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Abstract

We introduce a unified framework for solving first passage times of time-homogeneous
diffusion processes. Using potential theory and perturbation theory, we are able to
deduce closed-form truncated probability densities, as asymptotics or approximations
to the original first passage time densities, for single-side level crossing problems. The
framework is applicable to diffusion processes with continuous drift functions; in par-
ticular, for bounded drift functions, we show that the perturbation series converges. In
the present paper, we demonstrate examples of applying our framework to the Ornstein–
Uhlenbeck, Bessel, exponential-Shiryaev, and hypergeometric diffusion processes (the
latter two being previously studied by Dassios and Li (2018) and Borodin (2009), respec-
tively). The purpose of this paper is to provide a fast and accurate approach to estimating
first passage time densities of various diffusion processes.
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1. Introduction

The interest in understanding the first passage time (FPT) can be traced back to the early
20th century [4], [46]. Known also as the first hitting time, the FPT is defined as a random time
at which a stochastic process visits a predefined state. The phenomenon of uncertainty in time
is often observed in natural or social science. Therefore, for over a century, the FPT has been
actively studied in economics, physics, biology, etc. [14], [37], [43], [45].

Depending on various types of underlying processes and hitting boundaries, the FPT itself
involves a large cluster of different research topics. We refer to [3], [7], [38] and [51] for a
non-conclusive review. Among these topics, especially in the area of mathematical finance
and insurance, the single-side constant-barrier crossing problem is one of the most commonly
studied; see, e.g., [5] and [17]. A general approach to solving such problems starts with find-
ing the Laplace transform (LT) of the FPT density (FPTD). The LT usually comes from a
unique solution to a second-order non-homogeneous ordinary differential equation (ODE) with
Dirichlet-type boundary values [18], [26]. For many familiar diffusion processes, the LTs have
been solved and are listed in [9]. However, these LTs usually are expressed in terms of special
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functions, and only a few of them have explicit inverse transforms. Therefore, many efforts
have been made on the numerical inverse side. We refer to [1] for more details. Alternatively,
using the spectral theorem on linear operators [27], [30], [31], one can simplify the original
LT. Under certain circumstances, closed-form FPTDs can be obtained through series represen-
tations [2], [34]. But one may find that the spectral decomposition approach has convergence
issues for small t. In the present paper, our object is to apply perturbation theory and solve
explicit FPTD approximations for general single-side level crossing problems.

Consider a filtered probability space
(
�,F , {Ft}t≥0 , P

)
which satisfies the usual conditions

and is generated by a standard Brownian motion. Let I be an open interval on R, and let h( · )
be a real-valued continuous function defined on I. Our underlying process is from a class of
stochastic differential equations (SDEs) which have at least weak solutions and are strong
Markov:

Xt = εh(Xt)dt + dWt, X0 = x ∈ I. (1)

In our setting, ε ∈R, and it should properly define {Xt}t≥0 on its domain. For convenience of
deduction, we set the volatility to be constant. If a time-homogeneous diffusion coefficient σ (x)
is given, one may refer to [44, Theorem 1.6] to retrieve an SDE in (1) by using a time-changed
Brownian motion. Also, given a hitting level a ∈R, we specify two types of boundaries on I,
namely boundaries for upper and lower regions:

∂Iu
a := {a,+∞} , ∂Il

a := {−∞, a} .

As shorthand, we use ∂Ia to represent a single-side boundary without labelling the direction.
Suppressing x and a, we define the FPT of {Xt}t≥0 from x to a as

τ := inf {t> 0 : Xt ∈ ∂Ia} .

Note that the Brownian filtration {Ft}t≥0 is continuous. Therefore, according to [42], τ is well
defined (i.e. regular at ∂Ia). In addition, for x ∈ I, it is guaranteed that Px (τ > 0)= 1.

For those FPTs which are almost surely (a.s.) finite, i.e. Px (τ <+∞)= 1, we are interested
in finding their explicit distributions. Clearly, when h(x) ≡ 0 (a standard Brownian motion),
the distribution of τ is given by an inverse Gaussian (or inverse gamma, equivalently) [9].
However, for most nontrivial drifts, there is no closed-form solution. An example is h(x) = x,
which corresponds to the Ornstein–Uhlenbeck (OU) process. In this case, the explicit density
is only available when restricting to a = 0 [20].

In this paper, we apply the perturbation technique [24] to solve Dirichlet-type boundary
value problems (BVPs). By inverting the perturbed LTs from the frequency domain, where
those LTs usually have much simpler forms, we then are able to derive closed-form asymp-
totic densities in the time domain. The main contribution of this paper is to provide a unified
recursive framework for solving the single-side barrier hitting problem. By using the Green’s
function representation and potential theory [42], we prove the convergence of the perturbation
series and demonstrate the error of a truncated series, respectively. As illustrations, we show
the perturbed FPTDs of the OU, the Bessel, the exponential-Shiryaev [13], and the hypergeo-
metric diffusion processes [8] in this paper, alongside their numerical comparisons with inverse
Laplace transform algorithms [1] and Monte Carlo simulations.

The rest of the paper is organised as follows: Section 2 introduces our main results; Section
3 demonstrates applications on various diffusion processes; in Section 4 we provide numerical
comparisons; Section 5 concludes. Apart from where it is mentioned in the main body, all
proofs can be found in [33] or the appendix of this paper.
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2. Main results

2.1. Perturbed Dirichlet problem

We follow our previous set-up. Further, let C2 denote C2(I). For any f ∈ C2, we also assume
that the infinitesimal generator A f (x) of {Xt}t≥0 exists for all x ∈ I:

A f (x) = εh(x)f ′(x) + Gf (x),

where G· is the infinitesimal generator for a standard Brownian motion,

Gf (x) = 1

2
f ′′(x). (2)

Consider β ∈C
+ (i.e. β ∈C with Real(β)> 0), and define

f (x, β) :=Ex
[
e−βτV (Xτ )

]
, (3)

where V (·) is a finite function. The first step of our work is to find a proper BVP which is
satisfied by f (x, β). To see this, note that {Xt}t≥0 is continuous over all stopping times; on
the other hand, by our assumption {Xt}t≥0 is a strong Markov process. According to potential
theory [42], f (x, β) is the unique solution to the following Dirichlet problem:

A f (x) = βf (x), x ∈ I. (4)

Moreover, the corresponding boundary conditions are given by

f (∂Ia) = V . (5)

In the notation above, V := [V(a), V( ± ∞)]T is a vector of the boundary values depending on
the direction of crossing. Refer to (3); by setting V(a) = 1 and V( ± ∞) = 0, we immediately
find that the solution to the BVP (4) and (5) is the LT for the density of τ :

f (x, β) =Ex
[
e−βτ ] .

In the second step, we apply perturbations on ε and find perturbed BVPs accordingly. The
perturbation approach is a common technique in solving asymptotics for complex systems. It
has been successfully applied in quantum physics and mathematical finance [16], [19], [47].
Traditionally, it is required that the perturbation parameter should be small. However, we will
show later that this is not necessary in our case.

