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SUMMARY
This paper presents a novel systematic approach to
identify the dynamic parameters of robotic manipulators.
A sequential identification procedure is first proposed to
deal with the difficulties usually encountered with standard
approaches. An all-accelerometer inertial measurement unit
(IMU) is also suggested to estimate the joint velocities
and accelerations, which are traditionally obtained by
differentiating the joint positions. The IMU kinematics and
the computation method for estimation joint motion from
IMUs are provided. The proposed method yields promising
results in improving the identification precision compared
to conventional methods. Finally, practical experiments are
conducted to validate the theoretical results.

KEYWORDS: Robot dynamics; Dynamic identification;
Robotic manipulator; Serial robot; Inertial measurement.

1. Introduction
The dynamic model of a robot is essential in simulating its
motion, implementing a model-based control strategy and
developing accurate path planning algorithms.15,18 Although
the equations of motion can be derived by using either
Newton–Euler or Lagrange methods with the help of a
symbolic computation software, the actual inertial and
frictional dynamic parameters of the mechanical system
are not easily quantifiable. Computing their values from a
CAD model is only approximative because of the numerous
components with irregular shapes and unmodeled parts
made of a variety of materials. Moreover, disassembling
the robot to estimate the inertial parameters of its
individual components by pendulum tests or Mass Properties
Measurement Instruments1 is also impractical in general. In
the late 1980s, significant contributions were made to the
identification of dynamic parameters via the standard least
square technique.5,9,16 This approach relies on formulating
the dynamic model of the manipulator in a form linear with
respect to the parameters to be identified. Experiments are
then conducted to collect data of generalized forces and joint
motions while the manipulator executes a trajectory. Using
these measurements, the dynamic parameters are estimated
using linear regression techniques. When conducting
such experiments, it is essential to design an “exciting”
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trajectory which guarantees accurate parameter estimation
in the presence of disturbances such as measurement
noise.1,7,13,17

To date, the dynamic identification of robotic systems is
far from a solved problem. There are several hindrances
that prevent one from obtaining a satisfactory estimation.
The first difficulty arises from an unreliable account of
friction effects, which are usually significant. With nondirect-
drive robots, an average of 25 % of the driving torque
supplied by the actuators is used to overcome friction.4

Friction forces depend on the mechanical construction of
each drive, the lubrication conditions, the type of contact
between the parts, and the magnitude of the relative velocity
between contacts.11 Moreover, friction forces also depend
on the forces and moments in the components, which are
complex functions of time. Therefore, the joint friction
forces exhibit highly nonlinear characteristics and are usually
extremely difficult to model. In practice, however, a simple
model is usually considered to account for joint friction.
This model is however often inaccurate and sometimes
problematic.12 Second, with the classical identification
method, the computation of joint velocities and accelerations
through differentiation of the (noisy) joint position signals
yields significant errors into the identification process.10,19

Third, the difficulty in the general approach proposed in
the literature and briefly recalled in Section 2 is that for
complicated dynamic models it requires the computation
of the generalized inverse of a very large matrix (i.e., the
regressor). Trying to identify a large number of parameters
simultaneously with this method is prone to generate
numerical errors. Finally, planning the exciting trajectories
for a complex robotic system is a challenging task with
the growing number of variables.8 Thus, the difficulties
arising from modeling, trajectory planning, and identification
processes might result in unreliable results.

In this paper, a systematic approach is proposed to
overcome the aforementioned difficulties. In this approach,
dynamic parameters are identified sequentially: joint friction
models are initially obtained; then, gravity parameters
are identified; finally, the other parameters are estimated.
Therefore, the dynamic parameters are identified in three
steps using a reduced amount of data and complexity at
each step. Moreover, inertial measurement unit (IMUs)
are shown to allow for a more precise estimation of
the joint velocities and accelerations than the numerical
differentiation technique.
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2. Parameter Identification

