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Epstein—Barr virus (EBV) was first discovered 50 years ago as an oncogenic gamma-1 herpesvirus and infects more
than 90% of the worldwide adult population. Nasopharyngeal carcinoma (NPC) poses a serious health problem in
southern China and is one of the most common cancers among the Chinese. There is now strong evidence
supporting a role for EBV in the pathogenesis of NPC. Latent membrane protein 1 (LMP1), a primary
oncoprotein encoded by EBV, alters several functional and oncogenic properties, including transformation, cell
death and survival in epithelial cells in NPC. LMP1 may increase protein modification, such as phosphorylation,
and initiate aberrant signalling via derailed activation of host adaptor molecules and transcription factors. Here,
we summarise the novel features of different domains of LMP1 and several new LMP1-mediated signalling
pathways in NPC. When then focus on the potential roles of LMP1 in cancer stem cells, metabolism

reprogramming, epigenetic modifications and therapy strategies in NPC.

Approximately 12% of worldwide cancers are attribut-
able to viral infection, with the vast majority occurring
in the developing world (Refs 1, 2). Epstein—Barr virus
(EBV), which was first discovered 50 years ago as an
oncogenic gamma-1 herpesvirus, infects more than
90% of the global adult population. Furthermore, this
virus has powerful transforming potential for B lym-
phocytes in vitro. EBV thus contributes to several
lymphoid malignancies, including several B, T and
natural killer (NK) cell lymphomas. EBV has also
been linked with several epithelial carcinomas such as
nasopharyngeal carcinoma (NPC) and 10% of gastric
carcinomas, while the highest incidence of NPC is in
Southeast China (Refs 3, 4, 5, 6, 7, 8, 9).

Most NPCs have minimal epithelial maturation and
are classified as poorly differentiated (WHO type II)
and undifferentiated (WHO type I11) non-keratinising
types of NPC. A few cases are differentiated (WHO
type 1). EBV has been confirmed to be associated
with NPC types II and III of the WHO classification.
EBV infects NPC cells and sporadically begins a
productive viral lytic infection. Type II latency is main-
tained, restricting EBV gene expression to Epstein-Barr
nuclear antigen 1 (EBNAI), latent membrane protein 1
(LMP1), LMP2A, LMP2B, EBERs, BARF1 and BART-
encoded microRNAs (Ref. 10). Of these genes, LMP1
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is a primary oncoprotein encoded by EBV. It alters
several functional and oncogenic properties, including
transformation in epithelial cells (ECs) (Refs 11, 12,
13). Preinvasive lesions of the nasopharynx contain
EBV RNAs but not the viral proteins including
LMP1. The detection of LMP1 in all the neoplastic
cells (Ref. 14), indicating that LMP1 is essential for
preinvasive epithelial proliferations associated with
NPC; however, how EBV enters or infects nasophar-
ynx ECs still remains poorly known. Until recently,
one group reports that cell-in-cell structure formation
mediates the efficient transmission of EBV from the
infected B cells to uninfected non-susceptible ECs
(Ref. 15), but the role of LMP1 in this process still
remains unknown.

LMPI is a 66 kDa integral membrane protein com-
prising a short amino acid cytoplasmic N-terminus
(amino acids 1-23), six transmembrane (6TM) span-
ning regions (amino acids 24—-186) and a large 200
amino acid cytoplasmic C-terminal tail (amino acid
187-386). Three distinct functional domains have
been identified within the C-terminal regions: C-ter-
minal activating regions 1, 2 and 3 (CTAR1, CTAR2
and CTAR3). These regions trigger different signalling
pathways (Fig. 1). Recently, two reviews summarise
the contribution of EBV gene products to NPC patho-
genesis in relation with LMP1 (Refs 12, 13). Here we
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FIGURE 1.

Activation of cell signalling pathways by LMP1 in NPC impacts a variety of cellular processes such as invasion, metastasis, apoptosis, and
cell proliferation. The LMP1 protein can be subdivided into three domains: 1) a short N-terminal cytoplasmic tail, 2) six hydrophobic trans-
membrane loops, and 3) a long C-terminal cytoplasmic region, which possesses most of LMP1’s signalling activity in its three C-terminal
regions (C-terminal activation regions 1, 2 and 3 (CTARI1, CTAR2 and CTAR3)). LMPI associates with tumour necrosis factor receptor-
associated factors (TRAFs), tumour necrosis factor receptor-associated death domain protein (TRADD), and receptor-interacting protein
(RIP). LMPI activates different signal transduction pathways, which include nuclear factor kappa B (NF-xB), protein kinase C (PKC), c-jun
N-terminal kinases (JNK)/c-Jun/activator protein 1 (AP-1), mitogen-activated protein kinases (p38-MAPK)/activating transcriptional factor
(ATF), and Janus kinase (JAK)/ signal transducers and activators of transcription protein (STAT), and causes various downstream pathological
changes in cell proliferation, anti-apoptosis and metastasis.

review the general novel features of different domains of
LMP1 and signalling pathways in NPC. We then focus
on the potential roles of LMP1 in stem cells, metabolism
reprogramming and therapeutic strategies in NPC.