For brevity, we ignore the function arguments in following. By default all operations are
with respect to x. Consider a sequence of C2 functions {fi}i≥0 such that f can be expressed as

f =
∞∑

i=0

εifi. (6)

Substituting (6) into (4) yields

∞∑
i=0

εi (εhf ′
i + Gfi

)= ∞∑
i=0

εiβfi, ∀x ∈ I. (7)
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Rearranging terms in (7), we further get

Gf0 − βf0 +
∞∑

i=1

εi (hf ′
i−1 + Gfi − βfi

)= 0, ∀x ∈ I.

Note that by extracting the 0th order and assigning proper boundary conditions we can obtain
the BVP for the standard Brownian motion (where the LT inverse is already known). Higher-
order BVPs can be solved via a recursive system which accumulates information from f0 and
the drift function h.

Denote the BVP with i = 0 by the term o(1); by assigning the same boundary conditions as
in the initial problem, we have

o(1) : Gf0 = βf0, x ∈ I,

f0(∂Ia) = [1, 0]T .

For i ≥ 1, we use the notation o(εi) and define

o
(
εi) : Gfi = βfi − h · f ′

i−1, x ∈ I,

fi(∂Ia) = [0, 0]T .

In practice, it is not realistic to have infinite-order solutions. We are more interested in
knowing if the series (6) converges, or, given a truncation order N ∈N, what exactly the error
terms are in the remaining higher-order ODEs. These two questions are answered, respectively,
by the following two subsections.

2.2. Convergence of the perturbation series

Proposition 2.1. (Sufficient conditions for the convergence of the perturbation.) Let β ∈C
+,

and let h be the real-valued continuous drift function defined on I. If both h and h′ are bounded
on I and β is large enough, then the perturbation series (6) is convergent.

Proof. Without loss of generality, we consider the domain I = (0,+∞) (this requirement is
only for the simplicity of the presentation; depending on the hitting direction the domain could
be chosen as (a,+∞) or (− ∞, a)). �

Define Gβ to be the Green’s operator of β − G (cf. Equation (2)) in I such that

Gβu(x) :=
∫ +∞

0
Gβ (x, y)u(y)dy,

where Gβ (x, y) is the Green’s function of the linear operator β − G. By the definition of the
Green’s function, we can show that Gβ (x, y) is of the following explicit form:

Gβ (x, y) =

⎧⎪⎨
⎪⎩
√

2
β

sinh
(√

2βy
)
e−√

2βx, y ≤ x,√
2
β

sinh
(√

2βx
)
e−√

2βy, y> x.

We further introduce the multiplication operator Hu(x) := h(x)u(x) and the derivative operator
Du(x) := u′(x). By considering the solution of the o(εi)-ODE and using the Green’s function,
one can check that

fi = (GβHD)if0. (8)
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Substituting (8) into (6) further yields

f =
∞∑

i=0

(εGβHD)if0. (9)

As a sufficient condition for (9) to converge, we only need to show that the norm of the operator
εGβHD defined on a proper function space is less than one. To see this, consider the Banach
space L∞(I) and u ∈ L∞(I). By definition,

||εGβHDu||∞ =||ε
√

2

β

( ∫ x

0
sinh

(√
2βy
)
e−√

2βxh(y)u′(y)dy (10)

+
∫ ∞

x
sinh

(√
2βx
)
e−√

2βyh(y)u′(y)dy

)
||∞. (11)

Using integration by parts, the integral in the right-hand side of (10) becomes∫ x

0
sinh

(√
2βy
)
e−√

2βxh(y)u′(y)dy

= e−√
2βx
∫ x

0
(u(x) − u(z))

√
2β cosh (

√
2βz)h(z)dz (12)

+e−√
2βx
∫ x

0
(u(x) − u(z)) sinh

(√
2βz
)
h′(z)dz. (13)

Similarly, the integral in (11) becomes∫ ∞

x
sinh

(√
2βx
)
e−√

2βyh(y)u′(y)dy

= sinh
(√

2βx
) ∫ ∞

x
(u(z) − u(x))

√
2βe−√

2βzh(z)dz (14)

− sinh
(√

2βx
) ∫ ∞

x
(u(z) − u(x))e−√

2βyh′(y)dy. (15)

We observe that (12) is bounded by

1 − e−2
√

2βx

2
(||u||∞ − u(x))||h||∞, (16)

(13) is bounded by

1 + e−2
√

2βx − 2e−√
2βx

2
√

2β
(||u||∞ − u(x))||h′||∞, (17)

(14) is bounded by
1 − e−2

√
2βx

2
(||u||∞ − u(x))||h||∞, (18)
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and (15) is bounded by

1 − e−2
√

2βx

2
√

2β
(||u||∞ − u(x))||h′||∞. (19)

Now (16) and (18) together are bounded by(
1 − e−2

√
2βx
)

(||u||∞ − u(x))||h||∞ ≤ ||u||∞||h||∞,
and (17) and (19) together are bounded by

2 − 2e−√
2βx

2
√

2β
(||u||∞ − u(x))||h′||∞ ≤ 1√

2β
||u||∞||h′||∞.

Hence,

||εGβHDu||∞ ≤ ε
(√

2

β
||h||∞ + 1

β
||h′||∞

)
||u||∞,

and as long as h and h′ are bounded on I and β is large enough, the norm of the operator is
guaranteed to be less than one. This concludes our proof. �
Remark 2.1. Using the operator representation, Equation (8) produces the solution to the
o(εi)-ODE. Alternatively, the solution can also be written recursively as

fi = f0

[∫ x

0
2e2

√
2βy
(∫ y

0
h(z)ki(z, β)e−2

√
2βzdz + C1

)
dy + C2

]
,

where
ki(z, β) :=√2βf −1

0 (z, β)fi−1(z, β) − ∂z

(
f −1
0 (z, β)fi−1(z, β)

)
.

C1 and C2 are constants subject to fi(∂I, β) = [0, 0]T . We refer the reader to [33, Lemma 3.4.2,
p. 38] for more details of the recursive representation.

2.3 Error function

In this subsection, we provide an error function for the perturbed density function with a
truncation order N ∈N.

Denote the Nth-order truncated LT by

f (N) :=
N∑

i=0

εifi.

We further assume that the inverse LTs of f , f (N), and ∂xfN(x, β) exist, and these are denoted
by pτ (t), p(N)

τ (t), and ηN(x, t), respectively. Define the difference (absolute error) between the
original and the perturbed FPTDs by

qτ (t) := pτ (t) − p(N)
τ (t). (20)

Then we have the following result.

Proposition 2.2. (Probabilistic representation of the truncation error.) For all t ∈ (0,+∞) and
all β ∈C

+, if ∫ +∞

0
e−βt

Ex

[∫ τ∧t

0
|h(Xu)ηN (Xu, t − u)| du

]
dt<+∞, (21)
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then

qτ (t) = εN+1
Ex

[∫ τ∧t

0
h(Xu)ηN (Xu, t − u) du

]
. (22)

Proof. Please refer to the proof of Proposition 3.3.1, pp. 35–37 of [33]. �
Remark 2.2. The error function (22) relies on the L1-condition given by (21). The applications
we present later show that the L1-condition is easy to justify in practice. On the other hand,
by referring to the proof in [33], we can also derive an operator representation of (22). But the
corresponding Green’s function is for the operator β −A, given which it is very difficult to
find a unified sufficient condition satisfying (21).