2.1. General procedure
To identify dynamic parameters, obtaining the dynamic
model in close form is the first step. Lagrangian or Newton–
Euler formulation can be used to this aim. A symbolic
computation software is generally desirable to carry out the
manipulations efficiently and reliably. Without any loss of
generality, the dynamic equation for a manipulator can be
written as

τ = D(q)q̈ + C(q, q̇)q̇ + G(q) + τ f , (1)

where D(q) is called the inertia matrix, C(q, q̇) consists of
centrifugal and Coriolis terms, G(q) accounts for gravity
terms, and τ f models friction effects. Joint positions,
velocities, accelerations and torques are respectively
denoted by q = [θ1, . . . , θn]T , q̇ = [θ̇1, . . . , θ̇n]T , q̈ =
[θ̈1, . . . , θ̈n]T , and τ = [τ1, . . . , τn]T , with a n degree-of-
freedom (DOF) manipulator. Equation (1) contains various
parameters. First, there are the manipulator geometric
parameters. Usually the Denavit–Hartenberg convention is
used, which consists of link lengths, offsets, and relative
orientations of joint axes. Second, there are the inertial
parameters, which, for the ith link, can be defined by the
vector
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i mir

y

i mir
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i I xx
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the Cartesian components of the first-order mass moment;
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i , and I zz
i are the components of the

associated inertia tensor.
Next, there are friction terms. Usually, a mathematical

model including the Coulomb and viscous coefficients is
used to model friction. However, this model is not always
satisfactory due to the reasons discussed in the introduction.
Therefore, this paper proposes a new and more general
method to model joint friction as detailed in Section 2.2.1.

Finally, the rotor inertia of the actuator requires a special
attention. The latter, including the inertia of the transmission,
is usually replaced by an equivalent inertia which is added to
the link inertia, namely,

I zz
i = I zz

l,i + N2
i Im,i , (2)

where I zz
l,i is the inertia of the ith link around the associated

joint axis, Im,i is the rotor inertia of this joint axis, and Ni

is the transmission ratio of its reduction stage. However,
this simplification is in fact improper,17 because the inertial
force of the rotor only depends on the angular acceleration
of its joint, but that of the link itself also depends on angular
accelerations of both the joint considered and all the previous
joints. To include exact influence of these rotor inertias, they
have to be regarded as a separate set of parameters in the
model. Fortunately, the values of the rotor inertias are usually
provided by the manufacturers and therefore have not to be
identified. Taking all relevant parameters into account, the
dynamic parameters associated with the ith link is defined as

a 11th-dimensional vector, namely,

ηi =
[

ιi
Im,i

]
.

An important property of Eq. (1) is that it can be formulated
linearly with respect to the dynamic parameters if the inertial
tensor of each link is expressed relatively to the origin of its
attached frame.9 Using this technique, one obtains

τ = K(q, q̇, q̈)φ + τ f , (3)

where K(q, q̇, q̈) is an n × 11n matrix, while φ =
[ηT

1 . . . ηT
n ]T , and τ f = [τf,1, . . . , τf,n]T . In fact, not all

parameters in φ contribute to the joint torques. As an
example, the first link of many common robot architectures
only rotates about a vertical axis. In this case, the only
dynamic parameter of the link influencing the joint torque
is its moment of inertia about this vertical axis. Therefore,
many dynamic parameters can actually be discarded from
Eq. (3). Furthermore, the remaining dynamic parameters
must be regrouped in order to eliminate linear dependencies
in K before using least square (LS) estimation. Eventually,
the vector φ can be replaced by a vector of base parameters
π , and the matrix K can be replaced by the corresponding
reduced matrix H without losing any information from a
dynamic perspective. Thus, one obtains

τ ′ = H(q, q̇, q̈)π , (4)

where τ ′ = τ − τ f and π = [π1 π2 . . . πb]T with (b ≤
11n). A method to determine the base parameters for
common serial manipulators whose successive axes are
perpendicular or parallel is proposed in refs. [6, 8].

