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FAIR BIAS
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Boston College

This paper takes a simple, informal suggestion by Broome and another more
explicit suggestion by Kamm for how to deal with asymmetric claims and
shows how they can be interpreted to be consistent with two different social
welfare functions: Sum-of-square-roots of individual utilities, and product
of utilities. These functions are then used to analyze more complicated
situations but I show that the first yields more intuitive results, and a better
compromise of efficiency and justice, than the other.

1. INTRODUCTION

One of the major problems in social choice theory is the opposing appeals
of the two extreme solutions – utilitarianism (that is, maximizing the
sum of individual utilities) and egalitarianism. In cases of symmetric
claims, it seems optimal to use a symmetric allocation mechanism.
And when the good to be allocated is indivisible, randomization seems
natural (see Diamond 1967 and Broome 1991). Giving each claimant the
same probability creates an egalitarian mechanism which under some
assumptions does also maximize the sum of individual utilities. But such
situations are rare and little insight can be extracted from them. What
is a just randomization in asymmetric situations is less transparent and
may depend on the circumstances. In this paper I take a simple, informal
suggestion by Broome (1984, 1991) and another more explicit suggestion
by Kamm (1993–96) for how to deal with asymmetric claims and show how
they can be interpreted to be consistent with two different social welfare
functions: the one suggests to maximize the sum of the square roots of
the utilities of the social members, the other to maximize the product of
these utilities. These functions are then used to analyze more complicated
situations but I show that the first yields more intuitive results, and a better
compromise of efficiency and justice, than the other.
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214 UZI SEGAL

The analysis of this paper should be contrasted with two of the major
issues of just distributions of scarce resources: the actual distribution of
utility and the mechanism used to determine this distribution. Following
Harsanyi (1955), there are many axiomatizations of such allocations. This
literature assumes that individuals receive utility from outcomes and the
question is what is the best utility allocation from a social perspective.
Harsanyi (1953) offered axioms leading to a utilitarian approach – society
should choose the option that maximizes the sum of the personal utilities.
Other utility-oriented approaches analyze no-envy environments, that is,
identify fair allocations as those where no individual would like to change
position with anyone else, or drop Harsanyi’s linearity assumption (see
Epstein and Segal (1992)).

The philosophical literature on the other hand seems to pay more
attention to the procedures used by society to determine utility allocations.
Such procedures may be equal division of the goods, randomization
between individuals, or affirmative action policies. One problem with
this approach is that different situations call for different procedures and
it is typically hard to tell whether these procedures are consistent with
each other or not. This paper transforms a philosophical suggestion of
a procedure into a social welfare function, thus offering a link between
the two approaches. Moreover, using a social welfare function is a simple
procedure, and as I try to demonstrate below, can sometimes closely mimic
what seems to be the “correct” philosophical procedure.

The arguments of the paper are presented in an informal manner. All
the formal claims are given in the Appendix.

2. PROPORTIONAL CLAIMS

Suppose we have one unit of an indivisible good (or bad) we wish to
allocate to one of two individuals. This good can be a donation of an
organ, military service, or an airline ticket to Hawaii. Both individuals
have the same utility function and both have the same claim for the good.
Diamond (1967) and others suggest that it is best to randomize between the
two, selecting each person with probability one half. For a comprehensive
analysis of different possible justifications for randomization, see Broome
(1991).

But what if the two don’t have the same claim for the good? For
example, what if one individual has a better chance to survive an operation,
is better qualified to become a soldier, or derives higher utility from a
trip to Hawaii? In case none of the two claimants owns the good and
society wants to give it to one of them, utilitarianism requires giving
the good to the person with the strongest claim for it. Observing the
unfairness of such a division, Broome (1984, 1991) suggests an extension
of the Aristotelian rule of proportionality, and states that “fairness seems
to require . . . that the people’s treatment should be in proportion to their
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claims” and “claims should be satisfied in proportion to their strength.”
And since the good cannot be divided, Broome offers “to give each person
a chance proportional to his claim.”1

This suggestion has a lot of appeal. Unlike utilitarianism, it is sensitive
to the needs of both individuals. Taking utilitarianism to the extreme
suggests that even the smallest difference in claims will determine the
recipient of the good.2 On the other hand, proportional randomization
does not ignore the fact that a person with a higher claim is going to create
a larger contribution to social well-being when receiving the good. It seems
to be a reasonable compromise between efficiency and egalitarianism.

