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Expansions for moments of X, the mean of a random sample of size n, are given for
both the univariate and multivariate cases. The coefficients of these expansions are simply
Bell polynomials. An application is given for the compound Poisson variable SN , where
Sn = nX and N is a Poisson random variable independent of X1, X2, . . ., yielding expan-
sions that are computationally more efficient than the Panjer recursion formula and
Grubbström and Tang’s formula.

1. INTRODUCTION AND SUMMARY

The compound Poisson model is one of the most popular models in probability, statistics,
operations research, and many applied areas (social sciences, economics, management sci-
ence, electrical and electronic engineering, industrial engineering, biology, etc.). Its classical
form is: if X1,X2, . . . is a random sample and N ∼ Poisson (λ) independently then

SN =
N∑

i=1

Xi, (1.1)

is the compound Poisson random variable. It is of interest to know the distribution of SN ,
in particular its moments.
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Usually, the distribution of a random variable can be described well by its first four
moments. However, there are many situations in insurance and economics that require
moments of orders higher than four. We mention:

• Taleb [11] suggests using moments of order higher than four to measure the risk of
an option. For example, the fifth moment is suggested as the asymmetry sensitivity
of the fourth one. The seventh moment is suggested as the sign of the convexity
change as the underlying asset moves up or down.

• Avramidis and Matzinger [2] show that an estimator for pricing American options
can be improved using moments of order higher than four.

For some other examples, we refer the readers to Coën, Racicot and Théoret [3].
The aim of this note is to provide general and accessible formulas for moments of (1.1)

for both the univariate and multivariate cases. These formulas are given in terms of Bell
polynomials. In-built routines for Bell polynomials are available in most computer algebra
packages. For example, see BellY in Mathematica and IncompleteBellPoly in Matlab. So, the
formulas given will be accessible to most practitioners.

Let X = n−1Sn = n−1
∑n

i=1 Xi be the mean of a random sample X1, . . . , Xn from a
distribution with finite moments and cumulants

mr = mr(X) = E (Xr) , μr = μr(X) = E (X − m1)
r
, κr = κr(X),

where the cumulants {κr} of X are defined by

∞∑
r=1

κrt
r/r! = log {E [exp(tX)]} , (1.2)

see (Kendall and Stuart [7], Section 3.12). The problem of obtaining expansions in powers
of n−1 for mr(X) and μr(X) is a very old one. By a laborious method a solution was given
by Tchouproff [12]. He showed that these moments are polynomials in n−1 of the form

mr

(
X
)

=
r−1∑
i=0

n−imri, (1.3)

μr

(
X
)

=
r−1∑

i=r/2

n−iμri, (1.4)

for r ≥ 1, where
∑b

i=a sums over integers i such that a ≤ i ≤ b. He gave the coefficients
mri for 2 ≤ r ≤ 4 and μri for 2 ≤ r ≤ 8 in Eq. (11), page 151 and Eq. (26), page 155.

The results of this note are organized as follows. In Section 2, we prove that the general
formulas for the coefficients in (1.3) and (1.4) are given by

mri = Br,r−i(κ) = mri(κ), μri = r!Bi,r−i (κ′) /i! = μri(κ), (1.5)

where
κ = (κ1, κ2, . . .) , κ′ = (κ′

1, κ
′
2, . . .) , κ′

i = κi+1/(i + 1), (1.6)

and for x = (x1, x2, . . .), Brk(x) is defined by

( ∞∑
r=1

xrt
r/r!

)k

/k! =
∞∑

r=k

Brk(x)tr/r!, (1.7)

https://doi.org/10.1017/S0269964813000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000053


EXPANSIONS FOR MOMENTS OF COMPOUND POISSON DISTRIBUTIONS 321

where Brk(x) is called the partial exponential Bell polynomial and is tabled on page 307
of Comtet [4] for r ≤ 12. These results have been known before in a more general setting
of infinitely divisible distributions, where expressions for moments in terms of the Bell
polynomials in cumulants were given, which were then written as moments of the Lévy
measure. However, this is the first time such results have been derived for a compound sum.

In Section 3, we illustrate how the multivariate analogs of (1.3) and (1.4) immediately
follow. We also give alternative formulas in terms of m = (m1,m2, . . .).