With conventional methods, the base parameters π are
identified simultaneously by a LS estimation technique. To
this purpose, data of joint positions, velocities, accelerations
and torques are recorded w times during a trajectory executed
by the manipulator (with wn > b). Using recorded data,
Eq. (4) is written for each time sample and assembled into

� =

⎡
⎢⎢⎢⎢⎢⎣

τ ′
1

τ ′
2

...

τ ′
w

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

H1

H2

...

Hw

⎤
⎥⎥⎥⎥⎥⎦ π = �(H)π , (5)

where �(H) is called a regressor. Then, π can be estimated
by

π̂ = (�T �)−1�T � = �I�, (6)

where π̂ is the LS estimate of the true value π , and �I is the
pseudo-inverse of �. Of course, the numerical computation
of π̂ is difficult due to the (generally) huge dimensions of �.

2.2. Sequential identification
2.2.1. Modeling of joint friction. In general, friction torque
is considered as a nonlinear discontinuous function of joint
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Fig. 1. Joint friction torque with respect to joint positions and
velocities.

velocity including Coulomb and viscous effects. However,
friction in robotic joints also depends on stiction,
asymmetries, and downward bends.3 In this paper, a m-
order polynomial model in terms of the joint positions and
velocities is used to account for some of these factors, i.e.,
one has,

τf,i =
m∑

j=0

cj (θ̇ )θj . (7)

An experimental procedure can be carried out to identify the
parameters of this friction model, namely the polynomial
coefficients cj . First, the joint friction is obtained as a
function of joint position at different joint velocities as
illustrated in Fig. 1. Then a m-order polynomial can be used
to fit the friction torque data at a constant velocity θ̇j , i.e.,

τf,i(j ) = c∗
0(θ̇j ) + θc∗

1(θ̇j ) + · · · + θmc∗
m(θ̇j ), (8)

where c∗
j (θ̇j ) with j from 0 to m are the coefficients

numerically obtained (they are different from those used
in Eq. (7)). One can repeat this procedure for n different
velocities to obtain a vector representation, i.e.,

τ f,i = c∗
0 + θc∗

1 + · · · + θmc∗
m. (9)

In turn, the elements in c∗
j can be used to compute a l-order

polynomial approximating these coefficients over the range
considered, namely,

cj =
l∑

r=0

dj,r θ̇
r, (10)

and one obtains the joint friction model described in Eq. (7).
In addition, m and l can be increased according to the
complexity of the friction profile until the following criterion
is met, i.e.,

max
ws

(∣∣∣∣τf,i − τd,i

τd,i

∣∣∣∣
)

≤ β, (11)

where τd,i is the data of the measured friction torque, β

is a threshold value, and ws is the workspace in position
and velocity considered. Equation (11) measures how well
the obtained friction model fits the experimental data. It

Fig. 2. ith joint in an arbitrary orientation.

should be noted that this equation becomes numerically ill-
conditioned as τd,i approaches zero. In this case, the criterion
can be revised to another form, e.g., without the denominator
in the left side of Eq. (11).

2.2.2. Identification of joint friction. In our sequential
identification process, friction models for each joint of the
robot are constructed one by one. To illustrate this process,
a general case, where the axis of the ith joint (assumed to
be revolute) is skew with respect to the gravity vector g, is
illustrated in Fig. 2. It is desired to model the friction acting on
this joint using the methodology presented in Section 2.2.1.
All the other joints of the robot are considered locked. In
this situation, gravity effects have to be removed in order to
identify joint friction. A frame i ′ (X′

iY
′
i Z

′
i) is rigidly attached

to link i − 1 and coincides with the rotating link frame i

(XiYiZi) when the joint angle θ is zero. The first-order mass
moment of the structure starting from this joint to the last
body of the robot is noted ξ = [ζρx ζρy ζρy]T expressed in
the frame i, where ζ denotes the mass of the structure and
ρx, ρy, ρz are the coordinates of its center of mass. When this
joint is rotated while the other joints are locked, the gravity
torque exerted on the joint is