A claim must be made with respect to some alternatives, and
“proportional claims” inevitably involve interpersonal comparisons of
well-being. Circumscribing these difficulties, restrict the proportionality
rule to situations where all individuals are interested in the expected level
of utility they’ll receive from a social randomization. Assume for simplicity
that there are two individuals, that the utility level of each of them from
not receiving the good is zero, and that their utilities from receiving the
good are u for person 1 and v for person 2. Giving the good to person 1
with probability p and to person 2 with probability 1 − p thus means that
the expected (or average) utility of person 1 is pu and the expected utility
of person 2 is (1 − p)v. I now discuss several possible interpretations of the
idea that probabilities should be proportional to claims and show their
formal implications. A more general analysis, for n individuals, appears
in the Appendix.

2.1 Proportional utilities

One possible interpretation of the proportionality rule is that if the utility
person 1 receives from the good is twice the utility person 2 receives from
it, then the probability of giving the good to person 1 should be twice
the probability of giving it to person 2. In general, as the utility person 1
receives from the good is u and the utility person 2 receives from it is v, the
rule suggests giving the good to person 1 with probability p and to person 2
with probability 1 − p, where the ratio between the probabilities equals
the ratio between the utilities, that is, p : 1 − p = u : v. The solution of this
equation is p = u

u + v
and 1 − p = v

u + v
.

The expected (or average) utility person 1 receives from this
randomization is pu, while the expected utility of person 2 is (1 − p)v.

1 In (1991), Broome explicitly says that he does “not mean ‘proportion’ to be taken too
precisely. But . . . equal claims require equal satisfaction, stronger claims require more
satisfaction . . . and weaker claims require some satisfaction.” This paper takes a precise
notion of “proportion,” therefore Broome’s three requirements are naturally satisfied.

2 See more on this in Section 5 below, where I discuss Kamm’s (1993–96) analysis of the
Flower Case.
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216 UZI SEGAL

Using the above solution we obtain that the optimal allocation of utility
between the two individuals is

(1)
u2

u + v
to person 1 and

u2

u + v
to person 2

For example, if the utilities the two individuals receive from the good are
30 and 15, then the probabilities should be 2

3 and 1
3 and the utilities they

receive are 20 and 5, respectively.
So far the focus of attention has been the mechanism used by society

to determine the recipient of the good. But as such decisions also imply
an allocation of expected levels of utility, one can evaluate possible
randomizations from this perspective as well. Suppose that society is
using a social welfare function of the utilities the individuals receive.
The utilitarian social welfare function, that is, the one that evaluates
social situations by the sum of these utilities, implies giving the good
to the person whose utility from this good is highest, without using any
randomization. Randomizing with probabilities p and 1 − p over the two
individuals will generate the (expected) utilities pu and (1 − p)v. Each
probability thus generates a social welfare value. Following the utility
allocation (1) above, the question is what, if any, social welfare function
will imply that this allocation of utilities is optimal. Denote by U and V
possible von Neumann & Morgenstern (that is, expected) utility levels for
the two individuals (as before, u and v represent their actual utility levels
from receiving the good).

Claim 1. The social welfare function W(U, V) = √
U + √

V implies the optimal
allocation (1) for all u and v.

In other words, the requirement for the optimal ratio p : 1 − p to be
equal to u : v is obtained when society is maximizing the sum

√
pu +√

(1 − p)v. For a proof and a generalization of Claim 1, see App. 1, where
it is also proved that the optimal allocation (1) actually characterizes the
sum-of-square-roots social welfare function.

The meaning of the claim is simple. Suppose society is employing a
social welfare function that is the sum of the square roots of individual
utilities. Then it will choose the same utility allocation as the one obtained
from randomizing over the two individuals with probabilities that are
proportional to their utility from the good. Moreover, this is the only social
welfare function to have this property.

2.2 The limited capacity case

In the above analysis, the rule “people’s treatment should be in proportion
to their claims” is interpreted to mean “randomization probabilities should
be proportional to the utilities from the good.” But other interpretations
are also possible. Suppose three people, weighting 100, 100, and 200 lb,
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need to be saved.3 A boat can carry only 200 lb and can be used only once.
Since we can save either the first two or the third person, it is meaningful
to say that each of the first two individuals has twice the claim for the boat
as the third person and therefore should be given twice the probability of
person 3. In other words, we should save the first group of two individuals
with probability 2

3 and the other person with probability 1
3 . This is one of

the solutions suggested by Kamm (1993–96: I, 128–34) to a similar problem,
where we can save either five or one person (in this case, Kamm suggests
the probabilities should be 5

6 and 1
6 ). This solution is rejected by Broome

(2003), claiming that one should save the five with probability one, and
certainly by Taurek (1977) who does not see any merit in saving more life
than less. (See Section 3 below for a further discussion.)