3. Applications

In this section, we use five diffusion processes to illustrate the applications of our pertur-
bation framework. In the examples below, some of the closed-form density functions may
already have been found, but because of the complexity of the FPT problem, those densities
may either be valid only for special cases (e.g. the OU FPTD in the special case θ = 0 [20])
or suffer computational efficiency issues (e.g. Bessel FPTDs in [21]). For these well-studied
diffusion processes, in this section and the following numerical illustration section, we will
show that the perturbation can provide accurate density asymptotics while maintaining a much
faster computing speed. On the other hand, considering the fact that there are still many dif-
fusion processes whose closed-form FPTDs have not been found yet, another more important
purpose of this section is to demonstrate that the perturbation framework can be applied to a
wide branch of diffusion processes.

In order to keep the paper concise, in the contents below we provide only the perturbed
density functions, with comments wherever necessary. More detailed discussions and proofs
of the results can be found in [33, Chapters 4–6] or the appendix of this paper.

3.1. Ornstein–Uhlenbeck process

The OU process was first introduced to describe the velocity of a particle that follows a
Brownian motion movement [52]. Later the process appeared widely in neural science [32],
[54] and mathematical finance [23], [28], [48], [53]. The FPT of the OU process has been
extensively studied (see [40] for a brief review), and the LT of the FPT can be found in [9, Eq.
2.0.1, p. 542]. In our setting, the drift function of the OU process is given by

h(x) = θ − x, θ ∈R, x ∈R. (23)

The OU process has a unique strong solution, and it is recurrent in R; see [52] and [55]. Our
framework therefore can be applied. For a = 0 and x> 0, we consider the hitting-from-above
problem, i.e. I = (0,+∞). (Note that the generalised case a< x and the hitting-from-below
problem (I = (− ∞, a)) can be retrieved by using an affine transformation and a reflecting
process, respectively.)

Proposition 3.1. (Nth-order perturbed FPTD of the OU process.) Let N ∈N. The Nth-order
perturbed downward FPTD of the OU process is given by

p(N)
τ (t) = e− x2

4t√
2π

2N−1∑
n=0

hnt
n
2 −1D−n+1

(
x√
t

)
,
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where D·( · ) is the parabolic cylinder function,

hn :=
∑
i,j,k;

2i−j−k=n

εic(i,j)
k θkxj,

and {c(i,j)
k } is a triple-indexed real sequence

{c(i,j)
k : 0 ≤ i ≤ N, 0 ≤ j ≤ 2i, 0 ≤ k ≤ (2i − j) ∧ i}

whose recursion representation is given in Appendix A.

Proof. Please refer to [33, Proposition 4.1.3, p. 46]. �
Remark 3.1. Recall that in Proposition 2.1, a sufficient condition for the perturbation to con-
verge is that h should be bounded in I. However, referring to (23), apparently this is not the case.
In fact, according to [33, Proposition 4.1.4, p. 47], the right-tail asymptotic of the perturbed

FPTD is tN− 3
2 . Therefore, when N ≥ 2 the perturbed density diverges when t ↑ +∞.

Remark 3.2. On the other hand, when N = 1, the right-tail asymptotic converges to 0 at the

rate of t− 1
2 . In this case, even though h is not bounded, by using Proposition 2.2, we have

shown in [33, Proposition 4.2.2, p. 52] that the perturbed density converges in t ∈ [0, T] for
any T > 0 at the rate of O(ε2). Moreover, the error representation in Equation (22) is valid and
the error function η1(x, t) is given by [33, Lemma 4.1.5, p. 49].

Returning to Proposition 3.1, in view of the close relation between the D-functions and the
Hermite polynomials [35, Sections 12.7.1–12.7.2], given N = 1, we can further write p(N)

τ (t)
explicitly in the following way:

p(1)
τ (t) =

(
1 + ε

(1

2
x2 − θx + 1

2
t
)) x√

2π t3
e− x2

2t . (24)

3.2. Bessel process with 0 < n < 2

The Bessel process was introduced in [36] as the norm of an n-dimensional Brownian
motion. Denoted by BES(n) (sometimes by BES(ν) with ν = n−2

2 ), the basic properties of the
process have been discussed in [44, Chapter XI]. In mathematical finance, the family of Bessel
processes is closely related to models of short rates and stochastic volatilities [10], [11], [12],
[15], [23]. Like that of the OU process, the FPT of the Bessel process has been extensively
studied. One can find the LTs for n ≥ 2 in [9]; in [21], the LTs of 0< n< 2 (and other general
n) and some explicit FPTDs are given.

We consider the class of Bessel processes with orders n = 1 + ε where −1< ε < 1. For
BES(1 + ε), the h-function is specified by

h(x) = 1

2x
, x ∈ (0,+∞). (25)

Let I = (a,+∞) with 0< a< x. The initial LT is given by the ratio of modified Bessel func-
tions of the second kind; see [29] (and also [21, Eq. (2.5)]). In fact, according to [21, Eq. (2),
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Theorem 2.2], the explicit FPTD of the downward hitting is given by the following (note that
ν < 0 in our case):

pτ (t) =
(

1 −
(a

x

) ε−1
2
∫ +∞

0

L 1−ε
2 , x

a
(y)

y
e− y(x−a)

a dy

)
x − a√

2π t3
e− (x−a)2

2t

+
(a

x

) ε−1
2
∫ t

0

x − a√
2πs3

e− (x−a)2

2s

∫ +∞

0
L 1−ε

2 , x
a
(y)e

− y(x−a)
√

t
a
√

s
(x − a)

2a
√

st
dydt, (26)

where

Lμ,c(y) = cos (πμ)
(
Iμ(cy)Kμ(y) − Iμ(y)Kμ(cy)

)
K2
μ(y) + π2I2

μ(y) + 2π sin (πμ)Kμ(y)Iμ(y)
,

and I·( · ), K·( · ) are the modified Bessel functions.
From (26) above we can see that the density involves a convolution of Bessel functionals.

Therefore, the computing speed might be limited in practice (assuming there is no Monte Carlo
(M.C.) simulation/importance sampling or parallel computation used).

As an alternative, we provide the perturbed FPTD in the next proposition. Note that, in the
case I = (a,+∞), the drift function in (25) and its derivative are bounded on I. According to
Proposition 2.1, the perturbation series converges. But for simplicity of calculation, the result in
the following proposition is only calculated up to the first order. (Actually, our numerical tests
show that the first-order perturbation is accurate enough in providing density asymptotics.)
Higher-order results are left to future work.

