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BEHAVIOR OF DICKEY-FULLER
t-TESTS WHEN THERE IS A BREAK
UNDER THE ALTERNATIVE
HYPOTHESIS

STEPHEN J. LEYBOURNE AND PAuL NEWBOLD
University of Nottingham

This paper analyzes the limiting behavior of Dickey—Futleests when the true
generating model is stationary around a broken linear tr€hd cases of a break

in level and a break in slope are considered separately and found to generate qual-
itatively different outcomeslin the asymptotic analysi@ppropriate normaliza-

tions are applied to the break siz&%is leads to theoretical results that generate
interesting predictions for sample sizes and break amounts of practical interest
Simulation evidence confirms the value of this approach to an asymptotic theory

1. INTRODUCTION

Following the seminal work of Perrail989 there has been considerable theo-
retical and empirical interest in the impact of a structural break on Dickey—
Fuller tests for unit autoregressive rooRerron demonstrated thah the
presence of a break under the trend stationary alternatieetest could fre-
quently fail to reject the unit root null hypothesis when allowance for the break
was not madelt was further demonstrated for previously analyzed data sets
that dramatic test result reversals could occur when such allowance was made
Leybourne Mills, and Newbold(1998 and Leybourne and Newbold 998
have demonstrated the “converse Perron phenomenon”—that spurious rejec-
tions of the null hypothesis can occur when the true generating process has a
unit autoregressive roobut with a relatively early break

In this paper we consider the case where the true generating process is sta-
tionary around a broken linear trenas analyzed by Perrof1989 and more
recently by Montanes and Rey€E998 1999. The latter authors derived lim-
iting values for the Dickey—Fullef (p — 1) statistic and for the-ratio variant
of the testHere we shall concentrate on theatio statisti¢ which is by far the
more frequently used variant in practical applicatidbar approach differs from
that of Montanes and Reyes in that in our asymptotics we employ what we
claim are more appropriate and revealing normalizations for the breakSgze
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cifically, for a break in level we let the break size be proportionalltd?
whereas for a break in slope we consider a break size proportiorfal 3,
whereT is the number of observations in the time serl&®g view these nor-
malizations as appropriate becausgeshown by Leybourne and Newbagi98,
their imposition in the case of a break under the unit root null hypothesis leads
to limiting distributions for the test statistics that differ from the Dickey—Fuller
distribution predicting the “converse Perron phenomenon” noted by Leybourne
et al (1998. Our asymptotic analysis generates predictions of what might be
found in practice for sample sizes and break magnitudes of infenedtthese
predictions are assessed through simulation experiments

Our generating model for a time serigss

Y = &+ oy,
Yy = ¢Vt—l+8t9 t:1’~'-7T’ (1)

where|¢| < 1 and thes, are independently and identically distributed distur-
bances with mean zero and standard deviatiorFor a model incorporating
both a break in level and a break in slope we defipas

dy = dy, + dyy, 2)
whered;; is the level break component given by
dy; =0, t=r7T,
= ok, TV? t>7T
andd,; is the slope break component given by
dy =0, t=r7T,
= ok, T Y2(t—7T), t> 7T,

with 7 representing the break fraction

2. ASYMPTOTIC BEHAVIOR OF THE DICKEY-FULLER TEST

Let e denote the residuals from regressipgon an intercept and time trend
Then the Dickey—Fuller statistic is theratio associated with the regression of
e one_1. We denote this statistic &F. The following theorem gives the prob-
ability limit of DF.

THEOREM 1 Under the mode(l) and (2),

DF —p{ki+2(1+ ¢) 1} 20, Y¥{qu — (1 + )},
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where
= —kZQL-n{1+67(r— L} —k3r?(1—7)2(1 - 271)/2
+ k1 k,7(1—7)(1— 57 + 572),
B=Krl-7{1-3r(1-7)}+ki73(1—7)¥3
+ Kk, 72(1—7)%2(27 — 1).