In Section 4, we provide applications of these results for the compound Poisson variable
in (1.1). We show that formulas based on (1.3) and (1.4) are computationally more efficient
than at least two other ways to compute moments of compound sums.

The original contributions of this note are: (1) expansions for moments and central
moments of univariate and multivariate compound sums with terms of the expansions
expressed in terms of Bell polynomials; (2) application for the compound Poisson distri-
bution; (3) formulas computationally more efficient than Panjer recursion formula and
Grubbström and Tang’s formula for moments of compound sums. Although the expan-
sions in (1) are special cases of earlier results, it is the first time such expansions have been
obtained for compound sums.

2. EXPANSIONS FOR THE MOMENTS OF THE MEAN

Theorem 2.1 proves (1.3) and (1.4) with general formulas for the coefficients mri and μri.
Some alternative formulas for the coefficients, mri and μri, are given in Theorem 2.2.

Theorem 2.1: Suppose m1 = 0. Then, (1.3) and (1.4) hold with the coefficients, mri and
μri, given by (1.5).

Proof: From (1.7),

exp

( ∞∑
r=1

xrt
r/r!

)
=

∞∑
r=0

Yr(x)tr/r!,

where

Yr(x) =
r∑

k=0

Brk(x),

is called the complete exponential Bell polynomial. From the definition (1.2),

∞∑
r=1

κrt
r/r! = log {E [exp(tX)]} = log

[ ∞∑
r=0

mrt
r/r!

]
,

so mr = Yr(κ) as noted on page 160 of Comtet [4].
Now

κr (Sn) = κr

(
n∑

i=1

Xi

)
=

n∑
i=1

κr (Xi) = nκr,

and Brk(nκ) = nkBrk(κ), so

mr (Sn) = Yr (nκ) =
r∑

k=0

Brk (nκ) =
r∑

k=0

nkBrk(κ).
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Also

Br0(x) = δr0 =

{
1, if r = 0,

0, if r �= 0,

so

mr

(
X
)

= n−rmr (Sn) ,

= n−r
r∑

k=0

nkBrk(κ),

= n−r
r∑

i=0

nr−iBr,r−i(κ),

=
r∑

i=0

n−iBr,r−i(κ),

=
r−1∑
i=0

n−iBr,r−i(κ).

This proves (1.3).
Since m1 = 0,mr = μr. By equation [3l′] of (Comtet [4], p. 136),

Brk(κ)/r! = Br−k,k (κ′) /(r − k)!, (2.1)

for κ′ of (1.6). Since Brk(κ′) = 0 for k > r, (1.3) implies

μr

(
X
)

=
r−1∑
i=0

n−iBr,r−i (κ) = r!
r−1∑
i=0

n−iBi,r−i

(
κ

′)
/i! = r!

r−1∑
i=r/2

n−iBi,r−i

(
κ

′)
/i!.

(2.2)
This proves (1.4). �

Putting n = 1 in (2.2) gives μr in terms of the cumulants. This holds regardless of
whether in fact m1 = 0, since a change in location does not affect {μr}.

Theorem 2.2: Suppose m1 = 0. Then,

mri =
r∑

j=r−i

S
(r−i)
j Brj(m), (2.3)

for r ≥ 1 and

μri =
r/2∑

j=r−i

S
(r−i)
j Br−j,j (μ′) , (2.4)

where μ′
j = μj+1/(j + 1) and S

(k)
j is the Stirling number of the first kind, tabled on page

833 of Abramowitz and Stegun [1].

Proof: Take the coefficient of tr/r! in

E [exp (tSn)] = (1 + T )n,
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where

T =
∞∑

i=1

mit
i/i!.

That is,

E (Sr
n) =

r∑
j=1

Brj(m)n!/(n − j)!,

for r ≥ 1. Since

n!/(n − j)! =
j∑

k=0

nkS
(k)
j ,

we have (2.3). Using (2.1) gives (2.4). �

However, these alternative formulas, (2.3) and (2.4), are more complex than those of
(1.5).