Proposition 3.2. (First-order perturbed FPTD of BES(1 + ε).) The first-order perturbed down-
ward FPTD of BES(1 + ε) is given by

p(1)
τ (t) =

(
1 + ε

2
ln
(a

x

)) x − a√
2π t3

e− (x−a)2

2t

+ ε(x − a)√
2π t

∫ ∞

(x−a)2

1

2t(
√

y − x + 3a)(
√

y + x + a)
e− y

2t dy. (27)

Proof. Please refer to the proof of Proposition 5.1.3, pp. 72–73 of [33]. �
Remark 3.3. The perturbed FPTD (27) maintains the inverse gamma part as in the original
density function (26). From the proposition above, we can clearly see that the first-order trun-
cation is indeed a simplification of the higher orders, which were originally represented using
the Bessel functionals. In terms of the truncation error, we have shown in [33, Proposition
5.2.2, p. 77] that p(1)

τ converges at the rate of O(ε2), and the error function η1(x, t) can be found
therein.

3.3. Exponential-Shiryaev process

In this subsection, we consider a newly introduced three-parameter diffusion process:

dXt = ε
(
e−2αXt − c

)
dt + dWt, X0 = x, (28)

with ε ≥ 0, α ≥ 0, 0 ≤ c ≤ 1, and x ∈R. This process was discovered by the authors in the
course of this research. The motivation for studying such a process is due to its special drift
function properties. Note that the exponential functions are closed under differentiation and
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integration; therefore, in applying the perturbation mechanism, we expected the perturbed
density to have a neat mathematical form. We have conducted a fundamental analysis of the
process and realised that the sample path of {Xt}t≥0 can be used to describe the log-price of
economic bubbles (cf. [13] and [33, Chapter 6, p. 87]).

The Shiryaev process [49], [50] refers to the following SDE, which was derived by A. N.
Shiryaev in the context of sequential analysis:

dZt = (1 +μZt)dt + σdWt, μ ∈R, σ > 0.

Later, in the paper [41], G. Peskir named this process the Shiryaev process and analysed its
transition density. The transition density of the Shiryaev process is linked to the Hartman–
Watson distribution [22], which, moreover, is involved in the Asian-option pricing problem.
The reason for calling the SDE (28) the exponential-Shiryaev process is that the exponential
transform of {Xt}t≥0,

Yt := e2αXt ,

is a scaled version of {Zt}t≥0; i.e.

Yt = 2αεZt (29)

with μ= α
ε

− c and σ = 1
ε
.

Our present paper focuses on illustrating the perturbed FPTD of the exponential-Shiryaev
process (SDE (28)). (In fact, the FPTD of the Shiryaev process can then be found based on
(29) and using the FPTD of {Xt}t≥0.) We have shown in [33, Chapter 6, p. 87] that {Xt}t≥0 has
a unique strong solution, it is strong Markov, and its FPT is finite a.s. A unique solution of the
BVP therefore exists. For a hitting level a ∈R, the original LTs are given by

f (x, β) =
⎧⎨
⎩

eλ(x)−λ(a)M (m, n, ψ(x)) /M (m, n, ψ(a)) , x> a,

eλ(x)−λ(a)U(m, n, ψ(x))/U(m, n, ψ̂(a)), x< a,
(30)

where M(·, ·, ·) and U(·, ·, ·) are the Kummer’s functions and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m := (
√

c2ε2 + 2β − εc)/(2α),

n := (
√

c2ε2 + 2β + α)/α,

ψ(x) := εe−2αx/α,

λ(x) := −2αmx.

(See [33, Section 6.4.1, pp. 105–107].)
For a quick illustration of the perturbation, we consider the hitting-from-above problem.

Without loss of generality, we let a = 0 (the case of general a ∈R can be solved by using an
affine transformation) and I = (0,+∞). According to Proposition 2.1, the drift function

h(x) = e−2αx − c, x ∈ I,

and its derivative are bounded, and therefore the perturbation series converges. Similarly
as in the previous subsection, in the proposition below we provide the first-order truncated
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result. In the special case c = 0, a recursive solution of the higher-order ODEs and the inverse
transforms can be found in [33, Appendix 6.A, pp. 124–127].

Proposition 3.3. (First-order perturbed FPTD of the exponential-Shiryaev process.) The first-
order perturbed downward FPTD of {Xt}t≥0 is given by

p(1)
τ (t) =

(
1 + ε

(
cx +

(
1 − e−2αx

)
(αt − x)

2αx

))
x√

2π t3
e− x2

2t

− ε
α

4
(1 − e−2αx)eαx( αt

2x +1)Erfc

(
x√
2t

+ α

√
t

2

)
, (31)

where Erfc( · ) is the complementary error function.

Proof. Please refer to the proof of Proposition 6.4.1, pp. 108–109 in [33]. �

3.4. Hyperbolic Ornstein–Uhlenbeck process

In the following two subsections, we consider two special processes from the hyperge-
ometric diffusion class [8]. The name ‘hypergeometric diffusion’ comes from the fact that
the LTs of their FPTs to a constant level are connected to the hypergeometric functions. The
hypergeometric diffusion is defined as

dZt =
((
ν + 1

2

)
c coth (cZt) − ρ

c
tanh (cZt)

)
dt + dWt, Z0 > 0, (32)

with ν ≥ − 1
2 , ρ ≥ 0, c ≥ 0 (see [8, Eq. (4.1)]).

Note that the hypergeometric diffusion can be regarded as a generalisation of other familiar
stochastic processes. For example, if we let c ↓ 0 with ν �= − 1

2 and ρ �= 0, we then have the
radial OU process. If we keep c ↓ 0 and ν �= − 1

2 but let ρ = 0, we get the Bessel process.
Similarly, if we let c ↓ 0, ρ �= 0, but ν = − 1

2 , we get the OU process.
In this subsection, we focus on the case of c> 0 and ν = − 1

2 . Let ρ = ε > 0 and further
consider θ ∈R; we define the hyperbolic OU process as follows:

dXt = ε
(
θ − tanh (cXt)

c

)
dt + dWt, X0 ∈R. (33)

The drift function of {Xt}t≥0 is correspondingly given by

h(x) = θ − tanh (cx)

c
, x ∈R. (34)

Again, for simplicity of presentation, we demonstrate only the hitting-from-above case. The
hitting-from-below case can be retrieved by using the symmetry of tanh ( · ). Let a> 0 be the
hitting level, and let I = (a,+∞). (The case a< 0 can be solved as well; however, it involves
a different series representation in the perturbed density. For simplicity we skip this case, but
the result can be provided upon request.) After tedious calculations, we have the following LT
of the true FPTD (solution to the original BVP):

f (x, β) = L(x, β)

L(a, β)
, (35)
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where

L(x, β) := (tanh (cx)− 1)
1
2 (A1+A2+ε(1+θc)/c2)

(tanh (cx)+ 1)
ε θ c+c2+ε

2c2(
2F1(A1, B1; C1; 1)2F1(A2, B2; C2; Z(x)) (2 tanh (cx)+ 2)

1
2 C2 4C1−1

− 2F1(A2, B2; C2; 1)2F1(A1, B1; C1; Z(x)) (2 tanh (cx)+ 2)
1
2 C1
)
,

with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 :=
√
(cθ−1)2ε2+2 β c2−2 ε+

√
(cθ+1)2ε2+2 β c2

2c2 ,

A2 :=
√
(cθ−1)2ε2+2 β c2−2 ε−

√
(cθ+1)2ε2+2 β c2

2c2 ,

B1 := 1 + 2ε
c2 + A1,

B2 := 1 + 2ε
c2 + A2,

C1 := 1 +
√
(cθ+1)2ε2+2 β c2

c2 ,

C2 := 2 − C1,

Z(x) := 1
2 tanh (cx)+ 1

2 ,

and with 2F1(·, ·; · ; · .) denoting the Gauss hypergeometric function.
The LT in (35) is different from the one shown in [8, Section 6]. The latter, in fact, only gives

the LT of the reflecting hyperbolic OU process in the special case θ = 0. From the equations
above, we can see that the LT of the hyperbolic OU FPTD is already complicated enough. It can
be imagined that finding the explicit inverse would be even more difficult or even impossible.
Therefore, we provide the first-order perturbed FPTD below as an asymptotic to the original
density (note that the drift function in (34) and its derivative are bounded in R, and according
to Proposition 2.1 the perturbed series converges).