The proof of this result is given in the Appendix

Montanes and Reyed 998 also allow for simultaneous changes in level
and slope but their approach differs from ours in two respedisst, setting
without loss of generalityt; = 81 = 0 in their equation2), that equation be-
comes in our notation

Vi = (o + Bo7T)DU; + Bo(t — 7T)DU; + w4, (3)

whereDU, is one ift > 7T and zero otherwiselThus for largeT, w, in (3) is
irrelevant so that in our terminology asymptotically this generating model rep-
resents a level shift of T times the amount of the slope shifievertheless
settingk, = 7k, in our Theorem 1 does not give the result of Theorem 2 of
Montanes and Reyg4998. This is because of the second distinction between
the two approache$Vhereas fixing3, in (3) implies a level shift ofO(T) and

a slope shift ofO(1), fixing k; andk, in our approach implies a level shift of
O(T¥?) and a slope shift o®(T ~%/2). A consequence of the higher order shifts
in Montanes and Reyes is that their Theorem 2 implies a probability limit for
the Dickey—Fulleit-statistic that depends only on the break fraction and not on
either the break magnitude or the autocorrelation structung.d8y contrast
even wherk; = 7k, is substituted in our Theorem tfhe result is a function of
bothk, and ¢.

Probability limits for the Dickey—Fuller test statistic for any combination of
level and slope shifts can be obtained by substituting the corresponding values
of (ky, ky) in Theorem 1However because the impacts of breaks in level and
slope turn out to be qualitatively differerit is useful to consider them sepa-
rately To analyze the effect of a level break onlye substituté, = 0 in Theo-
rem 1

COROLLARY 1 In the case where the model contains only @elébreak
DF -, —[cf2+ct)r(1—7){1-3r(1—7)}] V2
X[1+c(1l—7){1+67(r— )}
with ¢, = [Kq|(1 + ¢)¥2

This limiting function is graphed in Figure 1 f@f = 0.9 and different values
of ky and 7. This graph reveals the Perron phenomenon as the paraketer
determining the break size increases with fixd More generallyas is clear
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probability limit

Ficure 1. Limit distribution of DF under level break¢ = 0.9.

from Corollary 1 the impacts ok, and¢ are subsumed in the single parameter
c:.) As k; increasesthe shape of the graph of probability limits begins to de-
pend quite strongly on the break fractienand one would conjecture that in
practice the Perron phenomenon would be least manifest all, for the ear-
liest breaks

The case of a break only in level is analyzed by Montanes and R&969).
Their approach differs from ours in that they hold the break magnitude,fixed
whereas in our analysis that magnitudeiéT ¥/?). Proposition 1 of Montanes
and Reyes then shows thatsymptotically the test statistic has the Dickey—
Fuller distribution under the null hypothesis and diverges-to under the al-
ternative Thus if the break magnitude i©(1) the analysis fails to reveal both
the “converse Perron phenomenon” of Leybourne e{i898 under the null
hypothesis and the Perron phenomenon under the alternative

Next we turn to the case of a break only in sloptere as we shall seghe
prediction for rejections of the null hypothesis is somewhat different from the
previous caseThe required result is obtained by settikg= 0 in Theorem 1

COROLLARY 2. In the case where the model contains only a slope hreak
DF —, ()" [3)e{r (1= }¥?(2r — 1) = ¢z H{r (1= )} >7]
with ¢, = |ky|(1 + ¢)V2

The limiting function is graphed in Figure 2 fgr = 0.9 and different values
of k, and 7. It is interesting to compare our Corollary 2 with Theorem 1 of
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probability limit

FiGcure 2. Limit distribution of DF under slope breakp = 0.9.

Montanes and Reye&l998, based on the same generating moddie ap-
proaches differ in that Montanes and Reyes hold the break size constant with
increasingT, then finding thafl ~Y2DF has a finite probability limitwith DF
diverging to —oo for 7 < 0.5 and toco for 7 > 0.5. Presumably their result
could be interpreted as predicting very frequent rejections when the break is in
the first half of the series and very infrequent rejections when the break is
in the second halBy contrastFigure 2 suggests somewhat richer insigigain

the parameters, = |ky|(1 + ¢)¥? andr are crucial For fixed ¢, ask, in-
creases for a break in the latter part of the setiles probability limit of the