Example 2.1: Note that

m4

(
X
)

=
3∑

i=0

n−im4i,

where m40 = B44(κ) = κ4
1, m41 = B43(κ) = 6κ2

1κ2, m42 = B42(κ) = 4κ1κ3 + 3κ2
2, and

m43 = B41(κ) = κ4. Also

μ4

(
X
)

=
3∑

i=2

n−iμ4i,

where μ42 = B22(κ′)4!/2! = 3κ2
2 and μ43 = B31(κ′)4!/3! = κ4.

3. MULTIVARIATE EXTENSIONS

Theorems 3.1 and 3.2 are analogs of Theorem 2.1 for the multivariate case.

Theorem 3.1: Suppose X and X are p-variate, where p > 1. Set X = (X1, . . . , Xp), mi =
E[Xi], and

m1···p = m1···p(X) = E (X1 · · ·Xp) ,

μ1···p = μ1···p(X) = E
[(

X1 − m1
) · · · (Xp − mp)

]
,

κ1···p = κ (X1, . . . , Xp) = κ(X).

Suppose also mi = 0. Then, for p ≥ 1,

m1···p (X) =
p−1∑
i=0

n−im1···p
i (κ), (3.1)

and

μ1···p (X) =
p−1∑

i=p/2

n−iμ1···p
i (κ), (3.2)

where m1···p
i = m1···p

i (κ) and μ1···p
i = μ1···p

i (κ) are mpi(κ) and μpi(κ) rewritten in the
obvious manner in terms of κ, the set of joint cumulants of X.
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Proof: Follow the proof of Theorem 2.1 (or equivalently (1.3), (1.4)) with mr(X) replaced
by m1···p(X), mri replaced by m1···p

i (κ), μr(X) replaced by μ1···p(X), and μri replaced by
μ1···p

i (κ). �

Theorem 3.2: Under the conditions of Theorem 3.1, for r ≥ 1 and α1, . . . , αr in {1, . . . , r},

mα1···αr
(
X
)

=
r−1∑
i=0

n−imα1···αr
i ,

and

μα1···αr
(
X
)

=
r−1∑

i=r/2

n−iμα1···αr
i .

Proof: Follow the proof of Theorem 2.1 with mr(X) replaced by mα1···αr , mri replaced
by mα1···αr

i , μr(X) replaced by μα1···αr , and μri replaced by μα1···αr
i . �

Example 3.1: From Example 2.1,

m1···4 (X) =
3∑

i=0

n−im1···4
i , μ1···4 (X) =

3∑
i=2

n−iμ1···4
i ,

where

m1···4
0 = κ1 · · ·κ4, m1···4

1 =
6∑

κ1κ2κ34,

m1···4
3 = κ1···4,

μ1···4
2 =

3∑
κ12κ34, μ1···4

3 = κ1···4,

where
∑6 and

∑3 denote summations over all permutations of 1 . . . 4 giving distinct terms.
For example,

∑3
κ12κ34 = κ12κ34 + κ13κ24 + κ14κ23.

Example 3.2: Replacing superscript 4 by 1 in Example 3.1 gives

m1123
(
X
)

= E

[(
X1

)2
X2X3

]
=

3∑
i=0

n−im1123
i

and

μ1123
(
X
)

= E

[(
X1 − m1

)2 (
X2 − m2

) (
X3 − m3

)]
=

3∑
i=2

n−iμ1123
i ,

where

m1123
0 =

(
κ1
)2

κ2κ3,

m1123
1 =

(
κ1
)2

κ23 + κ2κ3κ11 + 2κ1κ2κ13 + 2κ1κ3κ12,

m1123
2 = 2κ1κ123 + κ2κ1123 + κ3κ112 + μ1123

2 ,

μ1123
2 = κ11κ23 + 2κ12κ13,

m1123
3 = μ1123

3 = κ1123.
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Replacing superscript 3 by 2 gives

m1122
(
X
)

= E

(
X

2

1X
2

2

)
=

3∑
i=0

n−im1122
i ,

and

μ1122
(
X
)

= E

[(
X1 − m1

)2 (
X2 − m2

)2]
=

3∑
i=2

n−iμ1122
i ,

where

m1122
0 =

(
κ1
)2 (

κ2
)2

,

m1122
1 =

(
κ1
)2

κ22 +
(
κ2
)2

κ11 + 4κ1κ2κ12,

m1122
2 = 2κ1κ122 + 2κ2κ112 + μ1122

2 ,

μ1122
2 = κ11κ22 + 2κ12κ12,

m1122
3 = μ1122

3 = κ1122.

