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Scaling laws for the thrust production and power consumption of a purely pitching
hydrofoil in ground effect are presented. For the first time, ground-effect scaling laws based
on physical insights capture the propulsive performance over a wide range of biologically
relevant Strouhal numbers, dimensionless amplitudes and dimensionless ground distances.
This is achieved by advancing previous scaling laws (Moored & Quinn (AIAA J., 2018,
pp. 1–15)) with physics-driven modifications to the added mass and circulatory forces to
account for ground distance variations. The key physics introduced are the increase in the
added mass of a foil near the ground and the reduction in the influence of a wake-vortex
system due to the influence of its image system. The scaling laws are found to be in good
agreement with new inviscid simulations and viscous experiments, and can be used to
accelerate the design of bio-inspired hydrofoils that oscillate near a ground plane or two
out-of-phase foils in a side-by-side arrangement.

Key words: swimming/flying, propulsion

1. Introduction

Unsteady ground effect is exploited by some rays and flatfish to improve their cost
of transport or cruising speed when swimming near the ocean floor or walls (Blake
1983; Webb 1993, 2002; Nowroozi et al. 2009; Blevins & Lauder 2013). There is a
growing body of research characterizing unsteady ground effect through theory, numerics
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and experiments. Tanida (2001) developed an analytical model for a fluttering plate in a
bounded flow, and Iosilevskii (2008) investigated weak ground effect of a heaving wing,
respectively. More experiments and numerical models have investigated unsteady ground
effect for rigid (Quinn et al. 2014c; Mivehchi, Dahl & Licht 2016; Perkins et al. 2017)
and flexible (Blevins & Lauder 2013; Quinn, Lauder & Smits 2014a; Fernández-Prats
et al. 2015; Dai, He & Zhang 2016; Park, Kim & Sung 2017; Zhang, Huang & Lu 2017)
oscillating foils and wings at moderate ground distances, which are biologically relevant
distances and applicable for the design of bio-inspired devices. The collection of this
work has concluded that unsteady ground effect improves thrust production with little
or no change in the efficiency. Additionally, Kurt et al. (2019) reported the presence of
a stable equilibrium altitude for a freely swimming pitching foil in the presence of a
ground plane that was previously observed in the lift force of constrained flapping foils
both experimentally (Mivehchi et al. 2016; Perkins et al. 2017), and numerically (Quinn
et al. 2014c; Kim et al. 2017). Furthermore, they propose a thrust enhancement of up to
17 % with a less than 2 % enhancement in the efficiency of a purely pitching foil at its
equilibrium altitude.

To understand the origins of thrust and efficiency in unsteady ground effect, we can
rely on scaling laws. The basis of many recent scaling laws lies in classic unsteady linear
theory. The theories of Theodorsen (1935, pp. 413–433), Garrick (1936, pp. 419–427)
and von Kármán & Sears (1938) have become particularly useful in this pursuit due
to their clear assumptions (incompressible and inviscid flow, small-amplitude motions,
non-deforming, and planar wakes) and the identification of the physical origins of their
terms. For instance, these theories decompose the forces acting on unsteady foils into
three types: added mass, quasi-steady and wake-induced forces. Theodorsen’s theory
was extended by Garrick (1936, pp. 419–427) by accounting for the singularity in the
vorticity distribution at the leading edge to determine the thrust force produced and
the power required by such motions. By following Garrick (1936, pp. 419–427), Dewey
et al. (2013), Quinn, Lauder & Smits (2014b) and Quinn et al. (2014c) scaled the thrust
forces of pitching and heaving flexible panels with their added mass forces. Moored &
Quinn (2018) advanced this previous work by considering the circulatory and added mass
forces of self-propelled pitching foils as well as wake-induced nonlinearities that are not
accounted for in classical linear theory (Garrick 1936, pp. 419–427). It was shown that
data generated from a potential flow solver and from experimental measurements (Ayancik
et al. 2019) were in excellent agreement with the proposed scaling laws. Similarly,
Floryan et al. (2017) considered both the circulatory and added mass forces and showed
excellent collapse of experimental data with their scaling laws for the thrust and power
of a heaving or pitching two-dimensional rigid foil. While these studies have provided
great insights into the origins of unsteady force production, they were limited to isolated
propulsors.