While the cytosolic N-terminus of LMP1 plays a role in
the orientation and processing of LMP1, six TM
domains self-aggregate and are involved in intermo-
lecular oligomerisation. The TM 1-2 FWLY of LMP1
mediates intermolecular interaction, raft localisation
and constitute NF-kB activation (Refs 16, 17).
Besides, the TM domains of LMPI1 are recruited to
membrane microdomain lipid rafts, inducing the local-
isation of signalling components, such as PI3K, to the
lipid rafts. Through the interaction of LMP1 with
vimentin and the cytoskeleton, signalling pathways
are then activated to induce transformation (Refs 18,
19). These lipid rafts control the sorting of LMP1
into exosomes through the intact complex of LMP1
with tetraspanin family member, CD63, in tumn,
limits constitutive NF-kB activation. Knockdown of
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CD63 leads to sequestering of LMP1 protein in intra-
cellular compartments and reduces LMP1 release NF-
kB activation (Refs 20, 21). Additionally, LMP1 in
the NPC cells significantly increases the levels of
hypoxia-inducible factor-1a (HIF1a) in the exosomes,
indicating that the exosome-mediated transfer of func-
tional pro-metastatic factors by LMP1-positive NPC
cells to surrounding tumour cells promotes cancer pro-
gression (Refs 20, 22). Interestingly, TM domains 3—6
of LMP1 in B cells are sufficient to induce autophagy
(Ref. 23), an evolutionarily conserved and important
homeostatic process for the degradation of cytoplasmic
materials (Ref. 24). LMP1-initiated autophagic degrad-
ation may serve as a mechanism to limit LMP1 accu-
mulation in EBV-infected cells. However, the precise
mechanisms of how viruses modulate the autophagic
response during infection remain unknown, especially
in NPCs.

Most LMP1-mediated signal transduction events are
mediated via the extensively characterised CTAR1 and
CTAR2. CTARI contains a PXQXT motif that inter-
acts with TNF receptor-associated factors (TRAFs) 1,
2,3 and 5. TRAF1 coordinates polyubiquitin signalling
to enhance LMPI1-Mediated growth and survival
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pathway activation. TRAF2 acts as a linker between
CTARI1 and TRAF6. CTAR2 contains a YYD motif
that binds the TNF receptor-interacting protein (RIP)
and the TNF-associated death domains (TRADDs),
which enables an indirect interaction between LMP1,
TRAF2 and TRAF6. These adapters in turn recruit
FADD and caspase 8 to the apoptotic complex. As a
result of the protein—protein interactions involving
CTAR1 and CTAR2, multiple signal transduction
events are initiated (Refs 25, 26, 27, 28, 29). Not
much is known about the role of CTAR3, which lies
between CTAR1 and CTAR2, in LMP1-induced sig-
nalling. CTAT3 has been shown to bind JAK3 to acti-
vate the DNA binding of STAT signalling, but not in
B-lymphoma or lymphoblastoid cell lines (LCLs)
(Refs 30, 31, 32). Interestingly, Ubc9, a single reported
SUMO-conjugating enzyme, interacts with CTAR3 of
LMP1 in the cytoplasm. This interaction in turn med-
iates the sumoylation of interferon regulatory factor 7,
and the sumoylation contributes to LMP1-mediated
cellular migration and the maintenance of EBV
latency (Refs 33, 34, 35) (Fig. 1). Interestingly, both
RIP and caspase 8 are the key components of necropto-
sis, an alternative form of cell death (Ref. 36). Whether
there is interplay between the signalling pathways trig-
gered by LMP1 and necroptosis requires further study.
Such an interaction could feasibly contribute to the
novel balance between cell survival and cell death
after viral infection.

Interestingly, low levels of LMP1 can induce cell
growth and promote cell survival; however, high
levels of LMP1 expression are associated with growth
inhibition and sensitisation to apoptosis in response
to different stimuli (Refs 37, 38). These findings are
similar to our studies using an inducible system for
LMP1 expression in NPC cells (Ref. 39). These para-
doxical effects may be associated with the ability of
LMP1 to upregulate both pro- and anti-apoptotic
genes and disrupt cellular DNA repair programmes
(Refs 40, 41, 42). The 6TM of LMP1 activates the
unfolded protein response (UPR) constitutively in the
absence of a ligand, which also induces apoptosis.
Constitutive signalling from the CTARs of LMP1 inhi-
bits the apoptosis induced by the UPR. Bcl2al, which
is activated by LMP1, inhibits the UPR-induced apop-
tosis activated by LMP1 (Ref. 43).

Recently, cells expressing low levels of LMP1 have
been found to display early stages of autophagy (autop-
hagosomes), while those expressing high levels of this
oncogene been found to display the late stages of
autophagy (autolysosomes) (Ref. 23). However, the
amount of LMP1 in NPC biopsies is not correlated
with the presence of lymph node and metastasis, but
is instead correlated with patient age, with higher
amounts of the viral protein detected in juvenile sub-
jects (Ref. 44). LMP1 triggers several important signal-
ling pathways, such as AP-1, NF-kB and STATS3, in
NPC (Refs 25, 45, 46), in turn, upregulating pro-
grammed cell death protein 1 ligand (PD-L1) under
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activation of these three pathways (Ref. 47). It also
hints that different levels of LMP1 may trigger these
different pathways. The results of in inducible system
experiments have been unclear as to how much
LMP1 expression is sufficient to induce tumourigenic,
invasive and metastatic factors.

