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We report on the transition between two regimes of heat transport in a radiatively
driven convection experiment, where a fluid gets heated up within a tunable heating
length ` in the vicinity of the bottom of the tank. The first regime is similar to that
observed in standard Rayleigh–Bénard experiments, the Nusselt number Nu being
related to the Rayleigh number Ra through the power law Nu ∼ Ra1/3. The second
regime corresponds to the ‘ultimate’ or mixing-length scaling regime of thermal
convection, where Nu varies as the square root of Ra. Evidence for these two scaling
regimes has been reported in Lepot et al. (Proc. Natl Acad. Sci. USA, vol. 115, 2018,
pp. 8937–8941), and we now study in detail how the system transitions from one to
the other. We propose a simple model describing radiatively driven convection in the
mixing-length regime. It leads to the scaling relation Nu∼ (`/H)Pr1/2Ra1/2, where H
is the height of the cell and Pr is the Prandtl number, thereby allowing us to deduce
the values of Ra and Nu at which the system transitions from one regime to the
other. These predictions are confirmed by the experimental data gathered at various
Ra and `. We conclude by showing that boundary layer corrections can persistently
modify the Prandtl number dependence of Nu at large Ra, for Pr & 1.

Key words: turbulent convection

1. Introduction

In many geophysical and astrophysical flows, turbulent convection is driven
by local internal heating. For instance, the absorption of sunlight within the first
few metres of water inside frozen lakes induces convective mixing and penetrative
convection (Farmer 1975; Bengtsson 1996; Mironov et al. 2002; Jonas et al. 2003;
Lecoanet et al. 2015; Toppaladoddi & Wettlaufer 2018; Ulloa, Wüest & Bouffard
2018). A second example is the interior of stars, where, depending on the stellar
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mass, internal heating due to thermonuclear reactions can directly overlap with the
convective region (Kippenhahn & Weigert 1990; Barker, Dempsey & Lithwick 2014).
Inside Earth’s mantle, radioactive decay induces internal heating as well (Davaille,
Girard & Le Bars 2002; Limare et al. 2015). Finally, convection driven by a flux of
neutrinos within collapsing stellar cores is believed to affect the shape of supernovae
explosions (Herant, Benz & Colgate 1992; Janka & Müller 1996; Radice et al. 2016;
Kazeroni et al. 2018). To reproduce such convection in the laboratory, in a previous
study we introduced an experimental set-up in which a turbulent flow is driven by the
absorption of a flux of light (Lepot, Aumaître & Gallet 2018). A powerful spotlight
shines from below at an experimental cell with a transparent bottom plate. The cell
contains a mixture of water and dye, which absorbs the light flux and converts it
into heat. The heating is therefore localized near the bottom of the tank, on a typical
height ` that can be tuned through the concentration of the dye. We showed that when
` is much smaller than the boundary layers near the bottom of the tank, radiative
heating is similar to that of a standard Rayleigh–Bénard (RB) experiment, i.e., of
a plate heated at constant power (through a Boussinesq symmetry, the system is
equivalent to convection driven by uniform internal heating together with a fixed-flux
cooling upper boundary, as introduced by Goluskin (2015)). In terms of Nusselt and
Rayleigh numbers Nu and Ra (see (2.4) for definitions), we measured a power law
close to Nu ∼ Ra1/3, which corresponds to the regime of standard RB experiments
(Malkus 1954; Chavanne et al. 1997; Niemela et al. 2000; Chavanne et al. 2001;
Alhers, Grossmann & Lhose 2009; Roche et al. 2010): the heat transport efficiency
is restricted by the diffusion of heat across the marginally stable boundary layer
located near the bottom plate. The thickness of this marginally stable boundary layer
is independent of the height of the fluid layer, and so is the relation between the
heat flux and the temperature drop across the cell, hence the scaling law Nu∼ Ra1/3.
More interestingly, when ` is large enough for heat to be input directly into the
bulk turbulent flow, we observed that radiative heating leads to the mixing-length or
‘ultimate’ scaling regime, Nu ∼ Ra1/2, which corresponds to a fully turbulent regime
where the molecular diffusion coefficients are irrelevant (Kraichnan 1962; Spiegel
1963, 1971).