Here, we advanced the scaling laws for isolated purely pitching propulsors developed
by Moored & Quinn (2018) to account for the proximity to the ground. These scaling
laws provide new insight into the underlying physics of unsteady ground effect and are
verified through simulations and experiments. Furthermore, we show that the added mass
forces of the core two-dimensional scaling relations (Moored & Quinn 2018) can be
modified by accounting for the increase in the added mass of an object near a ground
plane derived from classical hydrodynamic theory (Brennen 1982), and the circulatory
forces can be modified by accounting for bound and wake vortex-body interactions in
ground effect. The newly developed scaling laws offer a physical rationale for the origins of
force production, power consumption and efficient unsteady swimming in proximity to the
ground.
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Variables/parameters Simulations Exp. at UVA (EXP1) Exp. at Lehigh U. (EXP2)

A∗ = A
c 0.15 ≤ A∗ ≤ 0.6 0.24 ≤ A∗ ≤ 0.52 0.25 ≤ A∗ ≤ 0.61

k = fc
U 0.1 ≤ k ≤ 2.0 0.55 ≤ k ≤ 1.28 0.77 ≤ k ≤ 1.02

St = fA
U 0.15 ≤ St ≤ 0.60 0.18 ≤ St ≤ 0.44 0.26 ≤ St ≤ 0.63

D∗ = D
c 0.3 ≤ D∗ ≤ 2.0 0.24 ≤ D∗ ≤ 1.665 0.25 ≤ D∗ ≤ 2.6

A ∞ 3 with end-plates 2 with end-plates
Re = Uc

ν
∞ 13 600 9000

Table 1. Numerical and experimental variables and parameters. The aspect ratio isA = s/c where s is the
span length of a hydrofoil, and the Reynolds number is Re = Uc/ν where ν is the kinematic viscosity. The
first experiments were performed at the University of Virginia (UVA), while the second experiments were
performed at Lehigh University (Lehigh U.).

2. Methods

Potential flow simulations and water-channel experiments were conducted on hydrofoils
in and out of ground effect. The details of the hydrofoil geometry and kinematics, as well
as the numerical and experiment methods employed, are given below.

2.1. Hydrofoil geometry and kinematics
The hydrofoils used throughout this study have a rectangular planform shape, either a
10 % or 7 % thick (see §§ 2.2 and 2.3 for more details) tear-drop cross-section (Quinn
et al. 2014c) with a chord length of c = 0.095 m and an effectively infinite aspect ratio.
The hydrofoils were actuated with sinusoidal purely pitching motions about their leading
edge of θ(t) = θ0 sin(2πft), where θ0 is the pitching amplitude, f is the frequency and t
is the time. Here, the reduced frequency can be defined as, k ≡ fc/U, and the Strouhal
number, St ≡ fA/U, where U is the free-stream speed and A is the peak-to-peak amplitude
of motion, that is, A = 2c sin θ0. The amplitude of motion is reported in its dimensionless
form as A∗ = A/c and the dimensionless ground distance is reported as D∗ = D/c, where
D is the distance from the leading edge of the foil to the ground plane. The input variables
used are summarized in table 1.

For the experiments and the simulations, the time-averaged thrust and power coefficients
can be non-dimensionalized by the added mass forces and added mass power from
small-amplitude theory (Garrick 1936, pp. 419–427) or by dynamic pressure:

CT ≡ T̄
ρSpf 2A2 , CP ≡ P̄

ρSpf 2A2U
, Cdyn

T ≡ T̄
1/2ρSpU2 , Cdyn

P ≡ P̄
1/2ρSpU3 ,

(2.1a–d)

where ρ is the density of the fluid medium, Sp is the propulsor planform area, T̄ is the
mean thrust, P̄ is the mean power, and the two normalizations are related through the
Strouhal number by simple transformations: Cdyn

T = CT (2St2) and Cdyn
P = CP (2St2). The

propulsive efficiency can be defined as η ≡ CT/CP ≡ Cdyn
T /Cdyn

P .