The tumour suppressor gene p53 is a critical mediator
of the cell cycle, DNA repair, cell differentiation and
apoptosis. Many human tumours are associated with
p53 mutations, supporting its pivotal role as a key
tumour suppressor in tumourigenesis (Refs 48, 49).
Unlike in most human tumours, wild-type p53 accumu-
lates in NPC, and the mutation rate of p53 is <10%
(Refs 50, 51). Mitogen-activated protein Kkinases
(MAPKS) have a direct role in the LMP1-induced phos-
phorylation of p53 at multiple sites, which provides a
novel view to understand the mechanism of the activa-
tion of p53 in NPC. LMP1 modulates multiple p53
phosphorylation sites, such as Serl5, Ser20, Ser392
and Thr81. Furthermore, the LMP1-induced phosphor-
ylation of p53 at Serl5 is directly accomplished by
extracellular signal-regulated kinase (ERK). Similarly,
the LMP1-induced p53 phosphorylation of Ser20 and
Thr81 is completed by JNK, while that of Ser 15 and
Ser392 is instead completed by p38 kinase (Ref. 52).
Moreover, the phosphorylation of p53 is associated
with its transcriptional activity, and its stability is
modulated by LMP1. In addition, EBNA1 protein
could sequester ubiquitin-specific protease (USP7), a
key regulator of p53, from p53 in vivo, thereby destabi-
lising p53 (Ref. 53). Meanwhile PML (promyelocytic
leukemia) disruption by EBNAT1 requires binding to
USP7, but is independent of p53 (Ref. 54).

Mouse double minute 2 homologue (MDM?2), an
important negative regulator of p53, might function
as both an E3 ubiquitin ligase that recognises the N-ter-
minal trans-activation domain (TAD) of p53 and an
inhibitor of p53 transcriptional activation. Recent find-
ings have shown that LMP1 augments MDM?2 protein
expression in a dose-dependent manner, leading to a
drastic accumulation of ubiquitinated MDM2 species.
This effect is associated with the stability of MDM2
modulated by LMP1 (Ref. 55). The CTAR1 of LMP1
also inhibits K48-linked ubiquitination of p53 by
decreasing the interaction between p53 and MDM2.
Meanwhile, LMP1 promotes the K63-linked ubiquiti-
nation of p53 by increasing the interaction of p53 and
TRAF2. Furthermore, LMP1-rescued cell cycle arrest
and the apoptosis of tumour cells induced by K63-
linked ubiquitination of p53 are also believed to con-
tribute to EBV-associated tumourigenesis (Ref. 56).

Survivin, a member of the inhibitor of apoptosis
family, is widely expressed in foetal tissues and in
most tumour tissues. LMP1 increases the activity of
survivin through the NF-kB and AP-1 signalling path-
ways in NPC (Ref. 39). Moreover, LMP1 upregulates
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survivin protein expression because of the transactiva-
tion of the survivin promoter and survivin phosphoryl-
ation by p53. LMP1 causes the translocation of p53
into the nucleus with survivin, suggesting that survivin
is the key downstream target of p53. Our research has
shown that accumulated p53 following LMP1 exposure
promoted G1/S cell cycle progression, but did not
induce apoptosis in NPC pathogenesis (Ref. 57).
Although these findings are incomplete, they suggest
that multiple parameters, such as the distinct cancer
type, can co-ordinately determine whether p53 activa-
tion leads to cell cycle arrest or apoptosis in NPC com-
pared with other tumours.

The EGFR, a commonly expressed receptor tyrosine
kinase, plays a critical role in carcinogenesis. Evidence
indicates that EGFR translocates into the nucleus in
various tumour types, including NPC (Refs 58, 59, 60,
61, 62, 63, 64, 65), indicating a critical role for nuclear
EGFR in carcinogenesis. Nuclear localised EGFR is
highly associated with disease progression, a worse
overall survival in numerous cancers, and an enhanced
resistance to radiation, chemotherapy, and the anti-
EGFR therapies gefitinib and cetuximab (Ref. 66).

Nuclear EGFR directly binds to the cyclin D1 pro-
moter under the regulation of LMP1, but it has also
been indicated that other factors are involved in the acti-
vation of target genes (Ref. 64). Many factors, such the
EGF, DNA damage factor ultraviolet irradiation, radi-
ation and cetuximab exposure, may increase EGFR
translocation into the nucleus (Refs 58, 59, 60, 63,
65). These findings clearly indicate that EGFR acts as
a transcriptional factor that affects target genes involved
in cellular transformation, cell cycle regulation, DNA
damage repair and replication. Transcriptional inter-
mediary factor 2 (TIF2), a member of the pl160
nuclear receptor co-activator gene family, is linked to
the proliferation of cancer cells. LMP1 upregulates the
expression of TIF2 and promotes the interaction of
EGFR with TIF2 in NPC. Furthermore, the intact
complex is linked with cyclin D1 promoter activity in
an LMP1-dependent manner. The physiological func-
tions of the intact complex are associated with cell pro-
liferation and cell cycle progression (Ref. 67). These
findings suggest that TIF2 is a novel binding partner
for nuclear EGFR and is involved in regulating its
target gene expression.