4. APPLICATION FOR THE COMPOUND POISSON

Applying Theorems 2.1 and 3.1 to the compound Poisson model, we obtain the following.

Theorem 4.1: Consider X1,X2, . . . in R as in Section 2 with m1 = 0 and N ∼ Poisson
(λ) independently. For r ≥ 1,

mr (SN ) =
r∑

k=1

λkBrk(m) =
r−1∑
i=0

λr−imri(m), (4.1)

where mri(m) = Br,r−i(m) and

μr (SN ) =
r/2∑
k=1

λkBr−k (m′) r!/(r − k)! =
r−1∑

i=r/2

λr−iμri(m), (4.2)

where μri(m) = Bi,r−i(m′)r!/i!. Similarly, if X and {Xi} are r-variate with mi = E[Xi] =
0, we have

m1···r (SN ) =
r−1∑
i=0

λr−im1···r
i (m), (4.3)

μ1···r (SN ) =
r−i∑

i=r/2

λr−iμ1···r
i (m), (4.4)

where m is the set of joint non-central moments of X.
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Proof: Since

E [ exp (tSn)] = Mn,

where

M = E [ exp(tX)] =
∞∑

r=0

mrt
r/r!,

we have

E [ exp (tSN )] =
∞∑

n=0

Mn λn exp(−λ)
n!

= exp (λM − λ) .

So,

log {E [ exp (tSN )]} = λM − λ = λ
∞∑

r=0

mrt
r/r! − λ,

and

κr (SN ) = λmr.

This is exactly analogous to κr(Sn) = nκr, so (1.3), (1.4) hold with n, nX = Sn and κ
replaced by λ, SN and m, respectively. That is, (4.1) and (4.2) hold. Also (4.3) and (4.4)
are analogous to (3.1) and (3.2), respectively. �

Example 4.1: By Example 2.1, μ4(SN ) = 3m2
2λ

2 + m4λ.

Example 4.2: By Example 3.1 if r = 4

μ1234 (SN ) =
(
m12m34 + m13m24 + m14m23

)
λ2 + m1234λ.

So,

μ1123 (SN ) =
(
m11m23 + 2m12m13

)
λ2 + m1123λ,

and

μ1122 (SN ) =
(
m11m22 + 2m12m12

)
λ2 + m1122λ.

The formulas (4.1) and (4.2) provide ways to calculate the moments and central
moments of a compound sum. A traditional way to compute moments of a compound
sum is to use the well known Panjer recursion formula (Panjer [8]; Panjer and Willmot [9]):

E (Sr
N ) =

∞∑
n=0

nrgn, (4.5)

where gn satisfies the recurrence relation

gn =
1

1 − af0

n∑
j=1

(
a +

bj

n

)
fjgn−j , (4.6)

for some −b ≤ a < 1 with the initial condition

g0 = PN (f0) ,
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where fk = Pr(Xi = k) and

PN (t) =
∞∑

j=0

qjt
j ,

denotes the probability generating function of N . Substituting (4.6) into (4.5), the
recurrence formula for the moments of SN can be made explicit:

E (Sr
N ) =

1
1 − af0

∞∑
n=0

nr
n∑

j=1

(
a +

bj

n

)
fjgn−j

=
1

1 − af0

⎡
⎣a

∞∑
n=0

n∑
j=1

nrfjgn−j + b

∞∑
n=0

n∑
j=1

jnr−1fjgn−j

⎤
⎦

=
1

1 − af0

⎡
⎣a

∞∑
n=0

n∑
j=1

(n − j + j)rfjgn−j + b
∞∑

n=0

n∑
j=1

j(n − j + j)r−1fjgn−j

⎤
⎦

=
1

1 − af0

[
a

∞∑
n=0

n∑
j=1

r∑
k=0

(
r

k

)
jr−k(n − j)kfjgn−j

+ b

∞∑
n=0

n∑
j=1

r−1∑
k=0

(
r − 1

k

)
jr−k(n − j)kfjgn−j

]