2.2. Numerical method
To measure the foil’s hydrodynamic performance in unsteady ground effect, we used
a two-dimensional boundary element method (BEM) based on potential flow theory
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Surface plate
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Ground wall
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Servo motor
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(b)(a)

Figure 1. Schematic of (a) the constrained pitching hydrofoil apparatus at Lehigh University (Kurt et al.
2019), and (b) the constrained hydrofoil apparatus at the UVA.

where the flow is assumed to be irrotational, incompressible and inviscid. A 10 % thick
tear-drop cross-section was simulated. The potential flow problem reduces to finding
the perturbation potential that satisfies Laplace’s equation. This is accomplished by
distributing source and doublet elements over the body surface and doublet elements over
the wake surface. A no-flux boundary condition is satisfied on the body surface, an explicit
Kutta condition is applied at the trailing edge (zero vorticity at the trailing edge), the wake
element strengths satisfy Kelvin’s condition, and the wake elements are deformed with
the local velocity through a desingularized Biot–Savart law (Krasny 1986). The presence
of the ground is modelled using the method of images, which automatically satisfies the
no-flux boundary condition on the ground plane. Finally, the foil’s forces are determined
by integrating the pressure acting on the foil via the unsteady Bernoulli equation. For more
details on the numerical method see Moored (2018) and Moored & Quinn (2018).

Convergence studies found that the thrust and efficiency time-averaged over the tenth
cycle changes by less than 2 % when the number of body panels, Nb = 150, and the
number of time steps per cycle, Nt = 150, were doubled independently. The current study
considered the foil’s cycle-averaged thrust and efficiency as convergence metrics since
these are the prime output variables of interest. The computations were run over 10
flapping cycles and the time-averaged data are obtained by averaging the last cycle. For
all simulations there was less then 1 % change in the thrust and efficiency after seven
flapping cycles.

2.3. Experimental methods
New experiments (EXP1) were conducted in a closed-loop water channel (Rolling Hills
1520) at the UVA with a foil of aspect ratio 3, a 10 % thick tear-drop cross-section,
and a chord-based Reynolds number of 13 500. A nominally two-dimensional flow was
achieved by installing a horizontal splitter plate and a surface plate near the tips of the
hydrofoil (figure 1b). The gap between the hydrofoil tips and the surface/splitter plate
was less than 5 mm. Surface waves were also minimized by the presence of the surface
plate. An additional splitter plate was used instead of a tunnel sidewall to control the
boundary-layer thickness. A boundary-layer thickness of δ99 % ≈ 7.5 mm (δ99 %/c = 0.08)
was measured using particle image velocimetry at the position aligned with the leading
edge of the hydrofoil. A high-torque digital servo motor (Dynamixel MX64) drove a
stainless steel driveshaft (6.35 mm diameter) pitching the hydrofoil about its leading edge
with a prescribed pitching motion described in § 2.1. The output angle was verified by an
absolute encoder (US Digital A2K 4096 CPR). Eight Strouhal numbers were considered
in the range 0.18 ≤ St ≤ 0.44, five pitching amplitudes in the range 7 ◦ ≤ θ0 ≤ 15 ◦,
and thirteen dimensionless ground distances in the range 0.24 ≤ D∗ ≤ 1.66. Thus, the
dimensionless distance from the far sidewall of the water channel was greater than or equal
to 2. Each trial was repeated three times. The forces and moments were measured with
919 R1-4
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Ground-effect scaling

a six-axis force-torque sensor (ATI-Mini 40: SI-40-2). Then the streamwise forces were
time-averaged over 20 oscillation cycles to determine the net thrust, T̄ . The time-averaged
power, defined as P̄ = �τzθ̇ where τz is the pitching moment and θ̇ is the pitching velocity,
was also measured.