The goal of the present study is to understand the transition between these two
regimes: what happens for intermediate values of the heating length `? Indeed, as
compared to RB studies, our set-up has an additional dimensionless parameter: the
dimensionless absorption length `/H, where H denotes the height of the fluid layer.
What is the dependence of the Nusselt number on this new parameter? Dimensional
analysis leads to:

Nu=F(`/H, Ra, Pr), (1.1)

where Pr is the Prandtl number. Because `/H governs the transition between two
different scaling regimes, the relation (1.1) does not in general take the form of a
power law. However, once we are in a given scaling regime we can write (1.1) as a
power law:

Nu= const.
(
`

H

)β
RaγPrχ . (1.2)

In the following we propose simple models leading to predictions for the values of
the exponents β, γ and χ , before confronting these predictions with the experimental
data.

We introduce the experimental set-up in § 2. In § 3, we present the experimental data
for the Nusselt number, before introducing a simple model that predicts the scaling
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FIGURE 1. Radiatively driven convection in the laboratory: a powerful spotlight shines
from below at a cell containing a mixture of water and dye. This triggers volumic heating
near the bottom plate, over a typical length ` that can be tuned through the concentration
of the dye.

behaviour (1.2) in the ultimate regime, with the exponents β=1, γ =1/2 and χ =1/2.
We show that the experimental data are compatible with these values of β and γ . The
discussion § 4 focuses on the dependence in Pr, which cannot be probed within the
present experimental set-up. While the value χ = 1/2 should be achieved at low Pr,
a refinement of the model indicates that, for finite or large Pr, the injection of even
a tiny fraction of the radiative heat flux into the boundary layers could result in a
persistent modification of the exponent χ , while maintaining β = 1 and γ = 1/2.

2. Experimental set-up

2.1. Radiative heating in the laboratory
The experimental set-up is sketched in figure 1. It has been described in a previous
publication (Lepot et al. 2018) and we only mention its key characteristics here. A
2500 W metal-halide spotlight shines at a cylindrical experimental cell of radius
R = 10 cm containing a homogeneous mixture of water and carbon black dye. The
sidewalls of the tank are made of polyoxymethylene, while the bottom boundary is a
transparent sapphire plate. The light flux penetrates into the tank, where it is absorbed
by the dye and turned into heat. Beer–Lambert law states that the light flux inside
the tank then decreases exponentially with the height z measured upwards from the
bottom plate, and so does the heating rate. The bulk heating rate Q(z) inside the tank
therefore reads:

Q(z)= P
`

exp(−z/`), (2.1)

where P is the heat flux radiated by the spotlight in the form of visible light (in units
of W m−2). The absorption length ` is inversely proportional to the dye concentration.
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By changing the latter, we can achieve either standard RB heating, when ` is much
smaller than the boundary layer thickness, or significant heating of the bulk turbulent
flow, when ` is much greater than the boundary layer thickness.

2.2. ‘Secular’ cooling
A key aspect of the experiment is to avoid boundary layers at the cooling side
as well. Indeed, a fixed temperature cooling plate would produce standard boundary
layers restricting the heat flux. Because of this cold boundary layer, traditional studies
of internally heated convection have led to scaling laws similar to that of standard
RB convection (Kulacki & Goldstein 1972; Goluskin 2016). We follow a different
approach, inspired by the ‘secular heating’ invoked in many studies of convection
in Earth’s interior (Gubbins et al. 2003; Aubert, Labrosse & Poitou 2009; Landeau
& Aubert 2011): if we do not cool down the system, the temperature at any point
within the fluid drifts with time at a constant rate. On top of this linear drift, the
flow develops some stationary internal temperature gradients. If T(x, t) denotes the
temperature field inside the tank and T(t) its spatial average, one can show easily
that T(t) increases linearly in time at a rate proportional to the radiative flux of the
spotlight:

dT
dt
= P
ρCH

(1− e−H/`), (2.2)

where ρ is the average density of the fluid and C its specific heat capacity. The local
deviation from the mean temperature is θ(x, t)= T(x, t)− T(t). One can easily show
that the field θ(x, t) obeys the equations of Boussinesq convection for a fluid that
is radiatively heated and cooled uniformly in space. In particular, the heat equation
becomes:

∂tθ + u · ∇θ = κ∇2θ + 1
ρC

[
Q(z)− P

H
(1− e−H/`)

]
, (2.3)

where κ denotes the thermal diffusivity. On average over space, the uniform cooling
term – the second term in the square bracket – balances the radiative heating rate, so
that, after a transient, θ(x, t) reaches a statistically steady state.

