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This paper analyzes the limiting behavior of Dickey–Fullert-tests when the true
generating model is stationary around a broken linear trend+ The cases of a break
in level and a break in slope are considered separately and found to generate qual-
itatively different outcomes+ In the asymptotic analysis, appropriate normaliza-
tions are applied to the break sizes+ This leads to theoretical results that generate
interesting predictions for sample sizes and break amounts of practical interest+
Simulation evidence confirms the value of this approach to an asymptotic theory+

1. INTRODUCTION

Following the seminal work of Perron~1989! there has been considerable theo-
retical and empirical interest in the impact of a structural break on Dickey–
Fuller tests for unit autoregressive roots+ Perron demonstrated that, in the
presence of a break under the trend stationary alternative, the test could fre-
quently fail to reject the unit root null hypothesis when allowance for the break
was not made+ It was further demonstrated for previously analyzed data sets
that dramatic test result reversals could occur when such allowance was made+
Leybourne, Mills , and Newbold~1998! and Leybourne and Newbold~1998!
have demonstrated the “converse Perron phenomenon”—that spurious rejec-
tions of the null hypothesis can occur when the true generating process has a
unit autoregressive root, but with a relatively early break+

In this paper we consider the case where the true generating process is sta-
tionary around a broken linear trend, as analyzed by Perron~1989! and more
recently by Montanes and Reyes~1998, 1999!+ The latter authors derived lim-
iting values for the Dickey–FullerT~ [r 2 1! statistic and for thet-ratio variant
of the test+ Here we shall concentrate on thet-ratio statistic, which is by far the
more frequently used variant in practical applications+ Our approach differs from
that of Montanes and Reyes in that in our asymptotics we employ what we
claim are more appropriate and revealing normalizations for the break size+ Spe-
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cifically, for a break in level we let the break size be proportional toT 102,
whereas for a break in slope we consider a break size proportional toT2102,
whereT is the number of observations in the time series+ We view these nor-
malizations as appropriate because, as shown by Leybourne and Newbold~1998!,
their imposition in the case of a break under the unit root null hypothesis leads
to limiting distributions for the test statistics that differ from the Dickey–Fuller
distribution, predicting the “converse Perron phenomenon” noted by Leybourne
et al+ ~1998!+ Our asymptotic analysis generates predictions of what might be
found in practice for sample sizes and break magnitudes of interest, and these
predictions are assessed through simulation experiments+

Our generating model for a time seriesyt is

yt 5 dt 1 nt ,

nt 5 fnt21 1 «t , t 5 1, + + + ,T, (1)

where6f6 , 1 and the«t are independently and identically distributed distur-
bances with mean zero and standard deviations+ For a model incorporating
both a break in level and a break in slope we definedt as

dt 5 d1t 1 d2t , (2)

whered1t is the level break component given by

d1t 5 0, t # tT,

5 sk1T 102, t . tT

andd2t is the slope break component given by

d2t 5 0, t # tT,

5 sk2T2102~t 2 tT !, t . tT,

with t representing the break fraction+

2. ASYMPTOTIC BEHAVIOR OF THE DICKEY–FULLER TEST

Let et denote the residuals from regressingyt on an intercept and time trend+
Then, the Dickey–Fuller statistic is thet-ratio associated with the regression of
et on et21+We denote this statistic asDF+ The following theorem gives the prob-
ability limit of DF+

THEOREM 1+ Under the model~1! and ~2!,

DF rp $k1
2 1 2~11 f!21%2102q2

2102$q1 2 ~11 f!21%,
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where

q1 5 2k1
2~12 t!$11 6t~t 2 2

1
2!% 2 k2

2t2~12 t!2~12 2t!02

1 k1k2t~12 t!~12 5t 1 5t2!,

q2 5 k1
2t~12 t!$12 3t~12 t!% 1 k2

2t3~12 t!303

1 k1k2t2~12 t!2~2t 2 1!+

The proof of this result is given in the Appendix+
Montanes and Reyes~1998! also allow for simultaneous changes in level

and slope, but their approach differs from ours in two respects+ First, setting
without loss of generalitym1 5 b1 5 0 in their equation~2!, that equation be-
comes, in our notation,

yt 5 ~m2 1 b2tT !DUt 1 b2~t 2 tT !DUt 1 nt , (3)