=
1

1 − af0

[
a

r∑
k=0

(
r

k

) ∞∑
j=1

∞∑
n=j

jr−k(n − j)kfjgn−j

+ b

r−1∑
k=0

(
r − 1

k

) ∞∑
j=1

∞∑
n=j

jr−k(n − j)kfjgn−j

]

=
1

1 − af0

⎡
⎣a

r∑
k=0

(
r

k

) ∞∑
j=1

jr−kfj

∞∑
m=0

mkgm + b

r−1∑
k=0

(
r − 1

k

) ∞∑
j=1

jr−kfj

∞∑
m=0

mkgm

⎤
⎦

=
1

1 − af0

[
a

r∑
k=0

(
r

k

)
mr−kE

(
Sk

N

)
+ b

r−1∑
k=0

(
r − 1

k

)
mr−kE

(
Sk

N

)]
, (4.7)

where mk = E(Xk). The formula in (4.7) is heavily used in actuarial science. If N is a
Poisson random variable as in Theorem 4.1 then a = 0 and b = λ, so (4.7) reduces to

E (Sr
N ) = λ

r−1∑
k=0

(
r − 1

k

)
mr−kE

(
Sk

N

)
. (4.8)

For other recursive formulas for computing moments of SN , we refer the readers to
Sections 9.1.2, 9.1.3, and 9.2 (univariate case) and Sections 17.1 and 17.2 (multivariate case)
of Sundt and Vernic [10]. We have used Panjer recursion formula because of its widespread
use. Embrechts and Frei [5] state “Panjer recursion is arguably the most widely used method
to “exactly” evaluate compound distributions”.
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There have also been some non-recursive formulas for moments of SN developed in the
literature. Of these, the one given by Grubbström and Tang [6] is

E (Sr
N ) = r!

r∑
i=1

⎧⎨
⎩

i∑
k=1

(−1)i−kmk(N)
k!

∑∑
· · ·
∑

j1≥1,...,jk≥1,j1+···+jk=i

1
j1 · · · jk

⎫⎬
⎭

×
⎧⎨
⎩

∑∑
· · ·
∑

l1≥1,...,li≥1,l1+···+li=r

i∏
j=1

mlj (X)
lj !

⎫⎬
⎭ , (4.9)

see Eq. (26) in Grubbström and Tang [6]. This formula is a finite sum of the product of two
terms: the first term is a multiple finite sum, and the second term is a multiple finite sum
of a finite product. In fact, (4.9) has

1
2

r∑
i=1

i(i + 1)(i + 3) =
1
24

r(r + 1)(r + 2)(3r + 13)

finite summations, excluding the finite product. The formulas, (4.1) and (4.8), each has only
one finite sum. This is not a concrete mathematical evidence of the fact that (4.1) and (4.8)
are simpler than (4.9). But we can at least say that (4.9) appears more complicated (i.e.,
by visual inspection) than (4.1) and (4.8).

We now compare computational efficiencies of (4.1), (4.8), and (4.9). We compute the
central processing unit times taken to calculate E(Sr

N ) for r = 1, 2, . . . , 10. We take Xi to
have three possible distributions: the Pareto distribution given by the probability density
function

f(x) =
α

(1 + x)α+1
(4.10)

for x > 0 and α > 0; the log-normal distribution given by the probability density function

f(x) =
1

x
√

2πσ
exp

{
− (log x − μ)2

2σ2

}
(4.11)

for x > 0, −∞ < μ < ∞, and σ > 0; and, the gamma distribution given by the probability
density function

f(x) =
xk−1 exp(−x/θ)

Γ(k)θk
(4.12)

for x > 0, k > 0 and θ > 0. These are the three most popular models for insurance claim
amounts.