2.3. Measurements and control parameters
We measure the internal temperature gradients using two thermocouples. The first one
touches the bottom sapphire plate and gives access to its temperature T1, while the
second one measures the temperature T2 at mid-depth inside the tank. Both probes
are centred horizontally. As discussed in the previous subsection, the measured
temperature difference 1T = T1 − T2 = θ1 − θ2 is governed by the Boussinesq
equations subject to both radiative heating and uniform ‘secular’ cooling.

Metal-halide spotlights cannot be operated over a large range of power. To scan a
broad range of Rayleigh numbers, we therefore vary the depth H of the fluid layer
from 4 cm to 19 cm. The second control parameter of the experiment is the dye
concentration, which allows us to vary the dimensionless absorption length `/H over
several orders of magnitude.

A typical experimental run consists in starting with the mixture of water and dye
around 8 ◦C before turning the spotlight on. Both temperatures increase with time,
and a stationary temperature difference between the two probes is achieved after a
few turnover times (roughly 200 s). We keep the part of the temperature signals
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FIGURE 2. Nusselt number as a function of the Rayleigh number for various values of
the absorption length `. At fixed Ra, the Nusselt number increases with `/H. Symbols are
A: `= 5× 10−6 m; ?: `/H= 0.0015; +: `/H= 0.0030;6: `/H= 0.0060; ∗: `/H= 0.012;
@: `/H = 0.024;D: `/H = 0.048;E: `/H = 0.05; C: `/H = 0.096. The solid and dashed
lines are eyeguides.

corresponding to a bottom temperature between ±2 ◦C of room temperature. We
average 1T over this time interval, and we extract the heat flux P from the slope
of the common temporal drift of the two signals (see (2.2)). We finally compute the
Rayleigh and Nusselt numbers as:

Ra= αg〈1T〉H3

κν
, Nu= PH

λ〈1T〉 , (2.4)

where α denotes the thermal expansion coefficient, g is gravity, ν is the kinematic
viscosity, λ is the thermal conductivity, and 〈·〉 denotes time average.

3. From the Rayleigh–Bénard regime to the mixing-length regime

We have performed several sets of experimental runs for various quantities of
dye, i.e., for various dimensionless absorption lengths `/H. We show in figure 2 the
corresponding Nu versus Ra curves. We also reproduce the data from Lepot et al.
(2018), where the absorption length is either `/H < 10−4, or `/H = 0.05. The former
case corresponds to a RB situation and displays a power law behaviour Nu∼ Ra0.31,
while for the latter case heat is input inside the bulk turbulent flow, which leads to
a power law Nu∼ Ra0.54 close to the prediction of Spiegel and Kraichnan. The new
data points span the transition region between these two limiting regimes. While the
curves for the lowest values of `/H are superimposed onto the RB case, for larger
`/H and fixed Ra the Nusselt number increases with `/H. The various Nu versus
Ra curves of figure 2 are roughly compatible with power laws. However, while the
corresponding power law fits are very good for extreme values of `/H, the residuals
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the bulk fluid

Warm fluid
rising
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œbulk
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FIGURE 3. Model of radiatively heated convection roll: the black line is a streamline of
the mean flow. Near the bottom-left corner, a cold fluid element at the bulk temperature
enters the heating region. It gets heated as it travels along the bottom boundary, gaining
an overall temperature increment of the order of 1T during a time of flight H/U. The
fluid element has maximum temperature as it passes near the bottom-right corner. It then
starts rising and follows the mean cellular motion while mixing with the bulk fluid.

are larger for intermediate values of `/H: for instance, the Nu versus Ra curve for
`/H= 0.012 exhibits a slight positive convexity in log scales, which we will argue is
a signature of the crossover region between the RB and the ultimate scaling regimes.
Roughly speaking, the transition to the ultimate regime takes place when radiative
heating bypasses the boundary layers and injects the heat directly into the bulk flow,
i.e., when ` is much larger than the boundary layer thickness. This can be achieved
either by increasing `/H for fixed Ra, or by increasing Ra with fixed `/H to decrease
the boundary layer thickness. In the following we propose a simple model to further
investigate this transition.