whereDUt is one if t . tT and zero otherwise+ Thus, for largeT, m2 in ~3! is
irrelevant, so that in our terminology asymptotically this generating model rep-
resents a level shift oftT times the amount of the slope shift+ Nevertheless,
settingk1 5 tk2 in our Theorem 1 does not give the result of Theorem 2 of
Montanes and Reyes~1998!+ This is because of the second distinction between
the two approaches+Whereas fixingb2 in ~3! implies a level shift ofO~T ! and
a slope shift ofO~1!, fixing k1 andk2 in our approach implies a level shift of
O~T 102! and a slope shift ofO~T2102!+ A consequence of the higher order shifts
in Montanes and Reyes is that their Theorem 2 implies a probability limit for
the Dickey–Fullert-statistic that depends only on the break fraction and not on
either the break magnitude or the autocorrelation structure ofnt + By contrast,
even whenk1 5 tk2 is substituted in our Theorem 1, the result is a function of
both k2 andf+

Probability limits for the Dickey–Fuller test statistic for any combination of
level and slope shifts can be obtained by substituting the corresponding values
of ~k1, k2! in Theorem 1+ However, because the impacts of breaks in level and
slope turn out to be qualitatively different, it is useful to consider them sepa-
rately+ To analyze the effect of a level break only, we substitutek2 5 0 in Theo-
rem 1+

COROLLARY 1+ In the case where the model contains only a level break,

DF rp 2@c1
2~2 1 c1

2!t~12 t!$12 3t~12 t!%#2102

3 @11 c1
2~12 t!$11 6t~t 2 2

1
2!%#

with c1 5 6k16~1 1 f!102+

This limiting function is graphed in Figure 1 forf 5 0+9 and different values
of k1 and t+ This graph reveals the Perron phenomenon as the parameterk1

determining the break size increases with fixedf+ ~More generally, as is clear
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from Corollary 1, the impacts ofk1 andf are subsumed in the single parameter
c1+! As k1 increases, the shape of the graph of probability limits begins to de-
pend quite strongly on the break fractiont, and one would conjecture that in
practice the Perron phenomenon would be least manifest, if at all, for the ear-
liest breaks+

The case of a break only in level is analyzed by Montanes and Reyes~1999!+
Their approach differs from ours in that they hold the break magnitude fixed,
whereas in our analysis that magnitude isO~T 102!+ Proposition 1 of Montanes
and Reyes then shows that, asymptotically the test statistic has the Dickey–
Fuller distribution under the null hypothesis and diverges to2` under the al-
ternative+ Thus, if the break magnitude isO~1! the analysis fails to reveal both
the “converse Perron phenomenon” of Leybourne et al+ ~1998! under the null
hypothesis and the Perron phenomenon under the alternative+

Next we turn to the case of a break only in slope, where, as we shall see, the
prediction for rejections of the null hypothesis is somewhat different from the
previous case+ The required result is obtained by settingk1 5 0 in Theorem 1+

COROLLARY 2+ In the case where the model contains only a slope break,

DF rp ~2
3
2!102 @~2

1
2!c2$t~12 t!%102~2t 2 1! 2 c2

21$t~12 t!%2302#

with c2 5 6k26~1 1 f!102+

The limiting function is graphed in Figure 2 forf 5 0+9 and different values
of k2 and t+ It is interesting to compare our Corollary 2 with Theorem 1 of

Figure 1. Limit distribution of DF under level break: f 5 0+9+
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Montanes and Reyes~1998!, based on the same generating model+ The ap-
proaches differ in that Montanes and Reyes hold the break size constant with
increasingT, then finding thatT2102DF has a finite probability limit, with DF
diverging to2` for t , 0+5 and to` for t . 0+5+ Presumably their result
could be interpreted as predicting very frequent rejections when the break is in
the first half of the series and very infrequent rejections when the break is
in the second half+ By contrast, Figure 2 suggests somewhat richer insight+Again
the parametersc2 5 6k26~1 1 f!102 and t are crucial+ For fixed f, as k2 in-
creases for a break in the latter part of the series, the probability limit of the
test statistic increases dramatically, suggesting that the null hypothesis will vir-
tually never be rejected unlesst is very close to one, in agreement with Mon-
tanes and Reyes~1998!+ Of course, this is precisely the phenomenon predicted
by Perron~1989!+ However, notice that the curves in Figure 2 cross ast falls
below 0+5, so that we would expect to find in this regionmorerejections of the
null hypothesis as the parameterk2 determining the break size increases+ Fi-
nally, as k2 increases so does the slope of the probability limit curves in the
region 0+2 , t , 0+5+ Moreover, in this region, the probability limits of the
Dickey–Fuller statistic are quite close to the nominal 5% critical value for
the test~23+41, Fuller, 1996, p+ 642!+We might therefore predict ast increases
in this region a rapid shift from very many to very few rejections of the null
hypothesis+ Moreover, this transition is well short oft 5 0+5, unlessk2 be-
comes extremely large—effectively, the special case considered by Montanes
and Reyes~1998!+