Proposition 3.4. (First-order perturbed FPTD of the hyperbolic OU process.) The first-order
perturbed downward FPTD of the hyperbolic OU process is given by

p(1)
τ (t) =

(
1 + ε(x − a)

(1

c
− θ
)) x − a√

2π t3
e− (x−a)2

2t − ε

c
T(t), (36)

where

T(t) := (A(x) − A(a))

√
2

π
t−

5
2 ((x − a)2 − t)e− (x−a)2

2t

+
∞∑

n=1

[
(B(x, n) − B(a, n))

(
1√
2π

( (x − a)t− 3
2

2
− cnt−

1
2

)
e− (x−a)2

2t

+ c2n2

2
ecn(x−a)+ c2n2t

2 Erfc

(
(x − a)√

2t
+ cn√

2

√
t

))

− (C(x, n) − C(a, n))

(√
2

π
t−

3
2

(
(x − a)2

t
− 1 − cn(x − a) + c2n2t

)
e− (x−a)2

2t

− c3n3ecn(x−a)+ c2n2 t
2 Erfc

(
(x − a)√

2t
+ cn√

2

√
t

))]
,
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given that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A(x) := 2ecx arctan (ecx)
c2 − ln ((ecx)2+1)

c2 − πecx

c2 + 2x
c ,

B(x, n) := (− 1)n e−2ncx

cn(2n+1) ,

C(x, n) := (− 1)n e−2ncx

c2n(2n+1)
.

Proof. Please refer to Appendix B. �
Remark 3.4. Referring to the proof in Appendix B, we see that the series representation of
the perturbed density is from the expansion of the arctan function (Equations (B4) and (B5)).
In fact, the series converges very fast, especially if we notice that

ecn(x−a)+ c2n2t
2 Erfc

(
(x − a)√

2t
+ cn√

2

√
t

)
∼ecn(x−a)+ c2n2 t

2
e
−
(

(x−a)√
2t

+ cn√
2

√
t

)2

(
(x−a)√

2t
+ cn√

2

√
t
)√
π

= e− (x−a)2

2t(
(x−a)√

2t
+ cn√

2

√
t
)√
π
, n ↑ +∞

(see [39, 7.1.23, p. 298]).

3.5 Hyperbolic Bessel process

Recall (32). By letting ν = − 1
2 + ε with ε > 0 we have the hyperbolic Bessel process:

dXt = εc coth (cXt)dt + dWt, X0 > 0. (37)

From [9, No. 33, p. 70], it can be seen that the hyperbolic Bessel process is used in the path
decomposition of the drifted Brownian motion (with a nonnegative drift) conditioning on not
hitting 0. More detailed discussions and transition densities of the hyperbolic Bessel process
can be found in [8, Section 5].

In this subsection, we consider the hitting-from-above case. Let a> 0 and I = (a,+∞). The
h-function of {Xt}t≥0 is given by

h(x) = c coth (cx), x> 0, (38)

which, together with its derivative, is bounded in I. Again, by Proposition 2.1 we know that
the perturbation series converges.

The original LT of the downward FPTD is given by

f (x, β) = cosh2α (ca)2F1(α, α + 1
2 ; 2α − ε + 1; 1 − tanh2 (cx))

cosh2α (cx)2F1(α, α + 1
2 ; 2α − ε + 1; 1 − tanh2 (ca))

, (39)

where

α=
√
ε2 + 2β

c2 + ε

2
.

https://doi.org/10.1017/apr.2020.13 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.13


694 A. DASSIOS AND L. LI

(See [8, Eqs. (1.3), (4.3), (4.4)].) As with the hyperbolic OU FPTD, in view of the complex
structure of the LT, it seems to be not an easy task to find the explicit inverse of (39). In the
next proposition, as an alternative, we provide the first-order perturbed FPTD.

Proposition 3.5. (First-order perturbed FPTD of the hyperbolic Bessel process.) The first-
order perturbed downward FPTD of the hyperbolic Bessel process is given by

p(1)
τ (t) = (1 − εc(x − a))

x − a√
2π t3

e− (x−a)2

2t + εT̃(t), (40)

where

T̃(t) := (Ã(x) − Ã(a))

√
2

π
t−

5
2

(
(x − a)2 − t

)
e− (x−a)2

2t

+
∞∑

n=1

[
(B̃(x, n) − B̃(a, n))

(
1√
2π

(
(x − a)t− 3

2

2
− cnt−

1
2

)
e− (x−a)2

2t

+ c2n2

2
ecn(x−a)+ c2n2 t

2 Erfc

(
(x − a)√

2t
+ cn√

2

√
t

))

− (C̃(x, n) − C̃(a, n))

(√
2

π
t−

3
2

(
(x − a)2

t
− 1 − cn(x − a) + c2n2t

)
e− (x−a)2

2t

− c3n3ecn(x−a)+ c2n2t
2 Erfc

(
(x − a)√

2t
+ cn√

2

√
t

))]
,

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ã(x) := − 1−ecx

c ln (1 − e−cx) − 1+ecx

c ln (1 + e−cx),

B̃(x, n) := e−2ncx

n(2n+1) ,

C̃(x, n) := e−2ncx

nc(2n+1) .

Proof. Please refer to Appendix B. �
Remark 3.5. The two T-functions in Propositions 3.4 and 3.5 are very similar (the conver-
gence in Proposition 3.5 is guaranteed by Remark 3.4), apart from the fact that the series
functions A, B, C and Ã, B̃, C̃ are different. In fact, the series functions are representations
of integrals involving the ln (cf. Equations (B12) and (B13)) and arctan functions, respectively,
while the inverse LTs in the two problems are the same. Instead of using the series representa-
tion, one can also refer to the proof in Appendix B to derive an integral form. We leave this to
the reader.