τp = eT
z (g × ξ ) = aT pξ , (12)

with ez = [0 0 1]T , g is the vector of gravitational acceleration
with respect to frame i ′, and

a =
[

gT ex sin θ − gT ey cos θ

gT ex cos θ + gT ey sin θ

]
, (13)

pξ =
[

ζρx

ζρy

]
, (14)

where ex = [1 0 0]T and ey = [0 1 0]T .
The joint i is then rotated with a constant velocity (hence,

inertial forces are zero) in the following two tests: #1) from
θini to θfin; #2) from θfin to θini, as illustrated in Fig. 3. In test
#1, the joint torque required to drive the load is τ1 = τp + τf .
Whereas, in test #2, the joint torque becomes τ2 = τp − τf .
Using τ1 and τ2, it is trivial to obtain the torque due to
gravity:

τp = τ1 + τ2

2
. (15)
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Fig. 3. Gravity torque estimation.

Thereupon, τp is known at each time sample and can
be substituted into Eq. (12). Using LS estimation, one
can identify pξ . It should be noted that the purpose of
identifying pξ is solely to remove gravity effect caused by
ξ ; this procedure has nothing to do with the identification of
gravity parameters discussed in Section 2.2.3. Moreover, the
direction independence of the joint friction is assumed in the
estimation of τp of Eq. (15).

Now the identification of joint friction can be handled.
The joint is controlled to follow different trapezoidal velocity
profiles in many trials with different values in the constant
part of the profile. During each trial, the joint angles and
torques are recorded. In these tests, τp can be computed by
Eq. (12) with the identified value of pξ . The joint friction
torques are thereupon easily calculated by the following
equation:

τf = ±(τi − τp), (16)

where τi denotes the joint torque.
With the data of joint angles, velocities and friction

torques, the procedure developed in Section 2.2.1 is used
to obtain the friction model for the ith joint. Eventually, one
can construct friction models for all the joints by repeating
the proposed procedure sequentially. Thereupon, the friction
torques can be predicted with these models in further steps
of the parameter identification process.

2.2.3. Gravity parameters. The next step is to identify
gravity parameters. To this purpose, Eq. (4) can be
reformulated into

τ ′ = [
Hg Hr

] [
πg

π r

]
, (17)

where πg is a vector of the parameters in π associated with
gravity effects, and π r is the vector of all other parameters.
Again, if one joint is rotating with constant velocity while all
the others are locked, only the forces associated with gravity
and friction play a role in the dynamic model. Therefore,
Eq. (4) becomes

τ ′ = τ g = Hgπg. (18)

Using single joint motions (with constant velocities)
successively, e.g., from the last to the first joint and varying
the configuration of the joints locked, identifying πg can

be reduced to a LS estimation problem again similar to
Eq. (6), i.e.,

�(τ g) = �(Hg)πg. (19)

�(Hg) should have a small condition number to yield robust
estimates of πg .7 Therefore, prior to actual experiments, an
optimization regarding the angles of locked joints can be
performed to decrease the condition number of �(Hg) to the
smallest possible value. It can be done by minimizing the
cost function

f (q(t)) = cond(�(Hg)), (20)

subject to

|θi(t)| ≤ θi,max , (21)

where θi,max represents the ith joint limit and the operator
“cond” denotes the condition number of a matrix.

It has been discussed previously that the identification of pξ

differs from the identification of πg . However, the obtained
data for τp in Section 2.2.2 can be reused and substituted into
Eq. (19) for the identification of πg .