3.1. A roll model
In figure 3 we sketch a simple model to estimate the temperature difference 1T
within the experimental cell. At large scale, turbulent convective flows typically
consist of cellular motion, as sketched in figure 3. The typical temperature difference
1T inside the cell can be estimated by considering a fluid element evolving on a
streamline near the periphery of the convective roll. Near the left-hand boundary
of the domain in figure 3, the fluid particle is close to the bulk temperature. It
gets advected downwards by the convective roll and enters the heating region. This
Lagrangian fluid element then travels close to the bottom boundary, within the heating
region. During this phase it gets heated up, its temperature increasing from the bulk
temperature θbulk to approximately θbulk + 1T as it reaches the bottom-right corner.
As long as the particle remains close to the bottom boundary, we have z� `� H,
and the dominant balance in (2.3) written for the fluid particle reads:

Dθ
Dt
' 1
ρC

[
Q(z)− P

H
(1− e−H/`)

]
' P
ρC`

, (3.1)

where D · /Dt denotes the total derivative. For a convective roll of unit aspect ratio,
the travel time of the fluid element from the bottom-left to the bottom-right corner is
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1t ∼ H/U, where U is the typical velocity of the convective roll. Assuming that U
follows the free-fall scaling law:

U ∼√αg1TH, (3.2)

the temperature increase during the heating phase is estimated as:

1T ∼ P
ρC`

1t∼ PH
ρC`U

∼ PH
ρC`
√
αg1TH

, (3.3)

which, in terms of dimensionless quantities, yields:

Nu∼ `

H
Pr1/2Ra1/2. (3.4)

The warm fluid element then starts rising. It exits the heating region and gradually
mixes with the bulk fluid as it moves around the cell. It has relaxed to the bulk fluid
temperature when it reaches the bottom-left corner of the convection roll again, and
a new cycle starts.

3.2. Transition point and rescaling of the data
To test the compatibility between the prediction (3.4) and the experimental data,
one can focus on the transition between the two asymptotic regimes. For small
absorption length or small Rayleigh number, we expect to recover the scaling regime
of Rayleigh–Bénard convection. A marginally stable boundary layer argument then
yields the power law Nu∼ Ra1/3, i.e., γ = 1/3 and β = χ = 0 in the general scaling
relation (1.2). For higher Rayleigh numbers, ` is much larger than the boundary
layer thickness. Heat is input predominantly inside the bulk turbulent flow and the
regime (3.4) eventually sets in, with β = 1 and γ = χ = 1/2. As Ra increases from
low values, the RB regime should hold until the thickness δ of the marginally stable
thermal boundary layer becomes comparable to `. Indeed, a similar argument for
convection over rough plates successfully predicts a departure from the standard RB
regime when δ is comparable to the typical roughness height (Shen, Tong & Xia
1996; Toppaladoddi, Succi & Wettlaufer 2017; Xie & Xia 2018; Rusaouën et al.
2018). However, in the present set-up the transition is slightly more subtle, and
` ∼ δ is not the threshold where the scaling law (3.4) sets in. To see this, one can
perform an energy budget inside the heating region z. ` in figure 3: fluid enters this
region near the bottom-left corner at temperature θbulk and exits the domain near the
bottom-right corner, with a temperature θbulk + 1T . The power (heat per unit time,
in Joules per second) evacuated from this region by the large-scale roll is therefore
φU ∼ H`UρC1T , while the power input by the radiative heating is PH2. If we
substitute the optimistic free-fall estimate (3.2) for U, the ratio of the former over
the latter becomes:

φU

PH2
∼ `

H
Pr1/2Ra1/2

Nu
. (3.5)