Signal transducer and activator of transcription 3
(STAT3) is a member of the STAT family of cytoplas-
mic proteins that is constitutively active in many
human cancers (Refs 68, 69). Upon stimulation by cyto-
kines or growth factors, STAT3 translocates into the
nucleus to upregulate numerous target genes, such as
cyclin D1, c-fos, c-Myc, Bcl-XL and VEGF, stimulat-
ing cell proliferation and preventing apoptosis.
Overexpression and activation of STAT3 is strongly
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associated with NPC (Refs 45, 70, 71). LMP1 stimulates
the phosphorylation of STAT3 at both tyrosine 705
(Tyr705) and serine 727 (Ser727) (Ref. 31). Nuclear
STAT3 Tyr705 phosphorylation increases in LMP1-
positive NPC tissues, and STAT3 Tyr705 phosphoryl-
ation is related to clinical stages IIl and IV in NPC
patients. Furthermore, LMP1 signals are mediated
through the JAK3 and ERK 1 /2 pathways upon the acti-
vation of STAT3. LMP1 induces vascular endothelial
growth factor (VEGF) expression via the JAK/STAT
and MAPK/ERK signalling pathways (Ref. 45).
LMP1 promotes the interaction of EGFR and STAT3
in the nucleus. Nuclear EGFR and STAT3 can target
the cyclin D1 promoter directly, thereby upregulating
the cyclin D1 promoter activity and mRNA levels and
providing a novel linkage between the deregulated
EGFR signalling and the activation of cyclin D1 gene
expression induced by LMP1 in NPC tumourigenesis
(Ref. 72) (Fig. 2). It is unclear what the other targets
of these transcription factors beyond cyclin D1 are
involved in NPC, and it is necessary to identify them
in a future genome-wide assay in EGFR and/or STAT3.

Using combined phosphorylation enrichment with pro-
teomics technology, we identified phosphorylation
sites on 25 new components of the LMP1 signalling
pathway, including oncoprotein 18 (Op18)/stathmin,
annexin A2, heat shock protein 27 (HSP27) and
several kinases (Ref. 73).

Op18/stathmin, a highly conserved small cytosolic
phosphoprotein, is overexpressed in tumours
(Ref. 74) and regulates microtubule (MT) dynamics.
During the cell cycle, Op18/stathmin integrates differ-
ent signals to regulate MT polymerisation and depoly-
merisation, and its activation adapts to the phase of the
cell cycle (Ref. 75). Recently, LMP1 has been shown to
accelerate cell cycle progression through cdc2-
mediated Op18/stathmin phosphorylation during the
G2/M phase (Ref. 76). Dynamic MT equilibrium is
crucial for a series of biological features, including
cell morphology stabilisation, substance transportation,
and cell division, proliferation, migration and invasion
(Ref. 77). The level of Opl8/stathmin expression is
also correlated with the pathologic features and clinical
outcomes (Ref. 78). Interestingly, paclitaxel reduces
the expression of Opl8/stathmin, and combining
Op18/stathmin silencing with paclitaxel treatment
enhances MT polymerisation, providing a new
approach for clinical NPC treatment (Ref. 79). LMP1
promotes the phosphorylation, but not the expression,
of Op18/stathmin. The LMP1-induced MAPK activity
is not constant but instead varies with the cell cycle pro-
gression. LMP1 upregulates the phosphorylation of
MAPK mainly during the G1/S phase, but the activity
of MAPK is negatively regulated by LMP1 during the
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FIGURE 2.

LMP1 modulates the intact complex of EGFR and STAT3 in NPC. Epstein-Barr virus latent membrane protein 1 (LMP1) regulates EGFR pro-

moter activity in a NF-kB dependent manner and regulates the nuclear accumulation of EGFR in nasopharyngeal carcinoma (NPC).

Furthermore, LMP1 is also found to stimulate the phosphorylation of STAT3 at both Tyr 705 and Ser 727, and the different phosphorylation

of STAT3 is found to be a result of the activation of either JAK3 or ERK. Accordingly, nuclear EGFR interacted with both STAT3 and TIF2 in

the presence of LMP1 in a dependent manner. The intact complex of both EGFR/STAT3 and EGFR/TIF2 was recruited to the promoter region
of cyclin D1. The physiological functions of the intact complex were associated with cell proliferation and cell cycle progression.

G2/M phase. The main pathway regulated by LMP1 is
the ERK/MAPK pathway (Ref. 80).

Annexin A2, a calcium-dependent phospholipid-
binding protein, plays a role in the regulation of cellular
growth and in signal transduction pathways. LMP1 can
increase the serine phosphorylation level of annexin A2
by activating the protein kinase C (PKC) signalling
pathway, which was confirmed by another group
(Ref. 81). Furthermore, LMP1 induces the nuclear
entry of annexin A2 in an energy- and temperature-
dependent manner (Refs 73, 82). LMP1 increases the
phosphorylation level of annexin A2 at serine 25 by
activating the phosphoinositide-specific phospholipase
C (PI-PLC)-PKCa/PKCp pathway, mainly through
the activation of the PKCpP pathway (Ref. 83).
Additionally, active recombinant PKCa, PKCp I, and
PKCP II kinases are able to phosphorylate annexin
A2 at serine 25. In the nucleus, Annexin A2 plays an

https://doi.org/10.1017/erm.2015.13 Published online by Cambridge University Press

important role in DNA synthesis and cell proliferation
(Ref. 83).