Remark 3.6. Propositions 3.4 and 3.5 also provide building blocks for the perturbed FPTD of
the hyperbolic radial OU process (Hyp-ROU). If we define h1 and h2 to be the drift functions
(cf. Equations (34) and (37)) of the hyperbolic OU (Hyp-OU) and the hyperbolic Bessel (Hyp-
Bes) processes, respectively, then the h-function of the Hyp-ROU is given by h = h1 + h2.
Refer to the recursion formula in Remark 2.1; the first-order perturbed LT of the Hyp-ROU is

f Hyp−ROU
1 (x, β) = f Hyp−OU

1 (x, β) + f Hyp−Bes
1 (x, β),
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where f Hyp−OU
1 , f Hyp−Bes

1 are the first-order perturbed LTs of the Hyp-OU and the Hyp-Bes
(cf. Equations (B9) and (B14)). Then, after a reorganisation of the proofs in Appendix B, the
first-order perturbed FPTD of the Hyp-ROU is given by

p(1), Hyp−OU
τ =

(
1 + ε(x − a)

(1

c
− θ − c

)) x − a√
2π t3

e− (x−a)2

2t + ε
(

T̃(t) − T(t)

c

)
.

A similar result can be obtained for the radial OU process (ROU; cf. Sections 3.1 and 3.2):

p(1), ROU
τ (t) =

(
1 + ε

(1

2
(x − a)2 − θ (x − a) + 1

2
t + 1

2
ln
(a

x

))) x − a√
2π t3

e− (x−a)2

2t

+ ε(x − a)√
2π t

∫ ∞

(x−a)2

1

2t(
√

y − x + 3a)(
√

y + x + a)
e− y

2t dy.

4. Numerical examples

In this section, we demonstrate six numerical examples (Figure 1) comparing the first-order
perturbed FPTDs (cf. Propositions 3.1–3.5) to other well-studied methods. The perturbation
parameter in all examples is chosen to be ε = 0.1, and other parameters of different diffusions
are listed in captions under Figures 1a–1f. Computing times of different methods are reported
in Table 1, and deviation statistics for each method compared to the true values are reported in
Table 2.

Among these six figures, two (Figures 1a and 1b) illustrate the FPTDs of the OU process.
In Figure 1a, we consider the special case θ = a, and the explicit density formula is given in
[20]; the comparison is made among the perturbation/inverse LT (ILT; cf. the Talbot approach
in [1]), explicit density, spectral decomposition, and three-dimensional Brownian bridge simu-
lation (BB-simulation) approaches (cf. [2] and [25], respectively). Figure 1b presents a general
scenario where θ �= a. Note that in this case no closed-form FPTD has yet been found.

In Figure 1c, the Bessel process with a non-integer order n = 1.1 is studied. Unlike in other
examples, the starting point and the hitting level are chosen as x = 0.7 and a = 0.1. The reason
for not selecting large levels (e.g. x = 2 and a = 1.2) is that the Bessel process behaves very
much like the Brownian motion when Xt >> 0. In this example, we include the explicit den-
sity function (cf. Equation (26)) as the benchmark for the perturbation and the Talbot inverse
algorithm.

Figures 1d–1f are similar in their presentation formats. We consider respectively the FPTDs
of the exponential-Shiryaev, the hyperbolic-OU, and the hyperbolic-Bessel processes. Apart
from providing their perturbed and ILT FPTDs, we also include the brute-force Monte Carlo
simulation (M.C.) and the standard Brownian motion (BM) FPTDs. (The ILT in Figure 1d
is from the Talbot algorithm, while computations in Figures 1d and 1f are from the Gaver–
Stehfest algorithm [1]. The change in these two hypergeometric diffusions is due to the
restriction of Python in computing hypergeometric functions with complex numbers.) Note
that the black dashed curves in the last three graphs are the same, since the BM FPTD is only
determined by the starting point and the hitting level.

The results from Figure 1 show that the first-order perturbation works well for all diffusion
processes discussed above. Also, Figures 1d–1f indicate that, even for small ε, one cannot
use the BM FPTD to obtain the desired approximation to the FPTDs of structurally different
diffusions (although we do not provide the graphs for the OU and the Bessel processes, this
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FIGURE 1: First-order perturbed FPTDs and comparisons with ε = 0.1.

is also the case there); the M.C. approach cannot give accurate estimates either. On the other
hand, by checking the computing times in Table 1 (note that the times for Spectral∗ and BB-
Sim∗ are scaling-up estimates from the 10 density points in Figure 1b), one may realise that
the perturbation possesses the fastest computing speed in almost all scenarios (except that it is
slower than the ILT in the Bessel FPTD).

In Table 2, we further compare each method’s deviation from the true values (explicit solu-
tions wherever applicable). All statistics are calculated in an absolute manner, but note that
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TABLE 1: Computing times (seconds) of density curves in Figure 1.

Perturbation ILT M.C. Explicit Spectral∗ BB-Sim∗

OU Benchmark 9.16e-4 1.08 n.a. 1.08e-3 n.a. n.a.
OU General 9.53e-4 1.74 n.a. n.a. 3.27e3 1.16e3
Bessel 0.10 0.03 n.a. 3.04e2 n.a. n.a.
Exp-Shiryaev 2.46e-3 0.18 3.38 n.a. n.a. n.a.
Hyp-OU 0.09 0.15 3.53 n.a. n.a. n.a.
Hyp-Bessel 0.08 0.13 3.48 n.a. n.a. n.a.

TABLE 2: Statistics of absolute deviations in Figure 1.

Perturbation ILT Spectral∗ BB-Sim∗

Total-Deviation 0.03 3.76e-3 1.09 3.29e-4
OU Benchmark Max-Deviation 7.02e-4 3.67e-4 1.07 6.03e-5
(Fig. 1a) Avg.-Deviation 3.49e-4 3.80e-5 0.11 3.29e-5

Total-Deviation 0.05 3.04e-3 n.a. n.a.
Bes Benchmark Max-Deviation 2.35e-3 4.69e-4 n.a. n.a.
(Fig. 1c) Avg.-Deviation 5.09e-4 3.07e-5 n.a. n.a.

for the spectral decomposition and the BB-simulation, there are only 10 density points (as
opposed to 100 density points for the other methods). The table shows that the ILT produces
more accurate results than our perturbation method in both processes. The average deviation
shows that the errors of the perturbation are at the magnitude of 10e-4, although, at the total
variation level, the perturbation generates about 3–5% error. However, as the purpose of the
current paper is to produce the density curve instead of the probability curve, we would not
consider the total deviation here to be a major benchmark. (In principle, the probability curve
can be retrieved using the perturbation on different BVPs. We will leave this to future work.)
On the other hand, as can be found in [2], the spectral decomposition has a convergence issue
when t is small, and this explains the large deviations observed in Table 2. The BB-simulation
produces the smallest error among the four methods, but by referring to Table 1 we see that
this is at the cost of an extremely slow computation speed.

Another potential question is about the error behaviour on different model parameters. In
[33, Chapters 4–6], we have demonstrated perturbation error functions for different diffusion
processes. But unfortunately, a uniform error bound has not been found yet. In general, by
Proposition 2.2, we know for sure that the smaller the ε, the smaller the error. Apart from tuning
ε, based on observations we have also found that smaller t and smaller ratios x/a generate
smaller errors. Taking the benchmark OU process (benchmark cases where θ = a = 1.2) as an
example, if we choose larger ε, smaller ratio x/a, and smaller t (ε = 1.2, x = 1.3, t ≤ 1), the
average deviation reported in Table 2 becomes 7.00e-3; and if we choose smaller ε, larger ratio
x/a, and larger t (ε = 0.3, x = 9, t ≤ 5), the average deviation increases to 3.26e-2. Apparently
there is a complicated relationship among ε, x, θ , and a. But to understand it better, more
serious study needs to be conducted. We leave this to future work.