2.2.4. Inertial parameters. To identify π r , only a minimum
number of axes are actuated to collect data in order to reduce
the complexity of the experiment. To have some insights
on the number of axes required to undergo motions, let us
consider the detailed expression of Eq. (1), namely,

τk =
n∑

j=1

dkj q̈j +
n∑

j=1

ckj q̇j + gk(q) + τf,k

for k = 1, . . . , n, (22)

where τk denotes the actuation torque of joint k, dkj is the
(k, j )th component of the n × n inertia matrix D(q), gk is the
gravity term, τf,k is the friction torque, and

ckj =�
n∑

i=1

1

2

(
∂dkj

∂qj

+ ∂dki

∂qj

− ∂dij

∂qi

)
q̇i . (23)

Inspecting Eq. (23), one can conclude that the elements of
C(q, q̇) are functions of the parameters of the inertial matrix.
Hence, the dynamic parameters appearing in C(q, q̇) are also
found in D(q). When only joint k is actuated while the other
are locked, Eq. (22) becomes

τk = dkk(q)q̈k + ckk(q)q̇k + gk(q) + τf,k. (24)

It is worth noting that in Eq. (24) the second term ckkq̇k =
1
2

∂dkk

∂qk
q̇2

k should vanish since the centrifugal force is always
perpendicular to the axis rotated. Thus, one has

τk = dkkq̈k + gk + τf,k. (25)

Only the parameters in the diagonal elements of the inertia
matrix together with the gravity and friction terms appear
in Eq. (25). The off-diagonal elements of the inertial matrix
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are not present and therefore cannot be identified with this
method. Hence, solely moving one axis is not sufficient to
completely identify the dynamic parameters. If, at each time,
two axes are actuated and using different combination of
joints successively, all the parameters in π r will appear in
the equations of motion. Then, a LS technique can be again
setup to estimate π r with

� = �(Hr )π r . (26)

It is not necessary to use all the possible combinations (e.g.,
C2

6 = 15 in case of a six-DOF serial robot) of any two
joints for identifying π r . It is sufficient to take the number
of combinations required for �(Hr ) to have full rank. For
instance, it is possible to only move the first joint of a three-
joint planar manipulator while changing the configurations
of the other two joints to yield �(Hr ) full rank.

3. Joint Motion Estimation by IMUs
An IMU is the main component of the guidance system
used in vehicles, aircrafts and satellites. Most of current
IMUs are based on accelerometers and gyroscopes to sense
respectively the linear acceleration and the angular velocity.
These data are thereupon acquired by the controller of
the guidance system, calculating the navigation parameters,
i.e., the linear and angular velocities of the vehicle, and
subsequently, its coordinates. The authors proposed the
design of all-accelerometer IMUs to improve robustness of
these computations.14 In the sequential identification scheme
proposed in this paper, two axes of an n (n ≥ 6)-DOF
manipulator are required to move simultaneously. In order to
obtain accurate velocity and acceleration data for these two
joints, the robot can be equipped with two IMUs. Initially,
some necessary concepts regarding manipulator kinematics
must be introduced in order to implement these two IMUs.

To describe the location and orientation of each link
relative to its neighbors, a frame i is attached to the ith
link as shown in Fig. 2. The rotation between two adjacent
frames i and i + 1 can be described using the rotation matrix

i
i+1Q =

⎡
⎣ cθi+1 −sθi+1 0

sθi+1 cαi
cθi+1 cαi

−sαi

sθi+1 sαi
cθi+1 sαi

cαi

⎤
⎦ , (27)

where θi+1 is the joint angle and αi is the Denavit–Hartenberg
parameter describing the angle between the Z-axes of
respectively frames i and i + 1. Moreover, the rotation
between frame i and j can be expressed as the product of
each intermediate rotation matrices, namely,

i
j Q = i

i+1Q i+1
i+2Q · · · j−1

j Q. (28)

Two IMUs (a and b) are used to estimate joint velocities and
accelerations when the m and l (m < l) joints are rotating
simultaneously. As illustrated in Fig. 4, IMUa is attached
somewhere between joint m and joint l, whereas IMUb is
fixed to the end-effector. The reasons for this arrangement
are: IMUa has to be placed after joint m in order to estimate its

Fig. 4. IMU implementation.