At the point where `∼ δ, the RB scaling still holds: substituting Nu∼ Ra1/3 and `∼
δ∼Ra−1/3 into (3.5) yields φU/PH2∼Pr1/2Ra−1/6�1. We conclude that the roll is too
slow to efficiently extract the heat input radiatively inside the heating region when δ=
`. The roll mechanism described above therefore sets in at higher Rayleigh numbers.
The ratio (3.5) is then of the order of unity, which again yields the scaling law (3.4).
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FIGURE 4. Rescaled Nusselt number as a function of the rescaled Rayleigh number, for
various values of the absorption length ` (same symbols as figure 2). The data indicate
a clear transition from an exponent γ = 1/3 (dashed line) to an exponent γ = 1/2
(solid line).

Because of the limited power of the spotlight, these two transitions – the end of the
RB scaling regime and the beginning of the ultimate regime – cannot be distinguished
in our experiment. Instead, we will show that the data is well described by a single
overall transition point (Ratr, Nutr) lying at the intersection between the two extreme
scaling laws Nu∼ Ra1/3 and (3.4):

Nutr ∼ Ra1/3
tr ∼

`

H
Pr1/2Ra1/2

tr , (3.6)

from which we deduce:

Ratr ∼ Pr−3

(
`

H

)−6

, Nutr ∼ Pr−1

(
`

H

)−2

. (3.7)

One way to test the predictions of this model is to plot the Rayleigh and Nusselt
numbers rescaled by their values at the transition, i.e., Nu/Nutr as a function of
Ra/Ratr. In figure 4, we thus plot Nu (`/H)2 as a function of Ra (`/H)6. In this
representation the data obtained for various values of the absorption length ` collapse
onto a single master curve. The latter starts off with an exponent 1/3, before transiting
to a second power law with an exponent compatible with the 1/2 prediction of the
model above. This representation confirms the dependence of Nu with `/H and Ra
in the two regimes.

4. Discussion: dependence in Pr and persistent boundary layers

While the roll model described above successfully predicts the dependence of the
Nusselt number with `/H and Ra in the ultimate regime, the predicted dependence
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œbulk œbulk + ÎT

(ÎT)¶ (ÎT)BL

œ(z)

¶

∂

z

FIGURE 5. Schematic vertical temperature profile showing the temperature drop (1T)`
within the absorption region, together with an additional temperature drop (1T)BL within
a boundary layer of thickness δ� `.

with Pr cannot be tested with the present experimental set-up. As a word of caution,
we therefore wish to discuss how the boundary layers can affect the Pr-dependence of
the Nusselt number. Coming back to the general scaling relation (1.2), we will show
that these boundary layers can induce a persistent modification of the exponent χ at
high Rayleigh numbers, while leaving the values β = 1 and γ = 1/2 unchanged.

Near the bottom wall is a boundary layer, for the velocity field to satisfy the no-slip
boundary condition. The velocity is reduced within this boundary layer; coming back
to the simple picture of figure 3, the heating phase is longer if the fluid element
travels on a streamline that is contained inside the boundary layer. It accumulates
more heat than fluid particles travelling outside the boundary layer, and reaches higher
temperatures. There is therefore also a boundary layer for the temperature field. A
schematic of the resulting horizontally averaged and time averaged temperature
profile is provided in figure 5. We expect a temperature drop (1T)` on a vertical
scale `, associated with the roll model described above, together with an additional
temperature difference (1T)BL associated with the boundary layer region, within
which diffusion plays a central role. Inside a boundary layer of thickness δ� `, the
heat input by the radiative forcing is approximately Q(z = 0) × δ = P × δ/`. This
heat flux is diffused outside of the boundary layer, which leads to:

P
δ

`
∼ λ(1T)BL

δ
. (4.1)

From this equality we deduce (1T)BL in terms of thickness δ of the temperature
boundary layer. The total temperature drop 1T is then the sum of (1T)BL and of
the temperature drop (1T)` outside of the boundary layer, which we estimate using
expression (3.3). We obtain:

1T = (1T)` + (1T)BL = c0
PH2

λ`
Pr−1/2Ra−1/2 + c1

PH2

λ`
× δ2

H2
, (4.2)

where the (ci)i∈N are dimensionless constants. The next step is to insert scaling laws
for the boundary layer thickness δ, to examine their consequences on the scaling
relation (1.2). We distinguish between low- and large-Prandtl-number fluids.