test statistic increases dramaticalyggesting that the null hypothesis will vir-
tually never be rejected unlesss very close to onein agreement with Mon-
tanes and Reyed.998. Of course this is precisely the phenomenon predicted
by Perron(1989. However notice that the curves in Figure 2 cross7afalls
below Q5, so that we would expect to find in this regiomorerejections of the

null hypothesis as the parameter determining the break size increasés
nally, ask, increases so does the slope of the probability limit curves in the
region 02 < 7 < 0.5. Moreover in this region the probability limits of the
Dickey—Fuller statistic are quite close to the nominal 5% critical value for
the test(—3.41, Fuller, 1996 p. 642). We might therefore predict asincreases

in this region a rapid shift from very many to very few rejections of the null
hypothesis Moreover this transition is well short of = 0.5, unlessk, be-
comes extremely large—effectivelthe special case considered by Montanes
and Reye$1998.
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3. SIMULATION EVIDENCE

We conducted simulation experiments using the break under the alternative
model(1), (2) for series ofT = 200 observationswith &, generated as standard
normal and¢ = 0.9. For 7 ranging from 001 to Q99 in steps of M1, the
empirical rejection frequencies &fF at the nominal 5% levebased on ®00
replications were recordedFor this casgwhen there is no breakF rejects
the null hypothesis for 66% of all series at the 5% leVWdlus our simulations
allow scope for detecting values offor which rejection frequencies are either
much higher or much lower than this baseline case

Figure 3 shows the results for the break in level modath k, taking the
same values as in Figure 4o that the actual break amounts arelli,. As
predicted for almost all values of the break fractietithe Perron phenomenon
becomes increasingly manifest with growikg The only exception is when
the break occurs in the first 5% of the seriegen the null hypothesis is re-
jected more frequently than in the no break cd3es possibly might be antici-
pated from the asymmetry of Figure 1

Figure 4 shows the results for the break in slope modéh k, taking the
same values as in Figure o that the actual break amounts are/@7k,. As
predicted by the theoryhis case is quite different and rather more interesting
than the break in level casEirst note for breaks in the first half of the series
there is a range in which the rejection frequency is higher than in the no break
case Both the width of that range and the frequency of rejections within the
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Ficure 3. Rejection frequency oBF under level break¢ = 0.9, T = 200
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FIGURE 4. Rejection frequency oDF under slope breakp = 0.9, T = 200,

range increase witk,. However particularly for the largest values &} there

is a very steep climb from virtually 100% rejections to almost no rejections
Again, this is not unexpected given the results shown in Figuré\dtice also
that as the break size increases the part of the upper interval iforwhich
there is an appreciable number of rejections narrpWkus by contrast with
the break in level caseve might say thatwhereas the Perron phenomenon is
manifest for large breaks for break fractions above some amduittrapidly
evaporates for break fractions below that amoie precise value of* de-
pends on the break size and more generally according to our theoretical predic-
tions on|k,|(1 + ¢)Y2 However for cases of practical intergst* can clearly

be well below 05.

4. CONCLUSIONS

We have analyzed the Perron phenomenon—thathis failure to reject the

unit root null hypothesis given a generating model that is stationary around a
broken trendThe cases of a break in level and break in slope have been ana-
lyzed separatejytheir impacts being shown to be qualitatively quite different
Imposing appropriate normalizations on the break sizes allows an asymptotic
theory that makes interesting predictior®3f course because the theoretical
values thereby obtained are probability limits of test statistivey cannot be
expected to perfectly mirror what will be found in practically interesting cases
where test statistics have nontrivial finite sample distributidfaken at face
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valug the results would predict rejection frequencies of either 0% or 100%
depending on whether the probability limits were above or below the nominal
critical values Neverthelessthe shapes of the curves in Figures 1 and 2 are
suggestive of patterns that might be found in moderate-sized samples and so
are valuable in prompting simulation experimer@sir experimental results are

on the whole unsurprising on the basis of our asymptotic thébbging pos-

sible to anticipatgat least qualitativelythe findings of Figures 3 and, 4iven

the results of Figures 1 and Pverall the conclusion is that when a break
occurs no less than halfway through a series the Perron phenomenon is appar-
ent on the obvious basis—that i®latively few rejections of the null andhe

larger the breakall else equalthe fewer the rejectiond his picture is rather
different for breaks in the first half of the serjeshere it is entirely possible

that the Perron phenomenon will not be observidte precise picture here de-
pends on the nature and size of the break
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APPENDIX