To generalize the boat example, suppose that there are two groups, one
of n individuals, each weighting a pounds and the other of m individuals,
weighting b pounds each. Assume further that the total weight of the first
group equals the total weight of the second group and both are equal
to the capacity of the boat. The above analysis suggests that we should
randomize, picking the first group with probability p and the second group
with probability 1 − p, where p : 1 − p = n : m. As before, the solution to this
equation is p = n

n + m and 1 − p = m
n + m . If the utility of each person (of both

types) from being rescued is 1 while his utility from being left behind is
zero, then the expected utility of individuals of type 1 is p and the expected
utility of each person of type 2 is 1 − p.

First, I show that the probabilities 2
3 and 1

3 are inconsistent with the
results of the previous case (“proportional utilities”). When the weights
of the three individuals are 100, 100, and 200, we have n = 2, m = 1,
and the probabilities are p = 2

3 for the first two and 1 − p = 1
3 for the

third person. Using the sum-of-square-roots social welfare function we
get

√
2/3 + √

2/3 + √
1/3 = 2.21. But if we use the probabilities p = 0.8

and 1 − p = 0.2 we get that the value of this social welfare function is√
0.8 + √

0.8 + √
0.2 = 2.24. In fact, these are the optimal probabilities

according to the sum-of-square-roots social welfare function (App. 2).
It turns out however that there is a social welfare function for which the

probabilities n
n + m and m

n + m are optimal. According to this function, society
should maximize the product of individual utilities. It is called the Nash
social welfare function, after Nash’s solution to the bargaining problem.4

Formally (see App. 3):

3 This is similar in some aspects to Taurek’s (1997: 310) volcanic island example. The
difference between the two stories is discussed in Section 2.3 below.

4 Observe that the Nash, the sum-of-square-roots, the utilitarian, and the maximin fun-
ctions all belong to the CES (constant elasticity of substitution) class, where f (x1, . . . xn) =
(
∑

αi x−ρ
i )−

1
ρ . For utilitarianism, take ρ = −1. For Nash, ρ = 0, for sum-of-square-roots,

ρ = − 1
2 , and for maximin, take ρ → ∞. See Arrow, Chenery, Minhas, and Solow (1961).
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Claim 2. The Nash social welfare function implies that for all n and m, the optimal
allocation of expected utilities is n

n + m to all individuals of type 1 and m
n + m to all

individuals of type 2.

In other words, the Nash social welfare function implies that society
should randomize between the two groups, where the probabilities are
proportional to the sizes of the group. As mentioned before, this is one of
the solutions suggested by Kamm (1993–96).

Apply now this social welfare function to the first problem, where
one unit of an indivisible good needs to be allocated to one of two
individuals. Their utilities from this good are u and v and randomizing
with probabilities p and 1 − p we obtain the utility distribution pu and
(1 − p)v. The product of these two utilities is p(1 − p)uv and it is easy to
verify that the highest value is obtained when p = 1

2 , regardless of the values
of u and v. The utilities received by the two individuals are 1

2 u and 1
2v,

that is, the ratio between the utilities (not the probabilities) equals the ratio
between the original claims.

But why do the two interpretations lead to different results? After
all, isn’t it true that in both cases the probabilities are proportional to the
trade-offs in terms of utility? Here is a possible explanation. In the first
interpretation, where one unit is to be given to one of two individuals
whose utilities from the good are 2 and 1, the trade-off is between two
units of utility of one person and one unit of utility of another person. In
the second interpretation, where we can save either two individuals or a
third person, the trade-off is between two units of utility, one from each
of two individuals and one unit of utility from another person. Only in a
utilitarian framework is there no difference between one person loosing
two units of utility and two individuals, each loosing one unit of utility.
Once we are out of the realm of utilitarianism, and as argued above, the
proportionality rule must be inconsistent with utilitarianism, we cannot
assume that two units from one person are the same as the one unit from
each of two persons.

2.3 Why use a social welfare function?

There seems to be no difference between the boat example of Section 2.2
and any other story where the choice is between saving one group of
people or another. But there is another way in which the boat can be used.
One can save half the people of type 1 and half the people of type 2, or in
general, a% of the people of type 1 and (100 − a)% of the people of type 2.
Moreover, the total weights of the two groups may not be the same, and
the capacity of the boat can be more or less than the total weight of each
of the groups. (And of course, there may be more than two groups). What
should we do in such cases? For example, what should we do if the
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boat’s capacity is 14,000 lb., there are 50, 80, and 70 people weighting 100,
150, and 200 lb. respectively? Intuitive arguments are not straightforward.
Taurek’s (1977) analysis suggests giving everyone the same probability,
while others would probably suggest maximizing the total number of
survivors (presumably by saving all 50 people of the first type, none of
the third type, and assigning 3

4 probability to each person of the second
group). But the intuitions of Sections 2.1 and 2.2 are best extended via the
derived social welfare functions.