motion; the motion of any joint between the end-effector and
the joint m can be conveniently estimated with the placement
of IMUb in the end-effector. First, let us consider estimating
the motion of joint m by IMUa. Due to this motion, IMUa is
subjected to an angular acceleration ω̇a = [ω̇a,1 ω̇a,2 ω̇a,3]T

computed from the outputs of IMUa. Since the joints before
m are locked, the direction of ω̇a is invariant, i.e.,

a ≡ [a1 a2 a3]T = 1

‖ω̇a‖ [ω̇a,1 ω̇a,2 ω̇a,3]T . (29)

In fact, a is the direction vector of the joint axis expressed in
the IMU frame. If joint m is driven with an acceleration
θ̈∗
m, the corresponding angular acceleration of IMUa is

denoted ω̇∗
a = [ω̇∗

a,1 ω̇∗
a,2 ω̇∗

a,3]T . Subsequently, any future
joint accelerations can be estimated as

θ̈m = θ̈∗
m

3

3∑
i=1

ω̇a,i

ω̇∗
a,i

. (30)

Similarly, the joint velocity can be determined as

θ̇m = ± θ̇∗
m

3

3∑
i=1

∣∣∣∣∣ ωi

ω∗
a,i

∣∣∣∣∣ , (31)

where θ̇∗
m is a reference joint velocity, ωi is the component of

angular velocity of IMUa, and ω∗
a,i is the same component

of angular velocity under the velocity θ̇∗
m. The sign of θ̇m is

uncertain and can be determined by using the differentiation
of the joint positions.14

The estimation of the motion of joint l is not so
straightforward. Before performing measurements, the
orientation of IMUb relative to the end-effector’s frame needs
to be obtained. To solve this issue, one can rotate solely joint
1 while the others are locked into various configurations to
obtain different orientations of the IMU. If the first joint is
rotating, the angular acceleration of IMUb can be obtained
from the IMU outputs and is denoted ω̇b = [ω̇b,1 ω̇b,2 ω̇b,3]T ,
the axis of the latter is

b = 1

‖ω̇‖ [ω̇b,1 ω̇b,2 ω̇b,3]T . (32)
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Clearly, b is the direction vector of the first joint axis
expressed in the IMU frame, i.e.,

1
nQRbb = [0 0 1]T , (33)

where 1
nQ is the rotation matrix from the first frame to the end-

effector frame (which is assumed to have the same orientation
as the frame of joint n) and Rb represents the transformation
from the end-effector frame to the IMUb frame. If there are
k tests with different configurations from the second to the
nth joint, one has[

1
nQ1Rbb1 . . . 1

nQkRbbk

]
= [ [0 0 1]T . . . [0 0 1]T ], (34)

which can be written as

RbB = M, (35)

where

M = [
1
nQT

1 [0 0 1]T . . . 1
nQT

k [0 0 1]T
]
, (36)

and

B = [ b1 . . . bk ]. (37)

Then, Rb can be solved from the previous equation, still using
a LS estimate:

Rb = MBT (BBT )−1. (38)

When joint m and l are rotating simultaneously, the angular
velocity and acceleration of link l with respect to frame l are
respectively{

ωl = l
mQωm + θ̇le,

ω̇l = l
mQω̇m + l

mQωm × θ̇le + θ̈le,
(39)

in which ωm = [0 0 θ̇m]T , ω̇m = [0 0 θ̈m]T , and e = [0 0 1]T .
In particular, θ̇m and θ̈m are obtained from Eqs. (30) and (31).

On the other hand, one has{
ωl = l

nQRbωb ,

ω̇l = l
nQRbω̇b ,

(40)

where ωb is the output of the angular velocity of IMUb. Then,
θ̇l and θ̈l are easily found from Eqs. (39) and (40), namely,

θ̇l = eT
(
l
nQRbωb − l

mQωm

)
, (41)

and

θ̈l = eT
(
l
nQRbω̇b − l

mQω̇m − l
mQωm × θ̇le

)
. (42)

It should be noted that ωb in Eq. (41) also has a sign
indetermination, which can be solved by referring to the
previous time samples (i.e., the differentiation of joint
angles).

Fig. 5. Experimental setup.