As a last remark in this section, we highlight a few findings regarding higher-order OU
perturbations. Recall that in Remark 3.1, we mentioned that the higher-order OU perturbations
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TABLE 3: OU benchmark deviations with different perturbation orders.

N = 1 N = 3 N = 5 N = 7 N = 9

ε = 0.1 Avg.-Deviation 1.09e-3 5.78e-5 4.11e-6 3.35e-7 2.96e-8
Large-t-Deviation 2.04e-3 2.31e-4 2.48e-5 2.68e-6 2.92e-7

ε = 0.3 Avg.-Deviation 1.21e-2 6.52e-3 4.58e-3 3.58e-3 2.96e-3
Large-t-Deviation 1.80e-2 2.25e-2 2.47e-2 2.60e-2 2.70e-2

diverge on the right tail with tN− 3
2 . But this does not necessarily mean that the higher-order

densities diverge for large t (at least not large enough for the divergence to appear); in fact,
depending on the choices of ε and other parameters, higher-order densities may also produce
more accurate results. Using the parameters x = 2, θ = a = 1.2 again, in Table 3 we report
average deviations and large t deviations (t = 10 years) for perturbed density curves compared
to the true values, given ε ∈ {0.1, 0.3}. The time range is chosen to be t ∈ [0, 10]. Results show
that for ε = 0.1, the perturbation converges up to t = 10, but for ε = 0.3 it slowly diverges.

5. Conclusion

In this paper, we provide a systematic approach for solving the closed-form FPTD asymp-
totics of diffusion processes. We show a sufficient condition for the convergence of the
perturbation series and derive a probabilistic representation for the error. The closed-form
solution resulting from the perturbation not only increases computational efficiency, but also
provides analytical tractability in understanding the FPTDs at extreme times. Using the frame-
work we demonstrate valid approximations to FPTDs of various diffusion processes. Potential
applications of this paper could be found in survival analysis, financial mathematics, and many
other fields. Further work could be done in exploring the perturbed FPTDs of other diffusion
processes, analysing error behaviours with different model parameters, and finding FPTDs via
simulations using the probabilistic representation in Proposition 2.2.

Appendix A. Recursive structure in the OU perturbation

Result A.1. (Decomposition structure I.) For i = 1 and i = 2,
{
c(i,j)

k

}
is explicitly given by

the following:

i = 1 :

⎧⎪⎨
⎪⎩

c(1,2)
0 = 1

2

c(1,1)
0 = 1

2 ; c(1,1)
1 = −1

i = 2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c(2,4)
0 = 1

8

c(2,3)
0 = 1

12 ; c(2,3)
1 = − 1

2

c(2,2)
0 = − 1

8 ; c(2,2)
1 = 0; c(2,2)

2 = 1
2

c(2,1)
0 = − 1

8 ; c(2,1)
1 = 1

2 ; c(2,1)
2 = − 1

2
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Result A.2. (Decomposition structure II.) For i ≥ 3,
{

c(i,j)
k

}
is recursively determined by the

following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j = 2i : c(i,2i)
0 = c(i−1,2i−2)

0
2i

j = 2i − 1 :

⎧⎨
⎩

c(i,2i−1)
0 = 1

(2i−1) c(i−1,2i−3)
0 − 2i−3

2(2i−1) c(i−1,2i−2)
0

c(i,2i−1)
1 = 1

(2i−1)

(
c(i−1,2i−3)

1 − c(i−1,2i−2)
0

)

2< j< 2i − 1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k = (2i − j) ∧ i :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

j> i : c(i,j)
2i−j = 1

j

(
c(i−1,j−2)

2i−j − c(i−1,j−1)
2i−j−1

)
j = i : c(i,i)

i = − 1
i c(i−1,i−1)

i−1

j< i : c(i,j)
i = 1

2 (j + 1)c(i,j+1)
i

− 1
j c(i−1,j−1)

i−1 + c(i−1,j)
i−1

0< k< (2i − j) ∧ i : c(i,j)
k = 1

2 (j + 1)c(i,j+1)
k + 1

j c(i−1,j−2)
k

− j−1
j c(i−1,j−1)

k − 1
j c(i−1,j−1)

k−1 + c(i−1,j)
k−1

k = 0 : c(i,j)
0 = 1

2 (j + 1)c(i,j+1)
0 + 1

j c(i−1,j−2)
0 − j−1

j c(i−1,j−1)
0

j = 2 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k = i : c(i,2)
i = 3

2 c(i,3)
i − 1

2 c(i−1,1)
i−1 + c(i−1,2)

i−1

0< k< i : c(i,2)
k = 3

2 c(i,3)
k − 1

2 c(i−1,1)
k − 1

2 c(i−1,1)
k−1 + c(i−1,2)

k−1

k = 0 : c(i,2)
0 = 3

2 c(i,3)
0 − 1

2 c(i−1,1)
0

j = 1 :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k = i : c(i,1)
i = c(i,2)

i + c(i−1,1)
i−1

0< k< i : c(i,1)
k = c(i,2)

k + c(i−1,1)
k−1

k = 0 : c(i,1)
0 = c(i,2)

0

Appendix B. Proofs of Propositions 3.4 and 3.5

Proof. Part I (hyperbolic OU perturbed LT). We first consider a simplified version of
(34). Let h(x) = tanh (cx) and define γ := √

2β. According to the formula in Remark 2.1, the
first-order solution is

f̃1 = f0

[∫ x

a
2e2γ y

(
γ

∫ y

a
tanh (cz)e−2γ zdz + C1

)
dy + C2

]
. (B1)

Rewrite

γ

∫ y

a
tanh (cz)e−2γ zdz = γ

∫ y

a
tanh (cz)e−czecz−2γ zdz, (B2)
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and note that ∫
tanh (cz)e−czdz = − sinh (cz)

c
+ 2

arctan (ecz)

c
+ cosh (cz)

c
.

Then integrating by parts in (B2) yields

γ

∫ y

a
tanh (cz)e−czecz−2γ zdz = −γ (c − 2γ )

∫ y

a
2

arctan (ecz)

c
ecz−2γ zdz

+ γ

(
− sinh (cz)

c
+ 2

arctan (ecz)

c
+ cosh (cz)

c

)
ecz−2γ z

∣∣∣∣
y

z=a

− γ (c − 2γ )
(− cosh (cz)+ sinh (cz)) ecz−2 γ z

2γ c

∣∣∣∣
y

z=a
. (B3)

The first term on the right-hand side needs special care. Note that, for m> 1,

arctan (m) = π

2
−

∞∑
n=0

(− 1)n 1

(2n + 1)m2n+1
. (B4)

Substitute (B4) into (B3). After tedious calculations, we get

γ

∫ y

a
tanh (cz)e−2γ zdz = I1(y) − I1(a), (B5)

where

I1(y) = γ

(
− sinh (cy)

c
+ 2

arctan (ecy)

c
+ cosh (cy)

c

)
ecy−2γ y

− γ (c − 2γ )

[
(− cosh (cy)+ sinh (cy)) ecy−2 γ y

2γ c

+ 2

c2

(
πecy(− 2γ

c +1)

2(− 2γ
c + 1)

−
∞∑

n=0

(− 1)n e−(2n+ 2γ
c )cy

(2n + 1)(− 2n − 2γ
c )

) ]
.