In general, each person is assigned a certain probability of being
rescued. App. 4 explains the nature of the constraint and shows how
probabilities should be assigned to satisfy it. One possible solution is
to allocate probabilities that are proportional to the inverse of the share
claimed by individuals. Following the above example, if the capacity of the
boat is 14,000 and the individual weights are 100, 150, and 200, then their
claimed shares are 100

14000 , 150
14000 , and 200

14000 , and the inverses of the claimed
shares are 140, 93 1

3 , and 70, respectively. As explained in Section 2.2,
this solution is consistent with one of Kamm’s (1993–96) suggestions.
App. 4 shows that under the Nash social welfare function u1 . . . un, the
probabilities assigned to individuals are indeed proportional to the inverse
of the shares they claim. Moreover, the Nash social welfare function is the
only function to have this property.

Alternatively, one can allocate probabilities that are proportional to
the inverse of the claims squared. This solution is implied by the sum-of-
square-roots function (see App. 5). Needless to say, other social welfare
functions will lead to other optimal allocations.

3. WHICH OF THE TWO?

The two interpretations of the proportional rule lead to two different social
welfare functions. There are two ways in which this contradiction can be
handled. We can use other examples to better understand the implications
of the two social welfare functions and reject one of them, or we can accept
the contradiction and reject the consistency requirement. In this section I try
the first approach, suggesting to accept the sum-of-square-roots function
over the Nash social welfare function. In particular, I will try to explain
why we get in the boat case that the ratio of the probabilities should be 4:1
and not 2:1.

3.1 Survival rates

Suppose we have one unit of a medication (the minimum required to be
of any help), and two patients in a life-threatening situation in need of it.
The probability it will help person 1 is 1

2 and the probability it will help
person 2 is 1

4 . As the claim of the first person is twice that of the second
person, proportionality implies that we should administer the medicine to
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the first person with twice the probability assigned to the second person,
that is, 2

3 : 1
3 . It is easy to verify that this interpretation leads to the same

conclusions as that of Claim 1. Assuming both patients to have the same
utility from survival (and from death), we obtain that the ratio between
their utilities from receiving the medication equals the ratio between their
probabilities of survival.

Using this policy, the first person will survive with probability 1
2 · 2

3 =
1
3 , while the second person’s chances are only 1

4 · 1
3 = 1

12 . This ratio is the
result of two contributions. Nature gives one person twice the survival
rate of the other, and then society contributes another double chance to the
same individual, thus resulting in the 4:1 ratio of the actual survival rates.

To a certain extent, this is similar to the limited capacity case (Sec-
tion 2.2), where a boat can carry 200 lb while the weights of the three people
in need of it are 100, 100, and 200. The survival rates story explains why
the probabilities 0.8:0.8:0.2 may be the right outcome of the proportionality
rule. Assign each of the two thin individuals probability 0.4 and assign
the heavy person probability 0.2. If one of the first two is selected, then
we still have room in the boat for another (thin) person. Each of them
will survive if he or the other one is selected, hence the 0.8 probability.
But like the medication story, this probability is composed of two parts.
The mechanism assignment of probabilities at the ratio 2:1 for the thin
individuals over the heavy one, and the same ratio is also assigned by
Nature. In both the boat and the medication stories, the actual 4:1 rate is
the combined outcome of Nature and mechanism.

3.2 The volcanic island case

Consider the following extension of a problem discussed by Taurek
(1977: 310) (see also Broome 1984: 54 and Kamm 1993–96: I, chs. 5–7).
Fleeing an upcoming volcanic eruption, 100 people are trapped at the
north end of an island and 50 people are at the south end. We can make
only one trip to the island, either to the north or the south end, and our
boat can carry t people. Each person receives utility 1 from being rescued
and zero from not being rescued. What should we do?

Consider the following two-stage policy. First, randomize between
north and south, going north with probability p and south with probability
1 − p. Then, if the number of people at the chosen end is less than or equal
to t, save all of them. If it is more than t, rescue t people at random, giving
everyone at that end an equal chance. What should be the value of p?

There are three cases deserving attention. 1. The number of seats t is 50
or less;5 2. The number of seats is between 51 and 99; and 3. The number
of seats is 100 or more.