The CXCR4 receptor and its chemokine ligand SDF-
la (CXCL12) are crucial for embryonic development,
but have also been implicated in various pathologic
conditions, including cancer metastasis (Refs 84, 85).
Cancer progression appears to be dependent on SDF-
la/CXCR4 signalling (Ref. 86). The expression of
functional CXCR4 is associated with the metastatic
potential of human NPC (Ref. 87). Accumulating evi-
dence has revealed that EBV is closely associated
with expression of chemokines and their receptors,
especially SDF-1/CXCR4. LMP1 induces HIF expres-
sion (Ref. 88), which can upregulate CXCR4 and SDF-
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1 expression in NPC. LMP1 regulates the expression of
CXCR4, which is dependent on both IKKa and IKKP
in murine embryo fibroblasts (MEFs) (Ref. 89). LMP1
also downregulates the expression of CXCR4 in B cells
(Ref. 90) and upregulates the expression of CXCR4 in
NPC C666-1 cells (Ref. 91). Tyrosine sulfation, an
important posttranslational modification, is required
for the biological function of chemokine receptors,
including CXCR4 (Refs 92, 93, 94, 95, 96, 97).
Tyrosylprotein sulfotransferase 1 and 2 (TPST-1 and
TPST-2) are responsible for the catalysis of tyrosine
sulfation of chemokine receptors, such CXCR4
(Refs 93, 95, 96, 97, 98, 99). LMP1 upregulates the
expression of TPST-1 through the nuclear EGFR-
binding site in the TPST-1 promoter. Meanwhile, the
correlation between LMP1 and TPST-1 is linked with
metastasis in NPC. TPST-1 contributes to the sulfation
of CXCR4 in the N-terminal region of tyrosine 21.
Moreover, tyrosine sulfation of CXCR4 is associated
with cancer metastasis and invasion (Ref. 100).
Clearly, both TPST-1 and CXCR4 sulfation provide a
novel contribution in tumour metastasis.

The restriction of Ig expression to cells of the B-cell
lineage is well established. However, the Igk light
chain is expressed in epithelial cancer cell lines and epi-
thelial tissues (Refs 101, 102, 103, 104, 105, 106, 107,
108, 109, 110), promoting growth and inhibiting
immunity (Ref. 107). The Igk light chain gene expres-
sion is under the control of distinct cis-regulatory ele-
ments, including promoters and enhancers. Two
important k enhancers, the intronic enhancer (iEk),
which lies between the Jk—Ck region, and the 3’ enhan-
cer (3’Ex), which is located downstream of the Ck
region, have been identified (Refs 111, 112, 113). On
the basis of the finding that the levels of the k light
chain are substantially higher in LMP1-positive cells
compared to LMP1-negative cells (Refs 114, 115),
LMPI is believed to upregulate 3'Ex activity and «
light chain gene expression by activating the Ets-1 tran-
scription factor through the ERKs signalling pathway
(Ref. 116). The Ig lal promoter, which is essential
for initiating Ig Ia1-Cal GL transcription, is highly
activated in cancer cells. In further investigations,
Ets-1 was found to bind to the PU.1 motif and transac-
tivate the Ig Ial promoter. These results indicate that
Ets-1 activates the expression of the Ig lal-Cal GL
transcript, which is critical for class switch recombin-
ation (Ref. 117) (Fig. 3). LMP1 could also regulate
the activity of the Ig Ial promoter by activating Ets-
1. This evidence hints at a novel regulatory mechanism
of k expression in which virus-encoded proteins acti-
vate the two important k enhancers by activating tran-
scription factors in non-B epithelial cancer cells.
Tumour immune evasion is emerging as a hallmark of
cancer while immune escape that is mediated by LMP1
is an important feature of NPC (Refs 91, 118, 119).
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Several target genes of LMP1 involve in the process.
Programmed cell death protein 1 ligand (PD-L1) is a
well-known immune suppressive factor in a variety of
cancer types. LMP1 and IFN-y pathways cooperate
to regulate PD-L1 expression independent of inflamma-
tory signals in the tumour microenvironment (Ref. 47).
Interestingly, LMP1 is actively secreted from EBV-
positive tumour cells to mediate immunosuppressive
effects on tumour-infiltrating lymphocytes surrounding
the neoplasmtic cells (Ref. 119). The mechanism for
this is that the first transmembrane region directly inhi-
bits T cell activation and NK cytotoxicity in vitro, indi-
cating that direct immunosuppression, previously
thought to be restricted to RNA viruses, has been
described in a DNA virus (Ref. 120). These findings
further support that LMP1 plays a critical role in
immune regulation.