861 R5-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

97
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.972


V. Bouillaut, S. Lepot, S. Aumaître and B. Gallet

4.1. Low-Prandtl-number fluids
Let us denote as δν the thickness of the velocity boundary layer. The standard estimate
for δν is:

δν ∼ H√
Re
, (4.3)

where the Reynolds number is defined as Re = UH/ν. Substituting the free-fall
velocity estimate (3.2) for U yields:

δν ∼H Pr1/4Ra−1/4. (4.4)

In a low-Prandtl-number fluid, the temperature field shares this boundary layer
thickness, as it gets mixed very efficiently by the turbulent flow outside of it. Inserting
δ = δν into expression (4.2) leads to:

1T = c0
PH2

λ`
Pr−1/2Ra−1/2 + c2

PH2

λ`
Pr1/2Ra−1/2. (4.5)

The boundary layer correction to the temperature drop – the second term in (4.5) – is
smaller than the main contribution of the roll model by a factor Pr. Although it may
be possible to detect it for moderately low Pr, it is negligible for Pr� 1.

4.2. Large-Prandtl-number fluids
If the Prandtl number is much greater than unity, the boundary layer of the
temperature field is much thinner than δν : the temperature drop associated with
the thermal boundary layer takes place within the velocity boundary layer. The
velocity field in this region can be approximated by a uniform shear flow, the shear
being S ∼ U/δν . Following Shraiman & Siggia (1990), the thermal boundary layer
thickness δ is then:

δ ∼
(
κH
S

)1/3

∼
(
κHδν

U

)1/3

∼HPr−1/12Ra−1/4, (4.6)

where we have substituted the estimates (3.2) and (4.4) for U and δν . Inserting this
expression for the thermal boundary layer thickness into (4.2) yields:

1T = c0
PH2

λ`
Pr−1/2Ra−1/2 + c3

PH2

λ`
Pr−1/6Ra−1/2, (4.7)

The boundary layer correction to 1T is important in this large-Pr regime, as it
becomes the main contribution to 1T in the limit Pr� 1. In this limit, the scaling
law for the Nusselt number (2.4) becomes:

Nu∼ `

H
Pr1/6Ra1/2. (4.8)

The boundary layer correction leads to χ = 1/6 instead of χ = 1/2, with still β = 1
and γ = 1/2. This is a persistent modification of χ , in the sense that the scaling law
is modified up to arbitrarily large Rayleigh number. While this discussion section
is only here to highlight possible modifications of the exponent χ by boundary
layer dynamics, the precise determination of χ remains an experimental challenge. A

861 R5-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

97
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.972


Transition to the ultimate regime

dedicated numerical study may be a simpler approach to address the dependence of
Nu over several decades of Pr. In the meantime, we shall compare the results of this
study to convective flows inside frozen great lakes, the Prandtl number of which is
only twice our experimental value. To wit, it is desirable to re-express the transition
point between the RB and ultimate regimes in terms of control parameters only,
independent of the measured temperature drop 1T . We thus introduce the flux-based
Rayleigh number RaP = Nu × Ra = αgPH4/λκν. On the one hand, equation (3.7)
together with the data of figure 4 indicate that the ultimate scaling regime sets in for
RaP(`/H)8 & 3 × 10−7, for the Prandtl number of water at 28 ◦C. We can compare
this criterion to the typical value of RaP for frozen great lakes in the spring (Mironov
et al. 2002; Ulloa et al. 2018): with a light flux P ' 100 W m−2, an absorption
length ` ' 1 m and a mixed-layer depth H ranging from 4 m to 40 m, we obtain
RaP(`/H)8 in the range 105–109, well inside the region of parameter space where
the mixing-length scaling regime holds. This confirms that radiative heating – as
opposed to fixed-flux heating at the boundary – is a key ingredient of any laboratory
of numerical set-up aimed at describing the thermal structure of such lakes.
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