5 This is the case discussed in Broome (1984).
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When the number of seats is less than or equal to 50, all seats will be
used, regardless of where the boat goes. All individuals have the same
claim for a seat and should therefore receive the same probability of
rescue. When we go north with probability p, each person there survives
with probability p · t/100 and each person at the south end survives with
probability (1 − p) · t/50. Equating these two expressions we get p = 2

3 .
Both social welfare functions, the sum-of-square-roots and Nash, imply
this value (App. 6). This is also the solution obtained from Taurek’s (1977)
implied principle of equating the probabilities, and as all seats will be used,
it is consistent with the principle of maximizing the number or survivors
(see Broome (2003)).

If the number of seats is 100, then we are back at the situation described
in the “limited capacity case” (see Section 2.2 above) and the two social
welfare functions give values for the probability of going North that are
similar to those obtained before. Under the Nash function p = 2

3 (which
is Kamm’s 1993–96 “proportional chances” solution), while under the
sum-of-square-roots function, p = 4

5 . Of course, utilitarianism implies p = 1
(which is also the solution supported by Broome (2003)).

Unlike the case of Section 2.2, where higher capacity could be used,
here increasing the capacity of the boat beyond 100 seats makes no
difference. We should therefore expect the optimal probability, whatever
its value, not to change when the capacity goes beyond 100. Both functions
agree with this prediction (App. 6).

The most interesting and difficult to judge case is when the number of
seats is between 51 and 99. On the one hand, people at the north end seem
to have a higher claim for the boat, but what exactly is the ratio between
the claims of the north- and the south-enders? Although intuition is not
clear here, one thing seems certain. As the number of seats in the boat
increases from 50 to 100, the cost of going south in terms of alternative life-
saving opportunities at north is increasing. And therefore, the higher is the
number of seats (between 50 and 100), the stronger is the claim for it by each
of the northern survivors. We should thus expect that within this range,
the optimal probability of going north will increase with t. This is indeed
the case with the sum-of-square-roots social welfare function, but not with
the Nash function (see App. 6). This latter function assigns always the
same probability to the two ends – the probability should be 2

3 regardless
of the number of seats in the boat. And in general, this probability depends
on the number of people at each point, but not the capacity of the boat.
I believe that this result proves the analysis of Section 2.2 to be wrong –
it does not capture the true intuition of the rule that “people’s treatment
should be in proportion to their claims.”

Another unsatisfactory result of the Nash function is obtained in the
following variation of the volcanic island problem. Suppose there are 1001
islands, one with 1000 survivors and 1000 islands with one survivor each.
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The capacity of the boat is 1000 and it can go to one island only. The
Nash function is maximized when we decide to go to the populated
island with probability 1

2 and to each of the other islands with probability
1/2000 (see App. 7). In other words, with probability 1

2 the boat will return
virtually empty. The sum-of-square-roots function suggests the much more
reasonable probability of 1000/1001 for the populated island.

4. LONGEVITY AND RELATIVE CLAIMS

So far I dealt with situations where final allocations give everything to some
individuals and nothing to others. Randomization seems therefore a useful
tool in solving such conflicts and Broome’s suggestion leads to a specific
social welfare function. We can now apply this function to situations where
randomization is not essential and check its predictions.

Suppose two people need a daily ration of a medication to survive.
One patient needs one unit per day, the other two units. The utility of each
of them from surviving n days is n. We have 180 units of the medication.
How should we allocate these units in the following three scenarios?

1. Units are delivered daily (for example, the two are hospitalized).
2. All units must be allocated right away (the two must be quarantined

to avoid the disease from spreading).
3. One patient must receive all units (we have only one syringe and

sharing it will kill both patients).

The third situation fits well into the above analysis as it naturally calls
for some randomization. As the claim of the first person in terms of utility
is twice that of the other person, he should receive all the quantity of the
medication with probability 2

3 , leading to the utility allocation of 120:30.
This is also the solution implied by the sum-of-square-roots social welfare
function.

We can get the same utility allocation in cases 1 and 2. In the first case,
for 30 days person 1 receives one unit daily while the other person receives
two units. From the 31st day on, and for another 90 days, only person 1
receives the medication (and person 2 dies right away). In the second case,
we can give the first person 120 units of the medication and the second
person 60 units of it. But are these the right solutions?