Figure 2. Limit distribution of DF under slope break: f 5 0+9+
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3. SIMULATION EVIDENCE

We conducted simulation experiments using the break under the alternative
model~1!, ~2! for series ofT 5 200 observations, with «t generated as standard
normal andf 5 0+9+ For t ranging from 0+01 to 0+99 in steps of 0+01, the
empirical rejection frequencies ofDF at the nominal 5% level, based on 5,000
replications, were recorded+ For this case, when there is no breakDF rejects
the null hypothesis for 66% of all series at the 5% level+ Thus, our simulations
allow scope for detecting values oft for which rejection frequencies are either
much higher or much lower than this baseline case+

Figure 3 shows the results for the break in level model, with k1 taking the
same values as in Figure 1, so that the actual break amounts are 14+14k1+ As
predicted, for almost all values of the break fractiont, the Perron phenomenon
becomes increasingly manifest with growingk1+ The only exception is when
the break occurs in the first 5% of the series, when the null hypothesis is re-
jected more frequently than in the no break case+ This possibly might be antici-
pated from the asymmetry of Figure 1+

Figure 4 shows the results for the break in slope model, with k2 taking the
same values as in Figure 2, so that the actual break amounts are 0+0707k2+ As
predicted by the theory, this case is quite different and rather more interesting
than the break in level case+ First note, for breaks in the first half of the series,
there is a range in which the rejection frequency is higher than in the no break
case+ Both the width of that range and the frequency of rejections within the

Figure 3. Rejection frequency ofDF under level break: f 5 0+9, T 5 200+
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range increase withk2+ However, particularly for the largest values ofk2 there
is a very steep climb from virtually 100% rejections to almost no rejections+
Again, this is not unexpected given the results shown in Figure 2+ ~Notice also
that as the break size increases the part of the upper interval fort in which
there is an appreciable number of rejections narrows+! Thus, by contrast with
the break in level case, we might say that, whereas the Perron phenomenon is
manifest for large breaks for break fractions above some amountt*, it rapidly
evaporates for break fractions below that amount+ The precise value oft* de-
pends on the break size and more generally according to our theoretical predic-
tions on6k26~1 1 f!102+ However, for cases of practical interest, t* can clearly
be well below 0+5+

4. CONCLUSIONS

We have analyzed the Perron phenomenon—that is, the failure to reject the
unit root null hypothesis given a generating model that is stationary around a
broken trend+ The cases of a break in level and break in slope have been ana-
lyzed separately, their impacts being shown to be qualitatively quite different+
Imposing appropriate normalizations on the break sizes allows an asymptotic
theory that makes interesting predictions+ Of course, because the theoretical
values thereby obtained are probability limits of test statistics, they cannot be
expected to perfectly mirror what will be found in practically interesting cases
where test statistics have nontrivial finite sample distributions+ Taken at face

Figure 4. Rejection frequency ofDF under slope break: f 5 0+9, T 5 200+
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value, the results would predict rejection frequencies of either 0% or 100%,
depending on whether the probability limits were above or below the nominal
critical values+ Nevertheless, the shapes of the curves in Figures 1 and 2 are
suggestive of patterns that might be found in moderate-sized samples and so
are valuable in prompting simulation experiments+ Our experimental results are
on the whole unsurprising on the basis of our asymptotic theory, it being pos-
sible to anticipate, at least qualitatively, the findings of Figures 3 and 4, given
the results of Figures 1 and 2+ Overall, the conclusion is that when a break
occurs no less than halfway through a series the Perron phenomenon is appar-
ent on the obvious basis—that is, relatively few rejections of the null and, the
larger the break, all else equal, the fewer the rejections+ This picture is rather
different for breaks in the first half of the series, where it is entirely possible
that the Perron phenomenon will not be observed+ The precise picture here de-
pends on the nature and size of the break+
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APPENDIX

Proof of Theorem 1. Because the limit ofDF is invariant tos, we may, without
loss of generality, sets 5 1+ Regressingyt on an intercept and time trend, and denoting
the residualset , we have

et 5 ht 1 gt 2 ht ,

where

gt 5 ~dt 2 Nd!,

ht 5 ~t 2 +t ! (
t51

T

~t 2 +t !dt H(
t51

T

~t 2 +t !2J21

,
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andht is the stationary AR~1! processnt demeaned and detrended+ Defining

f0 5 (
t52

T

et
2, f1 5 (

t52

T

et21
2 , f2 5 (

t52

T

et et21,

the two-step variant of the Dickey–Fuller statistic, DF, is then given by

DF 5 ~ [s2f1
21!2102~ [r 2 1!