In addition, LMP1 or associated protein-direct
immunodulatory effects. LMP1 colocalises in part
with MHC-II and is present on exosomes derived
from a LCL. As LMPI1 containing exosomes is
shown to inhibit the proliferation of peripheral blood
mononuclear cells, indicating that LMP1 is involved
in immune regulation (Ref. 121), it further confirms
that NPC cells could release HLA class II positive exo-
somes containing galectin 9 and/or LMP1 (Ref. 122).
The different strains of LMP1 involve in different
immune response: the ability of B cell-associated
LMP1 (B-LMP1) and a nasopharyngeal carcinoma-
associated LMP1 (NPC-LMP1) to modulate B cell
antigen-presenting cell (APC) function and T-cell
responses. B lymphoma cells transfected with
NPC-LMP1 stimulated resting T cells in mixed
lymphocyte reaction less efficiently than B-LMP1
transfectants (Ref. 123).

CSCs are cells within a tumour that possess stem cell
properties, namely the ability to self-renew and give
rise to progeny destined for differentiation to regenerate
the tumour cell diversity. Cellular reprogramming
mediated by an oncogenic virus might promote the for-
mation of tumour-initiating cells or CSCs. LMP1
induces a CSC-like phenotype and was found to
enhance the self-renewal potential of nasopharyngeal
EC lines and NPC cells, further supporting the involve-
ment of EBV in modulating cellular plasticity and
inducting CSC cellular phenotypes (Refs 124, 125).
This notion has also been highlighted in a more recent
study (Ref. 126), which has demonstrated the upregula-
tion of multiple stem cell markers in an EBV-positive
NPC cell line with increases tumourigenic potential
and a high level of resistance to chemotherapy.
Finally, NPC is frequently associated with the deregula-
tion of the Hedgehog (HH) pathway, a pathway that is
associated with stem cell maintenance. EBV (EBNAI,
LMP1 and LMP2A) activates the HH pathway through
the induction of the SHH ligand, which leads to the
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FIGURE 3.

LMP1 upregulates the 3" enhancer activity and expression of Ig kappa. The expression of the kappa light chain gene is under the control of

distinct cis-regulatory elements, including the kappa intron enhancer (iEx) and the kappa 3’ enhancer (3'Ex). DNA binding proteins that

recruit the enhancer mediate the function of enhancers. The indicated protein binding sites have been identified and characterised in each of

the kappa enhancers. Human iEx is active in Igk-expressing NPC cells. The LMP1- stimulated NF-kB and AP-1 activation results in augmenting

the activation of the iEk. LMP1 promotes the interactions of the heterodimeric NF-kB (p52/p65) and heterodimeric AP-1 (c-Jun/c- Fos) tran-

scription factors with the human iEk enhancer region. These interactions are important for the upregulation of the kappa light chain in LMP1-
positive nasopharyngeal carcinoma cells. LMP1 upregulates 3'Ex activity by activating the ERK/Ets-1 signalling pathway.

increased expression of stemness-associated genes and
the induction of stem cell phenotypes in these cells
(Ref. 127). LMP1 and LMP2A co-operates in the modu-
lation of DNA damage response and apoptotic signalling
pathways in NPC (Ref. 128), it is unclear whether EBV
products cooperatively regulate stemmess in NPC cells.
These studies have suggested the possibility that LMP1
might exert its tumourigenic properties at least in part by
giving rise to CSCs within the infected tissues.

In cancer cells, the main hallmark of the Warburg effect
is aerobic glycolysis. In this process, glucose consumption
and lactate production are both increased even in the pres-
ence of oxygen (Ref. 129). Several other metabolic path-
ways are also enhanced, including the pentose phosphate
pathway (PPP), amino acid metabolism and lipid homeo-
stasis. The Warburg effect can also be induced in vitro by
some vertebrate viruses, including human papillomavirus
(HPV) (Ref. 130), human cytomegalovirus (Ref. 131),
Kaposi’s sarcoma herpesvirus (Ref. 132), hepatitis C
virus (Ref. 133) and EBV (Ref. 134). Hexokinase 2
(HK2) catalyses the first step in the glycolytic pathway,
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in which glucose is phosphorylated into glucose-6-
phosphate in the glycolytic pathway, and is frequently
overexpressed in cancers (Ref. 135). LMP1 reprograms
glycolysis by upregulating HK2 expression in NPC
and human nasopharyngeal ECs, and the transcription
factor c-Myc is required for the LMP1-induced upre-
gulation of HK2 (Refs 134, 136). It functions by attenu-
ating the PI3K/Akt—GSK3beta—FBW?7 signalling axis
(Ref. 134). Interestingly, the PI3K—-Akt—mammalian
target of rapamycin (mTOR) pathway is of central
importance in triggering the WSSV (white spot syn-
drome virus)-induced Warburg effect (Ref. 137), indicat-
ing that the same molecular mechanism occurs after
different types of virus infection. Under normal condi-
tions, aerobic glycolysis is active in LCLs, which
express six nuclear proteins (EBNA1-6) and three latent
membrane proteins (LMP-1, LMP-2A and -2B) referred
to as Latency III, and in freshly EBV-infected B-cells.
However, it is not active in mitogen-activated B-cells.
Both EBNA3 and EBNA 5 bind to prolyhydorxylases
1 and 2, respectively, thus trans-activating several genes
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involved in aerobic glycolysis by stabilising hypoxia-
induced factor 1 alpha (Ref. 138).

