocity fall below a threshold value, Vtrap (close to 0) for a time,
Ttrap, the robot assumes that it is trapped and attempts to free itself. The hold time is introduced as
the robot’s velocity can momentarily fall below Vtrap when it is performing a zero radius turn, rather
than being trapped. Hence, Ttrap is set to be slightly greater than the time the robot takes to perform a
180◦ turn to prevent the misinterpretation.

It first finds an angle that is clear of obstacles. Starting with the centre of the robots front arc defined
as 0◦, the sequence checks for the angles of all surrounding obstacles that are within Ravoid, and
determine if they are all beyond an angle, �side, which is measured from the current angle of interest
(0◦). If the condition is not satisfied, the robot will then consider the next two angles which are 1◦
further away on both left and right sides, from the centre of the front arc (±1◦, ±2◦, . . . , ±179◦, 180◦).
This process is repeated until an angle, θescape, meets the condition where all obstacles are beyond
the �side threshold. The robot then turns towards θescape and is forced to move at a positive velocity
which is the magnitude of its last calculated vfinal. It does this for a period, Tescape, after which the
robot would assume that it is no longer trapped and resumes running the VC. The process is illustrated
in Fig. 5. The value of Tescape is dependent on the layout of the obstacle course. It should be long
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Fig. 6. Experimental robot eBug. It has a diameter of 120 mm and is equipped with two stepper motors driving
two wheels independently. Further details about its hardware and firmware can be found in.13

enough to prevent the robot from travelling back to the same local minimum but short enough so that
the robot can still rerun the formation control system in time to catch up with the rest of the formation.

4. Formation Rebuilding
The formation is capable of rebuilding itself should the number of operating robots changes. The
term rebuild is defined as the ability for the formation to reform the last formed formation shape
by considering the number of operating robots at any time instant. Rebuilding can be done without
affecting the whole formation to increase scalability. This is achieved by running the sequence for
assigning FPs (see Section 2.1) starting from a particular FP which is determined by one of the two
following conditions.

Firstly, when a new robot is added to the formation, the new robot detects the closest neighboring
robot and the FP that it is assigned to. The new robot then signals the formation to rebuild itself from
that FP onwards. However, if the FP belongs to the FL, this new robot instead considers the next
closest FP to prevent a change in leadership.

The second condition is met when a robot fails. If it is a LL, its FRs will be able to detect the
failure and signal the formation to rebuild itself. The FP which the robot was previously assigned to
is the point where the rebuilding starts.

5. Experiment Design and Results
The algorithm was implemented on a group of three eBugs, which are ground moving nonholonomic
robots (Fig. 6).13 The eBugs’ coordinates are tracked by using the BCH marker system,20 with unique
markers located at the top of each eBug for detection by an overhead camera. A base station was used
for algorithm computation as the eBugs themselves do not have sufficient processing power yet. Each
eBug is treated as a separate process by the base station for a decentralized approach and movement
commands are sent to the eBugs wirelessly via ZigBee packets. The FL was controlled through a
funnel-shaped obstacle course (Fig. 7), which has a dimension of 1 m × 2 m and contained obstacles
labelled with the BCH marker system. The use of the BCH marker system on both the eBugs and
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Table I. Parameters for implementation specific variables.

Variable Value Variable Value Variable Value

lconstraint(0) 360 mm Rstop 5 mm Tmorph 0.5 s
Vleader 30 Krise 10 Kmorph 1.5
Kω 1.5 ωmin 1 �side 60◦
Rdzone 100 mm ωmax 2.5 Vlock 70 mm/s
Ravoid 100 mm Kscale 0.999 Ttrap 1.5 s
Rwf 20 mm Kscale min 0.5 Tescape 10 s

Fig. 7. Equilateral triangle formation going through a funnel-shaped obstacle course.

(a)Line (b)Equilateral triangle (c)Right-angled triangle

Fig. 8. Formation shapes. (a) Line. (b) Equilateral triangle. (c) Right-angled triangle.

obstacles enables the emulation of laser range finders with a 360◦ field of view on the eBugs, allowing
the eBugs to artificially detect the range and angle of other objects surrounding them. As the FL was
operated through the obstacle course, the FRs followed autonomously using the algorithm.

Fig. 8 shows the three different starting formation shapes that were considered. The performance
of the algorithm was measured in terms of (i) average deviation from ideal FP and (ii) the time taken
for formation to go through the obstacle course and rebuild itself to the starting shape. We looked into
the robustness of the algorithm in three criteria: (i) sensor noise, (ii) path width and (iii) formation
velocity. The corresponding variables in the aforementioned criteria are systematically varied in the
experiments until the formation breaks, which is when a FR fails to detect any of its LL within Rscan.
The values used for implementation specific variables in the experiments are presented in Table I.

5.1. Robustness to sensor noise
Accuracy of the range sensors may deteriorate if the obstacle is too close to the sensor or the surface
property is non-ideal. This adversely affects the performance of our distributed algorithm where
every robot is highly reliant on local information such as the measured distances of nearby objects.
In this experiment, noise was either added to or subtracted from (determined randomly with a 50%
probability) the measurements of the range sensors as described by the equation

dobject = dactual ± N (18)

where

dobject : measured distance between robot and object,
dactual : actual distance between robot and object, and
N : maximum amount of noise in percentage.
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Fig. 9. Noise performance of the algorithm. (a) Average distance between actual and ideal FPs. (b) Time taken
to complete the obstacle course.

The amount of noise was also randomly determined, with a value between 0 and η · dactual. η is
increased at 5% intervals until the formation breaks. The experiment is performed 30 times for every
value of η.