Tables 1–3 compare the relative central processing unit times taken to compute (4.8) and
(4.9) for r = 0, 1, . . . , 10 and for the three distributions. The relative central processing unit
times are: the central processing unit time taken to compute (4.8) divided by the the central
processing unit time taken to compute (4.1); the central processing unit time taken to com-
pute (4.9) divided by the the central processing unit time taken to compute (4.1). The Bell
polynomials required for (4.1) were computed using the in-built routine IncompleteBellPoly
in Matlab. The formulas, (4.1), (4.8), and (4.9), were implemented in Matlab.
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Table 1. Central Processing Unit Times
Taken to Compute (4.1), (4.8), and (4.9) for
r = 0, 1, . . . , 10 and Xi Having the Pareto
Distribution, (4.10), with α = 3

CPU time for (4.8)/ CPU time for (4.9)/
r CPU time for (4.1) CPU time for (4.1)

0 41.44444 62.52699
1 4920.8 7811.065
2 11883.75 18032.06
3 15628.5 24952.51
4 24024.8 37034.21
5 25865.33 40350.99
6 25442 39731.22
7 25325 39866.01
8 27528 42233.42
9 30613.36 45989.19
10 27515.62 41283.33

Table 2. Relative Central Processing Unit Times
Taken to Compute (4.1), (4.8), and (4.9) for
r = 0, 1, . . . , 10 and Xi Having the Log-Normal
Distribution, (4.11), with μ = 3 and σ = 1

CPU time for (4.8)/ CPU time for (4.9)/
r CPU time for (4.1) CPU time for (4.1)

0 0.1304348 0.2013124
1 44.6 69.90376
2 74.33333 118.5143
3 86.2 129.4462
4 154.6 238.9388
5 174.5714 267.693
6 187.875 284.18
7 199.1 313.9088
8 232.6364 371.8147
9 228.6429 344.1241
10 253.0625 400.749

Table 3. Relative Central Processing Unit Times
Taken to Compute (4.1), (4.8), and (4.9) for
r = 0, 1, . . . , 10 and Xi Having the Gamma Distri-
bution, (4.12), with k = 3 and θ = 1

CPU time for (4.8)/ CPU time for (4.9)/
r CPU time for (4.1) CPU time for (4.1)

0 37.94118 59.6819
1 4087.167 6434.526
2 11869 17806.46
3 13729.83 21740.86
4 26681.4 40910.31
5 24767.43 38112.55
6 23608.33 37453.63
7 25653.8 40995.02
8 28434.73 43948.24
9 26448.79 39827.06
10 27720.5 43629.23
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The central processing unit times taken to compute (4.1), (4.8), and (4.9) were computed
by the Matlab code:

%{set parameter values%};

t = cputime;
%{Matlab code for computing (4.1)%};
e = cputime-t;

t = cputime;
%{Matlab code for computing (4.8)%};
e = cputime-t;

t = cputime;
%{Matlab code for computing (4.9)%};
e = cputime-t;

Here, cputime is a Matlab function. According to a Matlab manual, cputime “returns the
total CPU time (in seconds) used by your Matlab application from the time it was started”.

The tables show that (4.1) is the most efficient for all r = 0, 1, . . . , 10 and for the three
distributions. The second most efficient for all r = 0, 1, . . . , 10 and for the three distributions
is (4.8). The least efficient for all r = 0, 1, . . . , 10 and for the three distributions is (4.9).

The central processing unit times for (4.1) are several orders smaller. Although not
evident from the tables, the central processing unit times for (4.1) do not appear to change
much with r or the three distributions. The central processing unit times for (4.8) and (4.9)
appear to increase with increasing r. This gain in computational time by using (4.1) over
(4.8) and (4.9) is very significant. This could be crucial for the many problems (4.8) has
been applied to in actuarial science and other areas.

The relative performances of (4.1), (4.8), and (4.9) suggested by Tables 1–3 are not
surprising. The formula (4.1) is a finite sum of a well known polynomial for which accurate
and efficient algorithms are available. The formula (4.8) is a recursion formula. Each step
of recursion involves a finite sum, so one can only expect that it is more expensive than
(4.1). The formula (4.9) is a sum of product of terms that are multiple finite sums. So, one
can only expect that (4.9) is the most expensive formula. However, we do not have any
mathematical proof and our observations are purely empirical. A future work is to give a
rigorous mathematical proof of the fact that (4.1) is more efficient than (4.8) and (4.9).

Another advantage of (4.1) over (4.8) is that the former can be used for both Xi discrete
and continuous. Panjer recursion formula assumes by definition that Xi are discrete although
(4.8) applies for both Xi discrete and continuous. Usually, insurance claim amounts are
continuous random variables.
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