Acquired epigenetic abnormalities, such as DNA
methylation, histone modification and chromatin
remodelling, participate together with other chromatin
alterations in the early stages of carcinogenesis.
Because no differences in the EBV methylome exist
when comparing the NPC cells line from southern
China and the primary NPCs from southern Europe
(Ref. 139), larger studies are necessary to address the
role of EBV and its products in epigenetics. The aber-
rant hypermethylation of several genes has been found
in NPC. These genes include RASSF1A/2A, DAP-
kinase, p15, pl16, pl4, RAR-32, R1Z1, CDH1, 14-3-
3 sigma and BRD7 (Refs 140, 141, 142, 143, 144,
145, 146, 147, 148, 149), suggesting that epigenetic
factors are involved in the early stages of NPC carcino-
genesis. Interestingly, the interaction of the host
with EBV also alters the promoter hypermethylation
of the tumour suppressor gene PTEN and increases
DNA methyltransferase 1 (Dnmtl) protein levels
(Refs 150). The high titre of EBV is consistent with
the hypermethylation of E-cadherin, RASSF1A and
TSLC1 (Refs 151, 152). In addition, LMP1 induces
the DNA methylation of RAR-B2 via activation of
DNA methyltransferases (DNMTs) (Refs 153, 154,
155). LMP1 downregulates the expression of E-cad-
herin through the mechanisms that involve either pro-
moter methylation by DNMTs or transcriptional
repression by Twist and Snail (Refs 22, 47, 124, 156,
157, 158, 159, 160). Recently, we demonstrate that
LMP1 might trigger RNA polymerase II stalling at
Hox genes, a new format of transcription, and that
irradiation may reactivate the Hox genes by DNA
demethylation (Ref. 161). Evidence suggests that
LMP1 plays a critical role by increasing DNA methyla-
tion at some target genes, contributing to carcinogen-
esis, especially of NPC. Furthermore, this finding
hints at the existence of a novel pathway that reactivates
these tumour suppressor genes by epigenetic
approaches. However, whether the epigenetic pro-
cesses act at the level of DNA methylation, chroma-
tin-remodelling or non-coding RNA and their
potential role in different stages of cancer remain
unclear. It also remains unknown if LMP1 takes part
in these epigenetic changes. The development of
high-throughput sequencing has made it more conveni-
ent to explore the interplay of LMP1 in the host epigen-
ome and transcriptome.

Several interference strategies such as vaccines, thera-
peutic antibodies, and DNAzymes have been devel-
oped to target LMP1. Vaccines are the most effective
and economic preventive approach against viral
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infections and thus may be excellent tools for reducing
the cancer rate. Although the HPV vaccine has been
available on the market for several years (Ref. 162),
there is still no vaccine for EBV fifty years after its dis-
covery. While the EBV gp350 vaccine was first used to
protect animals from EBV lymphomas in 1985, there
has been relatively little interest in developing this
vaccine for human protection. Only one stage 2 EBV
vaccine trial has been developed, and no vaccine has
been taken into advanced-stage trials. Importantly,
the tested vaccine reduced the incidence of infectious
mononucleosis that occurs mainly in developed coun-
tries by 78%, but did not block viral infection
(Refs 163, 164, 165). Interestingly, a vaccine targeting
EBNA-1 and LMP-2 has been found to be safe and
immunogenic in NPC patients, although its therapeutic
efficacy has not yet been assessed (Refs 166, 167).
Although vaccines against EBV are currently in devel-
opment, the development and approval of a vaccine or
another strategy to prevent EBV-associated diseases
should surely be hastened.

The therapeutic strategy of different domains of the
LMP1 sequence has also been developed. Therapeutic
antibodies that target both the C-terminal region and
the extracellular region of LMP1 have been shown to
inhibit the efficiency of LMP1 functions in ECs and
nude mice xenografted with human EBV-positive
lymphoma cells (Refs 168, 169, 170). A novel human
antibody against LMP1 extracellular domain is subse-
quently conjugated with mitomycin C, a chemothera-
peutic drug, to generate a potential immunoconjugate
agent, kills LMP1-positive NPC cell lines in vitro and
supresses NPC growth in nude mice transplantation
model (Ref. 171).

The use of antibodies as discovery tools and gene
therapeutic agents has been greatly extended through
their intracellular expression as intrabodies that has pro-
vided a powerful tool to manipulate cellular signalling
pathways in a highly precise manner. Intrabodies are
among the most robust molecular techniques by incorp-
oration of short polypeptide sub-cellular trafficking
signals to the N- or C-terminus of the intrabodies,
which allow them to be expressed at high concentra-
tions in the very sub-cellular compartments where a
target protein is located. The cytosolic intrabodies
against the CTART1 site of LMP1 block NF-«xB activa-
tion in cells by forming an intact complex, in turn, the
intrabody could inhibit LMP1 functions in ECs
(Refs 168, 172).