Fig. 9 presents the results of the experiment, showing an increasing trend in the deviation from
ideal FPs and completion time. The robots tend to move about indecisively when the measured object
distances were fluctuating randomly. At 20% noise level, the FRs in the equilateral and right-angled
triangle formation often lost tracked of their LLs even before entering the funnel, breaking the
formation. The line formation finally broke at a noise level of 30%. These results are well beyond
our expectations and the limitations of most range sensors. An interesting observation was made with
the presence of noise. Near the exit, the obstacles that were placed symmetrically exerted repulsive
forces on the robots with a net vector in the opposite direction of formation movement. This stopped
the robots from moving forward or turning. Addition of noise occasionally helped to create a net
repulsive force pointing slightly away from the opposite of formation movement, allowing the robots
to go through the narrow point.

5.2. Robustness to path width
The second experiment tested the ability of the formation go through tightly confined areas without
breaking the formation and losing any robots. Starting at 240 mm, which is twice the diameter of
an eBug, the path width is reduced at 20 mm intervals for each set of experiment. The algorithm is
tested 30 times for each path width and the path width is continuously reduced until the formation
consistently breaks.

As the path width narrowed, the FRs were repelled by the obstacles and eventually formed a line
formation to go through the exit. This explains the superiority of the line formation over the other
two shapes as illustrated in Fig. 9, as the FRs had to travel extra distances to get to the new FPs
after morphing. Theoretically, the smallest gap that the formation is able to go through is equal to the
diameter of the robot plus the safety margin of 2Rstop, or 130 mm. Fig. 10 shows that the smallest
width that the formation managed to go through is 160 mm. At that point, the FRs could no longer
morph quickly enough to keep up with the FL, causing the equilateral and right-angled triangle
formations to break. The line formation finally broke when the path width was set at 140 mm, which
is close to the diameter of the robots. At this width, the robots spent considerable amount of time to
wiggle their way through the exit due to a low VC output, which causes the FRs to lag behind the
FL.

5.3. Robustness to formation speed
Lastly, we tested the algorithm’s ability to keep up with the FL at increasing movement speeds while
maintaining the formation shape. It is important to investigate this issue as the algorithm is intended
to be deployed onto different types of robots and missions, each with its own operation speed. In our
experiment, we started by having the FL travelling at 70 mm/s and slowly increased its velocity at
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Fig. 10. Performance of the algorithm in tightly confined spaces. (a) Average distance between actual and ideal
FPs. (b) Time taken to complete the obstacle course.
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Fig. 11. Performance of the algorithm as formation speed increases. (a) Average distance between actual and
ideal FPs. (b) Time taken to complete the obstacle course.

intervals of 20 mm/s, with each interval tested 30 times. This formation speed is allowed to increase
until the formation broke.

The most immediate observation in Fig. 11 is how quickly the average deviation from ideal FP
scaled up with speed. This is understandable as Vleader was optimized for the default speed of 70
mm/s. Also noted is the decrease in completion time as the FL increases its speed. The right-angled
triangle formation was the first to break at a speed of 110 mm/s. Triangle formation fared better due
to the shape of the funnel which resembles a triangle shape, hence the FRs were able to scale down in
size first before morphing, significantly reducing the deviation from FPs at higher speeds. Line and
triangle formations eventually broke at the speed of 150 mm/s as the VC was unable to cope with the
large derror.

6. Concluding Remarks
A novel adaptive formation control algorithm for wireless mobile robot networks has been created.
The algorithm allows a multi robot system to preserve its formation in the presence of obstacles.
The process of forming and maintaining different formation shapes throughout navigation has been
thoroughly investigated. A robust obstacle avoidance approach has also been incorporated into the
algorithm, allowing the formation to go through obstacle courses without any collisions. The robots
are also able to maintain formation structures consistently via formation scaling and morphing in
order to avoid obstacles. Results show that the FRs deviate from their ideal FP by as low as 96
mm, which is less than the diameter of our robots. Our future research will address how (i) the
distance and angle constraints can be determined autonomously based on the environment and the
instantaneous number of robots, and (ii) how formation scaling and morphing can be made more
scalable.
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1. J. C. Barca and Y. A. Şekercioğlu, “Swarm robotics reviewed,” Robotica (2012).
2. J. Shao, G. Xie and L. Wang, “Leader following formation control of multiple mobile vehicles,” IET Control

Theory Appl. 1(2), 545–552 (2007).
3. J. P. Desai, J. P. Ostrowski and V. Kumar, “Modeling and control of formations of nonholonomic mobile

robots,” IEEE Trans. Robot. Autom. 17(6), 905–908 (Dec. 2001).
4. M. N. Soorki, H. A. Talebi and S. K. Y. Nikravesh, “A Robust Dynamic Leader-Follower Formation

Control with Active Obstacle Avoidance, IEEE International Conference on Systems, Man, and Cybernetics,
Anchorage, Alaska, USA (2011) pp. 1932–1937.

5. M. N. Soorki, H. A. Talebi and S. K. Y. Nikravesh, “A Robust Leader-Obstacle Formation Control,” IEEE
International Conference on Control Applications (2011) pp. 489–494.

6. S. Hou, C. Cheah and J. Slotine, “Dynamic Region Following Formation Control for a Swarm of Robots,”
IEEE International Conference on Robotics and Automation (2009) pp. 1929–1934.

7. C. R. M. Kuppan, M. Singaperumal and T. Nagarajan, “Distributed Planning and Control of Multirobot
Formations with Navigation and Obstacle Avoidance,” IEEE Recent Advances in Intelligent Computational
Systems (2011) pp. 621–626.

8. A. S. Brandao, M. Sarcinelli-Filho, R. Carelli and T. F. Bastos-Filho, “Decentralized Control of Leader-
Follower Formations of Mobile Robots with Obstacle Avoidance,” IEEE International Conference on
Mechatronics (2009) pp. 1–6.
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