A second (EXP2) previously published experimental data set (Kurt et al. 2019) is
also used for further validation of the proposed scaling laws. Force measurements were
conducted in a recirculating water channel located at Lehigh University with a test section
that is 4.9 m long, 0.93 m wide and 0.61 m deep. The hydrofoil used in these experiments
had a rectangular planform shape, a 7 % thick tear-drop cross-section with an aspect
ratio of 2, and a chord-based Reynolds number of 9000. In order to obtain a nominally
two-dimensional flow, a splitter and a surface plate were installed to prevent flow around
the foil tips (figure 1a). An additional vertically oriented splitter plate was also installed on
the side of the channel to act as the ground wall. The hydrofoil was pitched about an axis
that was 3 mm (≈3 % of the chord) behind its leading edge by a servo motor (Dynamixel
MX-64AT). An incremental rotary encoder (US Digital E5) was used to track the angular
position of the foil throughout the prescribed motion defined in § 2.1. Three flapping
frequencies, f = 0.5, 0.75 and 1 Hz, and five dimensionless amplitudes, A∗ = 0.125,
0.25, 0.38, 0.49 and 0.61, were considered. The combination of these kinematic variables
resulted in a Strouhal range of 0.26 ≤ St ≤ 0.63. Additionally, the dimensionless ground
distance was varied within the range of 0.25 ≤ D∗ ≤ 2.6, where the distance between the
foil and the far sidewall of the channel was greater than or equal to six chord lengths. Net
thrust and pitching moment were measured from the foil by using a six-axis force sensor
(ATI Nano43). The power was measured in the same way as in EXP1. The thrust and
power were then time-averaged over 100 oscillation cycles. Each experiment was repeated
five times, and the reported data points were calculated as the mean of the time-averaged
values from these five trials.

Two experimental data sets were used in this study for two reasons: (1) when combined
together the data sets cover a wide range of Strouhal numbers, 0.18 ≤ St ≤ 0.63, nearly
matching the range of the simulations, and (2) showing collapse of the data from two
experiments done in different facilities, at different Re, and with different cross-sectional
shapes highlights the robustness of the scaling laws and their reliance on the underlying
physics. All of the parameters and ranges of variables for both EXP1 and EXP2 can be
found in table 1.

3. Scaling laws for a pitching foil in ground effect

Moored & Quinn (2018) introduced scaling relations for the performance of
two-dimensional, self-propelled pitching hydrofoils. Here, we will briefly review these
scaling laws since they will serve as the basis with which to apply novel modifications to
the added mass and circulatory forces to account for the proximity to the ground.

3.1. Scaling laws of an isolated swimmer
Moored & Quinn (2018) developed thrust and power scaling laws as a combination of the
added mass and circulatory forces from classical linear theory (Garrick 1936, pp. 419–427)
with additional nonlinear terms that are not accounted for in linear theory. For instance, the
thrust coefficient defined in (2.1a–d) is proposed to be proportional to the superposition
of three terms

CT = c′
1 + c′

2φ2 + c′
3φ3 (3.1a)
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with

φ2 = −
[

3F
2

+ F
π2k2 − G

2πk
− (F2 + G2)

(
1

π2k2 + 9
4

)]
, φ3 = A∗, (3.1b)

where c′
1, c′

2 and c′
3 are constants, and F and G are the real and imaginary components of

Theodorsen’s lift deficiency function, respectively (Theodorsen 1935, pp. 413–433). The
first and second terms represented by c′

1 and c′
2φ2 are the added mass and circulatory

thrust forces, respectively, from linear theory, while the third term represented by
c′

3φ3 is not accounted for in linear theory. The third term corresponds to a form drag
that is proportional to the time-varying projected frontal area of the foil that occurs
during large-amplitude pitching oscillations, and is not present in linear theory due to
a small-amplitude assumption. Moored & Quinn (2018) also proposed that the power
coefficient defined in (2.1a–d) is a linear superposition of three terms:

CP = c′
4 + c′

5φ5 + c′
6φ6 with: φ5 = St2

k

(
k∗

1 + k∗

)
, φ6 = St2k∗, (3.2)

where c′
4, c′

5 and c′
6 are arbitrary constants, and k∗ = k/(1 + 4St2). The first term (c′

4) is
the added mass power from linear theory. The second term (c′

5φ5) is a power term that is
not present in linear theory and develops from the x-component of velocity of a pitching
propulsor, which is neglected in linear theory due to the small-amplitude assumption. For
large-amplitude motions, this velocity does not disappear, leading to an additional velocity
component acting on the bound vorticity of the propulsor and creating an additional
contribution to the generalized Kutta–Joukowski force also known as the vortex force
(Saffman 1992). The third term (c′

6φ6) is also a power term that is absent in linear theory
and develops during wake deformation when the trailing-edge vortices are no longer planar
as assumed in the theory. As a result, the proximity of the trailing-edge vortices induce a
streamwise velocity over the foil and an additional contribution to the vortex force. In
short, the second and third terms are described as the large-amplitude separating shear
layer and vortex proximity power terms, respectively, and both terms are circulatory in
nature. For more details on the development of the two-dimensional scaling relations see
Moored & Quinn (2018).

3.2. Scaling laws modifications for ground effect
In presence of the ground, it is postulated that the added mass (and thus, the added mass
thrust and power terms), as well as the vortex proximity power term will be affected and
act as the primary drivers for the observed scaling trends with ground proximity. These
two modifications for a pitching foil are described below.

The close proximity of a solid boundary can cause a substantial increase in the added
mass of a pitching foil. This is due to the increase in fluid acceleration between the foil and
boundary (Brennen 1982). Classic hydrodynamic theory shows that for a circular cylinder
with radius r moving with a distance d from a solid boundary (when d/r < 1), the added
mass increases as the cylinder moves closer to the boundary. In this case, the added mass
can be represented as the addition of the isolated added mass with an additional added
mass due to the acceleration of flow in the presence of a solid boundary as

Ma = πρr2

⎡
⎣1 +

∞∑
j=1

1
22j−1

( r
d

)2j

⎤
⎦ . (3.3)
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D A/2

U/4f = lu U/4f = ld

A/2

Vind

Vind

uind

(b)(a)

Figure 2. Effects of the image vortex system. (a) The down-stroke negatively signed vortex slows down due
to the influence of its image vortex (lu > ld). (b) The induced streamwise velocity of the shedding vortex, uind ,
and its image. The induced velocity,

−→
V ind , from the pair is smaller than a comparable isolated vortex.

When a thin foil is far from a boundary and it pitches about its leading edge, the added
mass resisting the angular acceleration is precisely equal to that of a translating cylinder
when the characteristic acceleration of the foil is taken as the acceleration normal to the
midchord of the foil. Moreover, by using the Joukowsky conformal map, the radius of
a cylinder, r, far from a boundary, may be mapped to the chord length of a thin foil as
c = 4r. Consequently, we postulate that these two features will approximately hold true
as a pitching foil approaches a boundary such that the scaling of the added mass can be
determined from (3.3) with c = 4r. Therefore, we postulate that the added mass scales
as Ma ∝ ∑∞

j=0 cj(1/D∗)2j; however, we will verify this proposed scaling with potential
flow simulations. Furthermore, since the dimensionless distance of the foil to the ground
is limited by the maximum trailing-edge amplitude, we neglect the effect of higher order
terms of the series and assume the additional added mass contribution scales as the inverse
of the dimensionless distance squared and its coefficient is to be determined. For extreme
ground-effect problems, the higher order terms in the series are required. The added mass
terms of (3.1) and (3.2) can then be modified to

c′
1 = c1 + c2ζ2, c′

4 = c5 + c6ζ6 (3.4a,b)

where the ζ2 = ζ6 = (1/D∗)2 are the additional added mass contributions to the thrust and
power generation and the coefficients c1, c2, c5, and c6 are to be determined by minimizing
the squared residuals.