In addition, the use of ShRNA to knockdown LMP1
can induce apoptosis in EBV-positive lymphoma cells
and is associated with the inhibition of telomerase
activity and expression (Refs 173, 174). On the basis
of that adenoviral vector (AdV)-transduced dentritic
cells (DCs) and EBV-transformed B- LCLs as
antigen-presenting cells to activate and expand LMP1
specific T cells, autologous T cells targeting LMP1
and/or LMP2 could sustain complete response in
patients with Hodgkin, non-Hodgkin lymphoma and
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extranodal NK/T-cell lymphoma (Refs 175, 176, 177).
In addition, LMP1 is not essential for EBV-induced
lymphomas in vivo, but trigger substantial signal to T
cells in EBV-positive B cell lymphomas (Ref. 178).
Interestingly, T cells modified with a LMP1-specific
chimeric antigen receptor are an alternative and attract-
ive strategy to treat LMP1-positive NPC cells in vitro
and in vivo (Ref. 179). The novel adenoviral expression
system AdE1-LMPpoly encodes multiple CD®" T-cell
epitopes from LMP1, LMP2 and the EBNA1 protein
(Ref. 180). This system is highly efficient, safe and
well tolerated and may offer clinical benefits to patients
with NPC.

DNAzymes are synthetic, single-stranded DNA cat-
alysts that can be engineered to bind and cleave the
target mRNA of a disease-causing gene. By targeting
LMP1 mRNA, we successfully obtained a phosphor-
othioate-modified ‘10-23> DNAzyme (DZ1) by
screening a series of DNAzymes. DZ1 significantly
downregulated the expression of LMP1 in NPC cells,
in turn inhibiting cell proliferation and metastasis and
promoting apoptosis in NPC by interfering with
signal pathways that are abnormally activated by
LMP1, including the NF-kB, AP-1 and STAT3 signal
pathways (Refs 45, 181, 182, 183, 184, 185). DZ1
treatment increases the sensitivity of NPC cells and
patients to radiation treatment and standard radiother-
apy (Refs 134, 185, 186, 187, 188, 189, 190).
Furthermore, the mechanism of DZ1 has been well
studied. Telomerase activity is controlled by the regula-
tion of the catalytic subunit of telomerase (hTERT),
through the expression and post-translational modifica-
tion of hTERT. The expression of hTERT is tightly
regulated at the transcriptional level, and the hTERT
promoter contains a variety of binding sites for tran-
scription factors. LMP1 induces telomerase activity in
NPC cells through NF-«kB activation, an effect that is
c-Myc dependent on the basis of c-Myc-response E
box element in the hTERT promoter (Refs 191, 192).
The most common type of post-translational modifica-
tion is phosphorylation by several intracellular kinases.
The pl6(INK4A)/Rb/E2F1 and JNK-signalling path-
ways are involved in the regulation of telomerase activ-
ity via LMPI1. Furthermore, LMP1 promotes the
expression and phosphorylation of hTERT through
the Akt pathway, while DZ1 targeting LMP1 inhibits
hTERT expression and activity and increases the radio-
sensitivity of LMP1-positive cells (Refs 190, 193).
DNAzyme treatment targeting to LMP1 is safe and
effective, suggesting the potential of the DZ1 thera-
peutic approach for the treatment of EBV-related
cancers.

We also developed a natural product epigallocate-
chin-3-gallate (EGCG), which inhibits the NF-kB-sig-
nalling pathway. It is triggered by LMP1 in NPC, in
turn decreasing cell survival in a dose-dependent
manner (Ref. 194). Another nature product, quercetin
increases apoptosis by promoting more the EBV
progeny production, and inhibits more EBV infection
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than isoliquiritigenin (Ref. 195). This will provide a
novel way for the interference of LMP1-positive
cancers. The US National Institute of Health (NIH)
recently called for a new initiative to reduce global
cancer incidence, with EBV among the top candidates
for future advances.

It is clear that genetic, ethnic and environmental factors
play a role in the development of NPC. Although
studies on LMP1 function were mainly performed in
B cell and rodent fibroblast systems, it is now clear
that LMP1 has critical effects on the behaviour of
ECs, affecting a variety of cellular processes in immor-
talised nasopharyngeal cells and NPC cells. Three new
susceptibility loci, TNFRSF19, MDS1-EVI1 and the
CDKN2A-CDKN2B, have been identified in NPC
(Ref. 196). These have been linked to the signalling
pathways triggered by LMPI, although this area of
research merits further investigation. Besides, EBV
noncoding RNA, including EBER2 binds nascent
RNA to drive host B cell transcription factor PAXS
to viral DNA by forming an intact complex of
RNA-RNA interactions, in turn, inhibiting the expres-
sion LMP2A/B and LMPI1(Ref. 197), whether and
how the intact complex of PAXS and EBER2 in naso-
pharyngeal epithelial cells remains for further
identification.

In children in China, the EBV seroprevalence is
more than 50% before the age of 3 and more than
90% after the age of 8, emphasising the importance
of EBV vaccine development and implementation
(Ref. 198). Clearly, no evidence thus far has shown
that vaccines to EBV and its products such as LMP1
are effective in preventing NPC initiation, but this
remains a potentially preventative measure for these
EBV-associated human malignancies.
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