The first problem is clearly different, as it leads to a sequence of
decisions rather than one decision only. Every day (the 31st day included)
we face the decision “should we give person 1 one unit, person 2 two units,
or both?” Whatever the answer, it is reasonable to require that every day it
will be the same. Letting both live for 60 days is therefore the most natural
solution.

https://doi.org/10.1017/S0266267106000873 Published online by Cambridge University Press

https://doi.org/10.1017/S0266267106000873


FAIR BIAS 223

But what should society do in the second situation? Is it similar to the
third, to the first, or is it a different situation altogether? One can identify
here at least four solutions:

1. Utilitarianism: Give all units to the first person (the one who needs one
unit per day).

2. Proportionality: Use the sum-of-square roots social welfare function to
obtain the allocation 120:60.

3. Egalitarianism 1: Use the Nash social welfare function to obtain the
allocation 90:90 (see App. 8).

4. Egalitarianism 2: Use the allocation 60:120 such that each lives an equal
number of days.

The Nash social welfare function implies the third solution, that is,
giving each person 90 units. But is the equal split of the good the right
allocation? In this case person 1 lives for 90 days and person 2 for 45. I find
the egalitarian aspect of this solution to fall under the criticism expressed
by Anatol France in The Red Lily: “They [the poor] have to labor in the face
of the majestic equality of the law, which forbids the rich as well as the poor
to sleep under bridges, to beg in the streets, and to steal bread.” If an egal-
itarian distribution is our goal, then we should adopt the fourth solution
and give the first person 60 and the second person 120 units so that both
will survive for 60 days, which is the intuitive solution to the first situation.

But suppose that the second person needs nine units per day (while the
first person still needs only one). Will it be right to give the second person
162 units and person 1 only 18 units so that both survive for 18 days?
Applying the sum-of-square-roots social welfare function, we get that if
the second person needs two units per day then the optimal allocation of
the medication is 120:60 so that the first lives for 120 and the second for
30 days. If the second person needs nine units per day then the optimal
allocation is 162:18 (see App. 8). Person 1 lives for 162 days while person
2 lives for 2 days. I find this allocation to be a lot more reasonable then
18:162, where both live for 18 days. The higher is the cost of egalitarianism,
the more should we move in the direction of utilitarianism.

To sum: The sum-of-square-roots social welfare function yields the
same utility allocation in the second and the third situations. The difference
is in the physical allocation of the goods, via a lottery or an actual division.
Unlike the Nash solution, it is sensitive to the issue of efficiency, and
therefore leads to more acceptable allocations.

5. THE TROLLEY AND THE FLOWER

In this section I show how randomization with non-equal probabilities
can solve the problem of comparing seemingly incomparable claims. The
argument of this section does not depend on – or support – any specific
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social welfare function. I am only utilizing the assumption that mixtures
of two policies may be better than both.

In what is known as the “Trolley Case,” Foot (1967) raises the following
question: Suppose a runaway trolley is headed towards killing five people.
A conductor can change the course of the trolley to another track, where
only one person, who is not one of the original five, will be killed. Should
the conductor change the course of the trolley?

Montmarquet (1982) seems to claim that in deciding this issue, one
should consider maximizing the sum of overall good. In her criticism of
this doctrine, Kamm (1993–96 II, 157–8) raises the following question:

Suppose we may choose whether to send the trolley toward one person on
the left track or toward one person on the right track. Either way one person
will die, but if we send the trolley to the right track some beautiful flowers
that give many people pleasure will also be destroyed.

Kamm claims that “increasing overall good by saving the flowers should
play no role in deciding along which track to send the trolley. The extra
utility is irrelevant.”

Although I agree that determining the issue of where to send the
trolley (only) by the fate of the flowers is wrong, ignoring them altogether
is also wrong. Following the analysis of this paper, the obvious solution
should be to randomize between the two sides, giving left a slightly higher
probability than right. For example, suppose that in addition to the two
people in danger, there are ten other people. The two individuals in danger
receive utility zero if not saved. Everyone who is alive receives utility 1
if the flowers are kept and 1 − ε if they are destroyed. It is easy to verify
(App. 9) that for both of the social welfare functions discussed above, it
holds that for sufficiently small value of ε, the optimal probability of going
left is only slightly above 1

2 .6 In other words, one can be sensitive to the
existence of the flowers without letting their existence decide whose life
we should save.

6. SUMMARY

Following Harsanyi (1955), there are many axiomatizations of social
welfare functions where the moral insights of the axioms relate to the
eventual allocation of utilities and goods. My interpretation of Broome’s
proportional rule refers to the allocation mechanism, and as argued above,
can be mimicked by a specific social welfare function, the one that evaluates
social situations by the sum of the square roots of individual utilities.