5 [s21~T22f1!2102T21~ f2 2 f1! (A.1)

with [r 5 f2 f1
21 and

[s2 5 T21 (
t52

T

~et 2 [ret21!2 5 T21f0 1 [r2T21f1 2 2 [rT21f2+

First, consider the term

T21~ f2 2 f1! 5 T21 (
t52

T

et21 Det

5 T21 (
t52

T

ht21 Dht 1 T21 (
t52

T

~gt21 2 ht21!D~gt 2 ht !

1 T21 (
t52

T

ht21 D~gt 2 ht ! 1 T21 (
t52

T

~gt21 2 ht21!Dht +

Under~2! it is straightforward to show that

T21 (
t52

T

~gt21 2 ht21!Dht r 0, T21 (
t52

T

ht21 D~gt 2 ht ! rp 0,

T21 (
t52

T

~gt21 2 ht21!Dht rp 0+

So,

T21~ f2 2 f1! 5 T21 (
t52

T

ht21 Dht 1 T21 (
t52

T

~gt21 2 ht21!Dgt 1 op~1!+ (A.2)

Moreover, from the standard properties of stationary AR~1! processes

T21 (
t52

T

ht21 Dht rp 2~11 f!21+
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Next, consider the term

T22f1 5 T22 (
t52

T

et21
2

5 T22 (
t52

T

ht21
2 1 T22 (

t52

T

~gt21 2 ht21!2 1 2T22 (
t52

T

ht21~gt21 2 ht21!+

Clearly

T22 (
t52

T

ht21
2 rp 0, T22 (

t52

T

ht21~gt21 2 ht21! rp 0,

and so

T22f1 5 T22 (
t52

T

~gt21 2 ht21!2 1 op~1!+ (A.3)

Finally, on substituting for [r in the expression for[s2, and simplifying, we obtain

[s2 5 T21f0 2 T21f2
2 f1

21

5 T21f1 2 T21f2
2 f1

21 1 T21~ f0 2 f1!+

Next, note that

T21f1 2 T21f2
2 f1

21 5 ~T22f1!21T23~ f1
2 2 f2

2!

5 2T21~ f2 2 f1!$11 T22f2~T22f1!21%

and becauseT21~ f2 2 f1! is Op~1! in view of ~A+2!, T22f2~T22f1!21 rp 1+ So,

T21f1 2 T21f2
2 f1

21 5 22T21~ f2 2 f1! 1 op~1!+ (A.4)

Also,

T21~ f0 2 f1! 5 T21eT
2 2 T21e1

2

5 T21~gT 2 hT !2 2 T21~g1 2 h1!2 1 op~1!+ (A.5)

It is straightforward, but tedious, to establish the following limits:

T21 (
t52

T

~gt21 2 ht21!Dgt r q1,

T22 (
t52

T

~gt21 2 ht21!2 r q2,

T21~gT 2 hT !2 r q3,

T21~g1 2 h1!2 r q4,
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where

q1 5 2k1
2~12 t!$11 6t~t 2 2

1
2!% 2 k2

2t2~12 t!2~12 2t!02

1 k1k2t~12 t!~12 5t 1 5t2!,

q2 5 k1
2t~12 t! $12 3t~12 t!% 1 k2

2t3~12 t!303

1 k1k2t2~12 t!2~2t 2 1!,

q3 5 $k1t~3t 2 2! 1 k2t2~12 t!%2,

q4 5 $k1~12 t!~3t 2 1! 1 k2t~12 t!2%2+

Using these results, together with~A+2!–~A+5!, we find

T21~ f2 2 f1! rp q1 2 ~11 f!21, (A.6)

T22f1 rp q2,

[s2 rp 22q1 1 q3 2 q4 1 2~11 f!21+ (A.7)

Simplifying this last expression for[s2, we obtain

[s2 rp k1
2 1 2~11 f!21+ (A.8)

Substituting~A+6!–~A+8! into the expression forDF given by ~A+1!, and rearranging,
gives

DF rp $k1
2 1 2~11 f!21%2102q2

2102$q1 2 ~11 f!21%+
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