Proof of Theorem 1. Because the limit oDF is invariant too, we may without
loss of generalityseto = 1. Regressing; on an intercept and time trendnd denoting
the residuals;, we have

g=n+g—h,
where
g = (d — d),

h, = (t—f)E(t—f)dt{E(t—fV},
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and; is the stationary ARL) process; demeaned and detrendd@efining

T T
fo=>e, fi= Ezef_l, f,= Eze[et_l,
t= t=

t=2
the two-step variant of the Dickey—Fuller statistizF, is then given by
DF = (62, 1) Y2(p — 1)

=6 YT 2f) YT 1(f,— 1)

with p = f,f; 2 and

62=T71

\M—|

(& — pe_1)> =T Mo+ p?T = 25T .

t=2

First, consider the term

.
T Hf—f) =T 1Y e ,14q
t=2
T T
=T E Mg Am + T 71 2 (G—1—h—1)A(g — hy)
=2 =2

T T
+T78 Eznt—lA(gt —h)+T7* Ez(gt—l —hy_1)An,.
t= t=
Under (2) it is straightforward to show that
T T
Tt (g-1—h-1)Ah >0, T2 me1A(g —hy) —p 0,
t=2 t=2
T
T 2 (9—1— 1) An, —, 0.
t=2
Sa
T T
T Hf,—-f)=T"7" E Mo An+ T Z (Gi—1 — h—1) Ag, + 0y(D).
t=2 t=2
Moreover from the standard properties of stationary @Rprocesses

.
T ne1An, —p—(1+ @)t
=2
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Next, consider the term

T
T72f1 =717 2 etzfl
t=2
T T T
=T 222+ T 22 (G~ )2+ 2T 723 mq(Gq — hey).
=2 t=2 t=2
Clearly
T T
T2 i, -5 0, T2 a(g1—hy) —p 0,
t=2 =2
and so

.
T2 =T 22 (g1 h_1)?+ 0p(D).
t=2

(A-3)
Finally, on substituting fors in the expression foé2 and simplifying we obtain
62 =T, - T 121
=T M, — T M2 1+ T (f,— fy).
Next, note that

T - T H2 T = (T2 T 32— 1)

ST — )L+ T 2T 26) 7Y

and becaus®& ~*(f, — f,) is Op(1) in view of (A.2), T2f,(T 2f))"* -, 1. Sq
T, — T2 L= —2T 1(f,— f,) + 0,(1).

(A.4)
Also,
T Hfo—f) =T 'e2-T
=T Xgr —h)? =T (g, — h)? +0,(D). (A.5)
It is straightforward but tediousto establish the following limits
T
T

(G—1—h—1AG —qy,
t=2

.
T2 Z (G1— he1)® > 0,
t—2

T Ygr—hr)2 - as,

T gy —h)? -,
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where
0. = —k2L—-7){1+67(r — I} —k372(1—7)2(1— 27)/2
+ Ky Ko7 (1= 7)(1 = 57 + 572),
G=kr(1-7){1-3r1-7}+k3r3(1-1)%3
+ ki ko t2(1—7)2(27 - 1),
Os = {ky7(31 — 2) + ky73(1L— 7)}?
Qs = {ki(1—7)Br —1) + k7 (1—7)2}2

Using these resulfgsogether with(A.2)—(A.5), we find

T Hh—f) =g — 1+ ) (A.6)
T72f1 %p q2s
62—, =20, + 03— Qs+ 2(1+ ¢p) L (A7)

Simplifying this last expression fa# 2 we obtain
G% > ki+2(1+ @)t (A.8)

Substituting(A.6)—(A.8) into the expression foDF given by (A.1), and rearranging
gives

DF —, {k? +2(1+ ¢) 1} 20, V2{oy — (1 + ) ).

https://doi.org/10.1017/50266466600165077 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466600165077