6 For example, for ε = 0.001 the sum-of-square-roots social welfare function obtains that the
optimal probability of going left is 0.504. In general, all strictly quasi-concave social welfare
functions lead to an optimal value greater than half.
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Randomization seems natural in cases of equal claims. If these are
the only situations where this mechanism is to be used, then it becomes
virtually meaningless, as exact equal claims are very rare. Kamm’s flower
case clarifies why it would be wrong to restrict randomizations only to such
cases. Either we let insignificant factors (like the flowers) become decisive,
or we ignore them (which is what Kamm suggests). Both are unsatisfactory.
It would be morally wrong to let the existence of the flowers decide who
will live and who will die. On the other hand, there are factors we would
like to take into consideration, like one of the two people being able to
save other people in the future or social services one of them performed in
the past.7 Moving continuously from an insignificant factor to a significant
one, there will be a point where we will switch from an even chance
randomization to saving one of the two with no randomization. But at this
point a very minor change becomes decisive. Biased randomization is the
natural solution. It gives both parties an even chance if their claims are
equal and favors the one with the stronger claim by giving him a higher
probability in cases of asymmetric claims. For other arguments in favor
of randomization, see Diamond (1967), Broome (1984, 1991), Epstein and
Segal (1992), and Kamm (1993–96).

Once we accept the rule of biased randomization, the idea that
probabilities should be proportional to claims seems natural. The social
welfare function it implies is simple and, at least in some situations,
compelling. Of course, maximizing a social welfare function cannot, and
should not, be viewed as an act of fairness. Rather, it may lead to the
same utility allocations that would be obtained by using specific “fair”
mechanisms.

The analysis of this paper cannot be claimed to cover all social
situations. As argued above, there are situations where an egalitarian
allocation seems right even if people have different claims. Moreover,
using always the same social welfare function, like the assumption that
individuals always use the same von Neumann & Morgenstern utility
function, may be questionable (see Rubinstein 2004). But I believe that the
analysis of this paper does capture the idea that in many situations people
with higher claims deserve a more favorable randomization.8

APPENDIX

App. 1. Suppose there are n individuals and their utilities from receiving
the one unit of the indivisible good are v1, . . . , vn, respectively. Section 2.1

7 Kamm (1993–96: I, 107) would probably disagree that the first of these factors is relevant,
but see Broome (2003).

8 This paper did not discuss any of the problems associated with preferences for
randomizations and dynamic consistency. For a recent discussion of these issues see
Machina (1989) and McClennen (1990).
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suggests that society should randomize over the n individuals, using the
probability vector p that is proportional to the utilities vector (v1, . . . , vn),
that is, pi = vi/

∑
j v j . With these probabilities, person i will receive the

expected utility

(2) pivi = v2
i∑
j v j

Proposition 1. The social welfare function W(U1, . . . , Un) is maximized at (2) for
every v1, . . . , vn if, and only if, W is (an ordinal transformation of ) the function∑√

Ui , where Ui is person i’s utility index.9

Proof: The possibility of randomization leads to the utility-opportunity set∑
Ui /vi = 1. The utility allocation (2) is the solution to

max
∑ √

Ui

s.t.
∑ Ui

vi
= 1

If W �= h(
∑√

Ui ), then there is a point where ∇W �= ∇(
∑√

Ui ) (or, if
W is not differentiable, the set of supporting hyperplanes at the point
differs from ∇(

∑√
Ui )) and the two functions lead to different optimal

points. �

App. 2. The maximum of the function 2
√

p + √
1 − p is obtained at p = 0.8.

App. 3. Saving the first group with probability p and the second group
with probability 1 − p yields the Nash value of pn(1 − p)m. This function is
maximized at p = n

n + m .

App. 4. Suppose that there are n individuals and person i requires ai fraction
of a certain good to survive, where

∑
ai > 1. (In the first boat example of the

text, n = 3, a1 = a2 = 1
2 while a3 = 1). The utility of person i is 1 if he receives

his share ai and zero if not. Each person is assigned a probability pi of being
rescued and the social constraint over the values of these probabilities is
given by

(3)
∑

pi ai = 1

For example, suppose that the boat’s capacity is 10,000, there are
200 people whose weight is 100 each, numbered 1 to 200, and 100 people
whose weight is 200 each, numbered 201 to 300. Suppose further that we
would like to assign each person of the first group three time the probability

9 See Rubinstcin (2005: ch. 5, exp. 4).
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assigned to each person of the second. Denote the latter p, and obtain that
the constraint 3 becomes

200 · 3p · 1
100

+ 100 · p · 1
50

= 1 ⇒ 6p + 2p = 1 ⇒ p = 1
8

Each person of the first group is selected with probability 3
8 , and each

person of the second group is selected with probability 1
8 . Here is a simple

mechanism that implies these probabilities.
Put in an urn 700 balls, three balls with each of the numbers 1 to 200

and one ball with each of the numbers 201 to 300. Draw balls at random
and send the individuals whose numbers were picked to the boat until it
is full. If a selected person is one of the first 200, also remove the other two
balls with his number. It is true that there is some friction at the end – what
if at a certain point there are only 100 lb of the boat’s capacity left – but if
the population and the boat are sufficiently large this friction is negligible.
As desired, the probability of selection for each of the first 200 people is
three times that of the last 100.