Finally, the proposed sequential identification approach is
summarized in the following chart,

Dynamic model derivation
(Symbolic computation software)

⇓
Friction estimation with Eqs. (7–16)

(Single joint motion)
⇓

Gravity parameters πg identification
with Eq. (19) (Single joint motion)

⇓
Inertial parameters π r with Eq. (26)

(Two-joint motion and IMU measurement)

4. Experimental Verification
To validate the method proposed in this paper, experiments
are conducted with two different simple setups: a one-joint
manipulator with skewed joint axis and a two-joint planar
manipulator. The experiment setup is illustrated in Fig. 5.
The actuator is a Maxon F2140 motor with a 100 counts
per revolution encoder and a 6:1 gearbox transmission. The
joint axis is skew to the gravity vector with an angle of
approximately 30◦.

4.1. One-joint manipulator
In the case of a one-joint manipulator with skewed joint
axis, the gravity effects have to be separated in the friction
identification process. According to the previously described
method, the joint is first controlled to follow a trajectory,
part of which has a constant velocity; then, the joint follows
the same motion in the reverse direction. Subsequently, the
data collected from these two trajectories are processed using
Eq. (15) to obtain τp. Illustrated in the first and the second
plots of Fig. 6 are the joint torque profiles when the joint
rotates in both directions. The estimated gravity torque is
displayed in the third and last plot of Fig. 6.

Then, a LS estimation of the first-order mass moment of
the link is formed by substituting the obtained data of the
gravity torque into Eq. (12). The results are listed in Table I
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Fig. 6. τp identification.

Table I. Identified gravity terms.

Identified value CAD value
(kg·m) (kg·m)

mrx 0.0090 0.0087
mry 0.0001 0

and compared with CAD values. By comparing both values,
the identification seems to provide reliable results.

After the identification of the gravity terms, experiments
to obtain joint friction model are performed. Each time,
the gravity-associated torque is subtracted from the joint
torque to obtain only friction torque data. Then, the procedure
detailed in Section 2.2.1 is followed to obtain the complete
model of joint friction (examples will be provided in the next
subsection).

Next, the inertia of the link is identified in two tests with
different groups of data. In test #1, the joint velocity and
acceleration is obtained by numerical differentiation of the
encoder data, whereas, in test #2, an accelerometer is used
to estimate the joint acceleration. Figure 7 illustrates some
sampled data from these two tests. The first plot is the joint
acceleration inferred from joint position data; the second
one is based on accelerometers; the third plot displays the
filtered signals which will be used in the identification. It

Fig. 7. Acceleration data to identify link inertia.

Table II. Identified link inertia (kg·m2).

Test 1 Test 2 CAD

0.0034 0.0022 0.0019

can be seen that the acceleration data inferred from the joint
encoder is very noisy due to discretization, resulting in large
uncertainty in the identification process. The identification
results from both tests are listed in Table II. The test using
acceleration measurement performs much better than the
numerical differentiation method in comparison with CAD
value.

Using the identified inertia value and the joint friction
model, the predicted actuator torque can be computed and
compared with the actual torque which is inferred from the
motor current. Figure 8 shows that the prediction of the joint
torque matches well with the measurement data. The root
mean square error (RMSE) of the actuator prediction is 8.16
(mNm). These results further validate the effectiveness of
our approach.

Furthermore, the simultaneous identification with the
proposed friction model using linear regression is
investigated. However, the condition number of the regressor
is found to be too large for the parameters to be identified
properly. For instance, if m and l are chosen to be 10 and
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Fig. 8. Compare the predicted actuator torque with the actual torque.

Table III. Results of the simultaneous identification.