Now substitute (B5) into (B1) and let C1 = I1(a); then∫ x

a
2e2γ y

(
γ

∫ y

a
tanh (cz)e−2γ zdz + C1

)
dy =

∫ x

a
2e2γ yγ I1(y)dy

= 2γ
∫ x

a

(
− sinh (cy)

c
+ 2

arctan (ecy)

c
+ cosh (cy)

c

)
ecy

− (c − 2γ )

[
(− cosh (cy)+ sinh (cy)) ecy

2γ c

+ 2

c2

(
πecy

2(− 2γ
c + 1)

−
∞∑

n=0

(− 1)n e−2ncy

(2n + 1)(− 2n − 2γ
c )

)]
dy.
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The integral of each of the terms on the right-hand side can easily be calculated. Let C2 = 0;
summarising the results of the calculations, we get the first-order solution as

f̃1(x, β) = f0(x, β)(g1(x, β) − g1(a, β)), (B6)

where

g1(x, β) = 2
√

2β

(
2

ecx arctan (ecx)

c2
− ln

(
(ecx)2 + 1

)
c2

− πecx

c2

)
+ x

− 4
√

2β(c − 2
√

2β)

c2

⎛
⎝ cx

2
√

2β
−

∞∑
n=1

(− 1)n+1 e−2ncx

c2n(2n + 1)
(
− 2n − 2

√
2β

c

)
⎞
⎠ .

Note that (B6) is not yet the LT to be inverted. It corresponds to the drift function h(x) =
tanh (cx), while what we want is h(x) = θ − tanh (cx)

c . But we are almost there. By the linearity

of the perturbed ODE solution (cf. Remark 2.1), the first-order solution of h(x) = − tanh (cx)
c is

given by

−f0(x, β)
g1(x, β) − g1(a, β)

c
. (B7)

On the other hand, by computing the first-order solution of a drifted Brownian motion with
h(x) = θ , we have

f̂1(x, β) = −f0(x, β)θ (x − a). (B8)

Using the linearity property again, and combining (B7) and (B8), we obtain the final first-order
solution of the hyperbolic OU process in (33) as

f1(x, β) = f0(x, β)
(
− g1(x, β) − g1(a, β)

c
− θ (x − a)

)
. (B9)

Part II (hyperbolic Bessel perturbed LT). Similarly as in Part I, we first consider the
simplified drift function h(x) = coth (cx) and then generalise the result to h(x) = c coth (cx).
Using the equation in Remark 2.1 again, for the drift function h(x) = coth (cx) we have

f̃1 = f0

[∫ x

a
2e2γ y

(
γ

∫ y

a
coth (cz)e−2γ zdz + C1

)
dy + C2

]
. (B10)

Repeating the same trick as in (B2), and applying integration by parts, we then get

γ

∫ y

a
coth (cz)e−2γ zdz = γ

(
e−cz + ln (1 − e−cz) − ln (1 + e−cz)

c

)
ecz−2γ z

∣∣∣∣
y

z=a

− γ (c − 2γ )
∫ y

a

(
e−cz + ln (1 − e−cz) − ln (1 + e−cz)

c

)
ecz−2γ zdz.

(B11)

For the second term on the right-hand side, we consider the expansions

ln (1 − e−cz) = −
∞∑

n=1

e−ncz

n
, ln (1 + e−cz) =

∞∑
n=1

(− 1)n+1 e−ncz

n
. (B12)
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Substituting the expansions into (B11) and repeating the same calculations as in Part I, we find

γ

∫ y

a
coth (cz)e−2γ zdz = I2(y) − I2(a) (B13)

with

I2(y) = γ

(
e−cy + ln (1 − e−cy) − ln (1 + e−cy)

c

)
ecy−2γ y

− γ (c − 2γ )

c

(
−e−2γ y

2γ
+ 2

∞∑
n=0

e−(2nc+2γ )y

(2n + 1)(2nc + 2γ )

)
.

The remaining calculations follow the same routines as in Part I: substituting (B13) into
(B10), letting C1 = I2(a), and continuing the outer-integral calculations; setting C2 = 0 and
using again the linearity of the perturbed LT. In the end, for the drift function h(x) = c coth (cx),
the first-order solution is given by

f1(x, β) = f0(x, β)(g1(x, β) − g1(a, β)), (B14)

where g1(x, β) is redefined as

g1(x, β) = 2γ

(
− x − 1 − ecx

c
ln
(
1 − e−cx)− 1 + ecx

c
ln
(
1 + e−cx)

+ (c − 2γ )

(
− x

2γ
+

∞∑
n=1

e−2ncx

nc(2n + 1)(2nc + 2γ )

))
.

Part III (explicit inverse of perturbed LTs). Recall that in (6), the first-order perturbed
LT is

f (1) = f0 + εf1, (B15)

where, depending on the underlying process, f1 is given by (B9) or (B14).
Referring to the g1-functions in (B9) and (B14), one can easily find that the LT parameter

β involved in the equation above belongs to the following structures (recall that f0 = (x −
a)/

√
2π t3e−(x−a)2/2/t):

e−√
β
√
α, e−√

β
√
α
√
β, e−√

β
√
α

√
β√

β + ξ
, e−√

β
√
α β√

β + ξ
,

where α= 2(x − a)2 and ξ = cn√
2

are constant variables in the inverse transform. By [6, Section
5.6, Eqs. (1), (5), (15), and (13)], we have

L−1
{

e−√
β
√
α
}

(t) = |x − a|√
2π

t−
3
2 e− (x−a)2

2t , (B16)

L−1
{

e−√
β
√
α
√
β
}

(t) = t− 5
2

2
√
π

(
(x − a)2 − t

)
e− (x−a)2

2t , (B17)

L−1
{

e−√
β
√
α

√
β√

β + ξ

}
(t) = 1√

2π

(
|x − a|t− 3

2

2
− cnt−

1
2

)
e− (x−a)2

2t

+ c2n2

2
ecn|x−a|+ c2n2t

2 Erfc

( |x − a|√
2t

+ cn√
2

√
t

)
, (B18)
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and

L−1
{

e−√
β
√
α β√

β + ξ

}
(t) = t− 3

2

2
√
π

(
(x − a)2

t
− 1 − cn|x − a| + c2n2t

)
e− (x−a)2

2t

− c3n3

2
√

2
ecn|x−a|+ c2n2t

2 Erfc

( |x − a|√
2t

+ cn√
2

√
t

)
. (B19)

Finally, substituting (B16)–(B19) into the inverse of (B15) with the corresponding f1-
functions from either (B9) or (B14) and summarising the results, one finds the perturbed
density functions in Propositions 3.4 and 3.5. We leave the calculations to the reader and
conclude the proof here.
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