The second interpretation of the proportionality rule is that the
probability pi assigned to person i should be proportional to the inverse of
ai. For example, if person i claims 1

3 of the good and person j claims 1
6 or

it, then person j‘s probability of receiving his claim should be twice that
of person i‘s. Formally, if we denote bi = 1

ai
, then we want the probability

vector (p1, . . . , pn) to be proportional to the vector (b1, . . . , bn). Together
with the constraint (3) and the observation Ui = pi, this implies that

(4) Ui = pi = bi

n
, i = 1 , . . . , n

Proposition 2. Suppose that for every i, ai ≥ 1
n . That is, everyone needs more than

the average room available. Given the constraint (3), the social welfare function W
is maximized at (4) for all b1, . . . , bn if, and only if, W is (an ordinal transformation
of) the Nash social welfare function U1 × . . . × Un.

Proof: From eq. (3), the utility-opportunity set is {(u1, . . . , un) ∈ [0, 1]n}
such that

∑
ai ui = 1. Clearly, the utility allocation

(
b1

n
, . . . ,

bn

n

)
=

(
1

na1
, . . . ,

1
nan

)

is the solution to

max u1 × · · · × un

s.t.
∑

ai ui = 1
(u1, . . . , un) ∈ [0, 1]n

The assumption ai ≥ 1
n is needed to ensure that 1/nai ≤ 1. �
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App. 5. Given the claims a1, . . . , an for shares of the boat, the sum-of-square-
roots function implies probabilities p1, . . . , pn that solve the maximization
problem

max
∑ √

pi

s.t.
∑

pi ai = 1

It follows that

pi

p j
= a2

j

a2
i

App. 6. The three cases are t ≤ 50; 50 < t < 100; and t ≥ 100. Going North
with probability p yields the individual probabilities of rescue (and hence
utilities) of pt/100; pt/100; and p at the north end and (1 − p)t/50; 1 − p; and
1 − p at the south end. The Nash social welfare function yields the values
(pt/100)100([1 − p]t/50)50; (pt/100)100(1 − p)50; and p100(1 − p)50. Clearly, the
optimal p is the same in all three cases and is equal to 2

3 .
The alternative, sum-of-square-roots social welfare function yields

the values 100
√

pt/100 + 50
√

(1 − p)t/50; 100
√

pt/100 + 50
√

1 − p; and
100

√
p + 50

√
1 − p. The optimal values of p are 2

3 , 100t/(100t + 2500);
and 4

5 .

App. 7. The maximum of the constrained optimization

max p1000 × q1 × · · · × q1000

s.t. p + q1 + · · · + q1000 = 1

is obtained at p = 1
2 and q1 = · · · = q1000 = 1/2000. Under the same

constraint, the maximum of the function 1000
√

p + √
q1 + · · · + q1000 is

obtained at p = 1000/1001 and q1 = · · · = q1000 = 10−6.

App. 8. If we have a units of the medication, person 1 needs one unit while
person 2 needs k per day, then giving x units to person 1 and a − x to person
2 yields the social value of

(5)
√

x +
√

a − x
k

for the sum-of-square-roots social welfare function, and

(6) x · a − x
k

for the Nash function. The optimal values for eq. (5) are given by x = ak/
(1 + k) and a − x = a/(1 + k). The first person survives for ak/(1 + k) days
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and the second person for a/k(1 + k) days. Eq. (6) implies x = a − x = a
2 .

The first person survives for a
2 days and the second person for a

2k days.

App. 9. If there are n other people beyond the two in danger (in the text,
n = 10), then the optimal value of p for the sum-of-square-roots social
welfare function solves

(7)
1√
p

−
√

1 − ε√
1 − p

+ nε√
1 − ε + pε

= 0

while the optimal value of p for the Nash function is the solution to the
quadratic equation

(8) (n + 2)εp2 + [2 − (n + 3)ε]p + ε − 1 = 0

As ε approaches zero, the optimal values of p in (7) and (8) approach 1/2.
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