The second mechanism that significantly affects the power generation of a pitching foil
in proximity to the ground is circulatory in nature and is best explained using the method of
images, where each shedding vortex has an oppositely signed image vortex in the ground
(see figure 2a). The image vortex of the near-ground negatively signed vortex induces
an additional velocity at the trailing edge of the foil (see figure 2b) that acts to reduce the
effect of the near-ground vortex and needs to be accounted for in the vortex proximity term
in (3.2). The power contribution due to the proximity of the vortex is proportional to the
additional lift generated from the streamwise induced velocity as LProx ≈ ρsuindΓw based
on the Kutta–Joukowski theorem. The image vortex modifies this induced streamwise
velocity at the trailing edge as

uind = Γw
f
U

⎡
⎢⎢⎢⎣

Near-ground vortex︷ ︸︸ ︷
St

1 + 4St2
−

Image vortex︷ ︸︸ ︷
2

St + 4kD∗

1 + 4(4kD∗ + St)2

⎤
⎥⎥⎥⎦ , (3.5)
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dynCT
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1

2

3

0
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1.00
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(b)(a)

(d )(c)

Figure 3. Coefficient of thrust and power as a function of reduced frequency from the self-propelled
simulations. The marker colours going from black to white indicate D∗ from far to close-ground cases,
respectively, over the range of 0.3 ≤ D∗ ≤ 2.0. (a,c) Normalized based on dynamic pressure. (b,d) Normalized
based on added mass forces.

where the advection speed of the vortex pair is U and the Γw is the strength of the
trailing-edge vortex circulation, which remains the same as proposed in Moored & Quinn
(2018). This induced streamwise velocity decreases with decreasing ground distance due
to the near nullification of the induced velocity from the near-ground vortex by its image.

The thrust circulatory term is also affected by this image vortex; however, the forces
acting on purely pitching foils are dominated by added mass forces, and the circulatory
modifications are not significant. The scaling laws for the thrust and power coefficient of
a purely pitching foil in proximity to the ground are then

CT = c1 + c2ζ2 + c3ζ3 + c4ζ4, CP = c5 + c6ζ6 + c7ζ7 + c8ζ8 (3.6a)

with

ζ2 = ζ6 = 1
D∗2 , ζ3 = −

[
3F
2

+ F
π2k2 − G

2πk
− (F2 + G2)

(
1

π2k2 + 9
4

)]
, (3.6b)

ζ4 = A∗, ζ7 = St2

k

(
k∗

1 + k∗

)
, ζ8 = St2k∗ − 2kSt

(St − 4kD∗)
1 + 4(St − 4kD∗)2 . (3.6c)

The coefficients c3, c4, c7, and c8 are to be determined by minimizing the squared
residuals. The added mass and circulatory ground-effect terms are highlighted with bold
font and they vanish for large D∗. The scaling laws can also be written in terms of the
thrust and power coefficients normalized by dynamic pressure as

Cdyn
T = 2St2(c1 + c2ζ2 + c3ζ3 + c4ζ4), Cdyn

P = 2St2(c5 + c6ζ6 + c7ζ7 + c8ζ8).
(3.7a,b)

4. Results and discussion

The combination of computational input variables presented in table 1 leads to 665
two-dimensional simulations with a Strouhal number range of 0.1 ≤ St ≤ 0.6 and a
919 R1-8
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Figure 4. Scaling of the (a) thrust and (b) power coefficients for all motion amplitudes and ground
proximities considered in the numerical simulations.
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Figure 5. Scaling of the time-averaged thrust and power for (a,b) UVA data set (EXP1) and (c,d) Lehigh
University data set (EXP2) for all motion amplitudes and distances from the wall considered in experiments.
The dashed lines present 20 % margins of error.

reduced frequency range of 0.1 ≤ k ≤ 2.0. From these simulations, the thrust and power
coefficients as defined in (2.1a–d) are presented in figure 3. As in previous work (Quinn
et al. 2014c), thrust and power coefficients increase with amplitude and ground proximity
(figure 3).

Figure 4 presents the numerical data plotted as a function of the ground-effect scaling
laws proposed in (3.6) and (3.7a,b).