Link inertia mrx mry Coulomb Viscous

0.0018 0.0095 −0.0004 0.0266 −0.0018

11 in Eqs. (7,9,10) for the friction model, there are elements
such as θ10θ̇11, θ9θ̇10, etc. in the linear system, which result
in an ill-conditioned regressor. Therefore, it is not practical
to use the proposed friction model in the simultaneous
identification approach. On the other hand, if a simple
Coulomb-viscous friction model is used, a simultaneous
identification can be conducted for comparison purposes.
The identified parameters are reported in Table III. The
prediction of the joint torque using these identified values
also matches well with the measurement data and the root
mean square error (RMSE) of the actuator prediction is 8.73
(mNm). However, the simultaneous approach yields a quite
different set of parameters as compared to the estimated and
CAD values presented in Tables I and II. Judging from the
CAD values, it seems that the proposed approach performs
better in this particular case, although CAD modeling errors
might impact the precision. Nevertheless, it is clear that the
choice of friction models yields a significant difference in the
identification results. Therefore, large identification errors
may result if the friction modeling is inaccurate.

4.2. Two-joint manipulator
Another experiment to identify the base parameters of a
two-revolute joint planar manipulator as shown in Fig. 9
is conducted to further examine our proposed approach. The
matrix H of Eq. (4) regarding this manipulator is

H = [
A1 A2

]
, (43)

Fig. 9. Experimental setup of the two-joint manipulator.

where

A1 =
[

θ̈1 θ̈1 + θ̈2 0
0 θ̈1 + θ̈2 θ̈2

]
,

A2 =
[

a21 a22

a23 a24

]
,

with

a21 = −(
2 θ̇1θ̇2 + θ̇2

2

)
l1 sin θ2 + (2 θ̈1 + θ̈2)l1 cos θ2,

a22 = −(
2 θ̇1θ̇2 + θ̇2

2

)
l1 cos θ2 − (2 θ̈1 + θ̈2)l1 sin θ2,

a23 = θ̇2
1 l1 sin θ2 + θ̈1l1 cos θ2,

a24 = θ̇2
1 l1 cos θ2 − θ̈1l1 sin θ2.

The vector of base parameters is

π =

⎡
⎢⎢⎢⎣

I zz
1 + N2

1 Im,1 + m2l
2
1

I zz
2

N2
2 Im,2

m2r
x
2

m2r
y

2

⎤
⎥⎥⎥⎦ , (44)

where l1 is the distance between the first and second joint.
All the other parameters are explained in Section 2.1.

The identification of the joint friction is first performed.
Since the manipulator is planar, the step to remove the gravity
effects using Eqs. (12)–(16) is skipped. The friction models
described by Eq. (7) for the two joints are obtained using
Eqs. (8)–(11). In particular, m and l in Eqs. (8) and (10)
are respectively set to 10 and 11 for both joints. Figure 10
shows the graphical representations of these two models
corresponding to experimental data.

Proceeding with the identification, the next step, i.e.,
estimating gravity parameters described in Section 2.2.3, is
again skipped since the manipulator is unaffected by the
latter.

Next, the inertial parameters are identified using the
method detailed in Section 2.2.4. Initially, data are collected
when only the first joint is rotated while the second
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Fig. 10. Friction models of (a) the first joint, and (b) the second
joint.

Table IV. Identified base parameters.

Identified value CAD value Unit

π1 0.0396 0.0388 (kg·m2)
π2 0.0021 0.0019 (kg·m2)
π4 0.0092 0.0087 (kg·m)
π5 0.0001 0 (kg·m)

joint is fixed in different positions. Specifically, velocities
and accelerations of the moving joint are estimated from
accelerometers attaching to the end of the first link. The third
element of vector π is given by the actuator manufacturer
and substituted into the identification process. Finally, π

is identified using Eq. (26), and the results for unknown
parameters are listed in Table IV. It can be seen that
the identification results are again close to the CAD
values.

5. Conclusion
A systematic, sequential identification method to identify
dynamic parameters of serial robots has been developed. The
proposed method consists in the parametrization of friction as
the function of both joint position and velocity, joint motion
estimation by IMUs, and a sequential procedure to identify
dynamic parameters. Experiments with this new joint friction
modeling method and acceleration measurements show
promising results when applied to the dynamic identification
problem.
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