An excellent collapse of the data is observed showing that the scaling laws capture
the physics of unsteady ground effect in potential flows. The collapsed data can be seen
to follow a line of slope one for both the thrust and power within ±2 % of the predicted
scaling law. To achieve the collapse of the data, the equations for the thrust and power (3.6)
are cast in a linear regression form and the coefficients are determined by minimizing
the squared residuals using a gradient-descent-based algorithm. Two physically relevant
conditions were enforced in the optimization algorithm: the added mass coefficients
should always be positive, and the drag term in the thrust scaling should always be
negative. The coefficients in the thrust law are determined to be c1 = 2.99, c2 = 0.06,
c3 = −4.43 and c4 = −0.09, while for the power law they are c5 = 4.46, c6 = 0.14,
c7 = 25.2 and c8 = 14.13. Note that the magnitude of each term in the scaling laws cannot
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be deduced from the magnitudes of the coefficients alone. The magnitude of an entire term
must be considered since each term is formulated from various dimensionless variables of
different orders. See § 4.1 for more details.

To validate whether the scaling laws can also apply to viscous flows, two experimental
data sets are graphed against the scaling law predictions in figure 5. The first experimental
data set (EXP1) shows a collapse of the data to within ±20 % (thrust and power) of
the scaling-law prediction. The deviation of both thrust and power from the scaling-law
prediction could be attributed to viscous effects, such as leading-edge separation, or from
bending of the driving rod for the foil during high-frequency and high-amplitude motion,
neither of which is accounted for in the scaling laws. The experimentally determined
coefficients for the thrust are c1 = 5.03, c2 = 0.08, c3 = −5.72 and c4 = −4.66, and
for the power they are c5 = 4.313, c6 = 0.004, c7 = 0.11 and c8 = 30.91. The second
experimental data set (EXP2) shows a collapse within ±23 % (thrust) and ±12 % (power)
of the scaling-law prediction. The experimentally determined coefficients for the thrust
law are c1 = 4.29, c2 = 0.09, c3 = −14.33 and c4 = −0.52, and for the power law they
are c5 = 8.26, c6 = 0.03, c7 = 33.06 and c8 = 15.38.

Our scaling relations show a good collapse of the data for a wide range of Reynolds
number from Re = 9000 and Re = 13 600 in the experiments, to Re = ∞ in the inviscid
simulations. Here, it should be noted that the determined coefficients are different among
the experimental and numerical data sets, which highlights that the coefficients likely vary
with Re as observed by Senturk & Smits (2019). Although it is clear that the Reynolds
number can alter the coefficients, no additional terms need to be introduced to account
for data obtained at different Re. This supports the previous conclusion (Kurt et al.
2019) that the dominant flow physics in ground effect are inviscid in nature. The small
differences between the scaling-law agreement in the experiments and the simulations
may be attributed to secondary viscous effects.

The collapse of the data to a line of slope one for both numerical and experimental
cases confirms that the newly proposed scaling laws capture the dominant flow physics of
two-dimensional pitching propulsors in ground effect across a wide range of St, A∗ and
D∗.

4.1. Sensitivity of the scaling laws to the influence of the ground
Figure 6 shows the evolution of the scaling relations from the out-of-ground-effect scaling
presented in Moored & Quinn (2018) with the additions of the added mass and circulatory
in-ground-effect corrections in the present work. The thrust and power coefficients are
normalized by the added mass forces here to more clearly show the scaling variables’
sensitivity.

Figures 6(a) and 6(b) present the scaling of the thrust and power coefficients
for the numerical simulations of a purely pitching foil in ground effect using
the out-of-ground-effect scaling laws developed by Moored & Quinn (2018). The
dimensionless distance from the ground is mapped from white to black for the closest to
the furthest proximity. As expected, the out-of-ground-effect scaling laws do not capture
the thrust and power trends with variations in the ground distance. However, for a fixed
ground distance, the previous scaling laws do show collapse of the thrust and power data
to a straight line, indicating that the previous scaling laws can be used if the coefficients
are determined for a foil in ground effect at that distance.

Figures 6c and 6(d) show the contribution of the in-ground-effect added mass
amplification in the thrust (c2ζ2) and power (c6ζ6) scalings without any modification to
the circulatory terms. Figure 6(e), shows the in-ground-effect circulatory correction to
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Figure 6. The influence of the proposed ground-effect terms on the scaling laws of a purely pitching foil using
the numerical data. The dimensionless distance from the ground is mapped from white to black for the closest
to the furthest proximity. Previous out-of-ground-effect scaling laws for the (a) thrust and (b) power coefficients
(Moored & Quinn 2018). The addition of the ground-effect added mass correction only to the (c) thrust and
(d) power coefficients. The addition of the ground-effect circulatory correction only to the (e) power coefficient.
The bold terms on the figure labels are the terms examined in each case.

the power (c8ζ8) scaling without any modification to the added mass terms. To find the
addition of both the in-ground-effect added mass and circulatory corrections see figure 4.

Figure 6(c) shows that only a ground-effect added mass correction to the thrust is
necessary to achieve an excellent collapse of the data. Even though there is likely a
circulatory correction to the thrust forces as well, it is not a significant contribution to
the overall thrust forces. This is not surprising since it is known that a foil pitching about
its leading edge is dominated by added mass thrust forces (Quinn et al. 2014c; Floryan
et al. 2017; Moored & Quinn 2018). Figure 6(d) shows that the ground-effect added
mass correction to the power provides a satisfactory collapse of the data for low-power
coefficients, but tends to deviate from the scaling law at high-power coefficients. In
contrast, figure 6(e) shows that the ground-effect circulatory correction provides a good
collapse of the data for high-power coefficients while showing poor collapse for low-power
coefficients. As seen in figure 4, the combination of both effects shows an excellent
collapse of the data over the entire power coefficient range.
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In order to understand the quantitative impact of the newly proposed ground-effect
corrections on the thrust and power scaling laws, the magnitudes of entire terms must
be compared, not just the magnitudes of their coefficients. For example, based on the
numerical data the out-of-ground-effect added mass thrust has a fixed magnitude of c1 =
2.99, while the in-ground-effect added mass correction term varies based on the ground
distance over the range of 0 ≤ c2 ζ2 ≤ 0.67 resulting in the ground-effect correction
accounting for up to 18 % of the total added mass thrust. Similarly, the ground-effect
added mass power contributes up to 26 % of the total added mass power. The ground-effect
circulatory correction contributes up to 96 % of the total vortex proximity term for the
closest proximities examined. By examining the form of the circulatory correction, for
fixed values of k and St, it is observed that the image vortex effect scales like 1/D∗,
while the added mass ground effect scales like 1/(D∗)2. This means that both effects
decay as a swimmer moves away from a wall; however, the circulatory effect decays
more slowly and is therefore a longer range effect than the added mass effect. This is
further observed in the data where the ground-effect added mass contribution vanishes for
D∗ > 1, while the ground-effect circulatory contribution vanishes for D∗ � 1. In light of
this analysis, combined heaving and pitching motions or purely heaving motions, where
circulatory forces can be more important than added mass forces, may experience longer
range ground-effect benefits.

5. Conclusion

New scaling laws are developed for the thrust generation and power consumption of
two-dimensional pitching propulsors in ground effect by extending the two-dimensional
pitching scaling laws introduced by Moored & Quinn (2018) to consider added mass
and circulatory effects due to the close proximity of a ground plane. The developed
scaling laws are shown to predict inviscid numerical data and experimental data well,
within ±20 % of the thrust and power data, respectively. The scaling laws reveal that
both an increase in the added mass with decreasing ground distance and a reduction
in the influence of a shed vortex by its image with decreasing ground distance are
key physics to capture in a scaling law that is valid over a wide range of ground
distances, motion amplitudes and Strouhal numbers. These results can be extended to
two swimmers in side-by-side arrangements with an out-of-phase synchronization. The
established scaling relationships elucidate the dominant flow physics behind the force
production and energetics of pitching bio-propulsors and can be used to accelerate the
design of bio-inspired devices that swim near a ground plane and operate in side-by-side
schools.
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