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Modal and non-modal stability analyses are performed for Poiseuille flow of a
Bingham fluid overlying an anisotropic and inhomogeneous porous layer saturated
with the same fluid. In the case of modal analysis, the resultant Orr–Sommerfeld type
eigenvalue problem is formulated and solved via the Chebyshev collocation method,
using QZ decomposition. It is found that no unstable eigenvalues are present for the
problem, indicating that the flow is linearly stable. Therefore, non-modal analysis is
attempted in order to observe the short-time response. For non-modal analysis, the
initial value problem is solved, and the response of the system to initial conditions
is assessed. The aim is to evaluate the effects on the flow stability of porous layer
parameters in terms of depth ratio (ratio of the fluid layer thickness d to the porous
layer thickness dm), Bingham number, Darcy number and slip coefficient. The effects
of anisotropy and inhomogeneity of the porous layer on flow transition are also
investigated. In addition, the shapes of the optimal perturbations are constructed. The
mechanism of transient growth is explored to comprehend the complex interplay
of various factors that lead to intermediate amplifications. The present analysis is
perhaps the first attempt at analysing flow stability of viscoplastic fluids over a
porous medium, and would possibly lead to better and efficient designing of flow
environments involving such flow.

Key words: instability control, porous media, transition to turbulence

1. Introduction
Viscoplastic fluids constitute a special class of non-Newtonian fluids. They are

uniquely characterized by exhibition of a threshold shear stress (known as yield stress),
below which they do not undergo deformation and show ideal rigid-solid behaviour.
When the shear stress is more than the yield stress, the fluid behaves as viscous (Bird,
Dai & Yarusso 1983). Such fluids find applications in varied fields such as food and
dairy processing, oil exploration, biological fluids, etc. (Chhabra & Richardson 1999;
Balmforth, Frigaard & Ovarlez 2014; Tripathi et al. 2018). Viscoplastic behaviour
is exhibited by colloidal gels, emulsions, slurries, suspensions, nanocomposites,
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drilling muds, cement, etc. Stability analysis of fluid flow is essential to determine
the physical scenario under which there is departure from laminar behaviour, so
that it can be either avoided or exploited for potential enhancement in heat and
mass transfer. One of the earliest attempts at stability analysis of Poiseuille flow of
viscoplastic fluids was made by Pavlov, Romanov & Simkhovich (1974). By means of
changing the scale of the characteristic length and velocity parameters, the problem
was reduced to Couette–Poiseuille flow of a Newtonian fluid, and thus inferred
to be stable for infinitesimal disturbances. Pavlov, Romanov & Simkhovich (1975)
further extended the work to consider the scenario of finite-amplitude disturbances
to explain the experimental findings on transition to turbulence of viscoplastic fluids.
One of the major limitations of Pavlov et al. was that they considered the analogous
Newtonian stability problem, without commenting on three-dimensional perturbations.
In the case of Newtonian fluids, Squire’s theorem asserts that a two-dimensional
perturbation is able to make a flow unstable at lower Reynolds number, compared
to three-dimensional perturbations (Squire 1933; Drazin & Reiid 2004). However,
Squire’s theorem is not applicable for Bingham (viscoplastic) fluids, as rightly pointed
out by subsequent researchers (Frigaard, Howison & Sobey 1994; Nouar & Frigaard
2001; Nouar et al. 2007; Métivier & Nouar 2011). A comprehensive modal linear
stability analysis (incorporating perturbation in the yield surface) of Poiseuille flow
of a Bingham fluid was undertaken by Frigaard et al. (1994). The study revealed that
the system is unconditionally linearly stable for a one-dimensional perturbation.

Linear stability analysis of two-layer channel flow involving viscoplastic fluids was
also undertaken, and it was shown that multilayer flow comprising two Bingham
fluids is more stable than the equivalent flow of either fluid alone (Pinarbasi &
Liakopoulos 1995; Frigaard 2001). Pinarbasi & Liakopoulos (1995) performed the
analysis systematically by first starting with a two-layer Newtonian fluid flow, and
showed that replacing the Newtonian fluid with a Bingham fluid at the bottom
layer stabilizes the interface between the two fluids. Having two Bingham fluids
stabilized the flow even further, with an increase in yield stress favouring stability.
They concluded the study by analysing the behaviour of two shear-thinning fluids,
and demonstrated that an increase in shear thinning leads to flow destabilization.
Linear stability analysis of two-layer channel flow consisting of a viscoplastic fluid
and a Newtonian fluid subject to two- and three-dimensional perturbations was
undertaken by Sahu et al. (2007) and Sahu & Matar (2010). However, there is a
major difference in the assumptions of the analyses performed by Frigaard (2001)
and Sahu et al. (2007). In the case of viscoplastic fluids, yield stress is known to
influence the growth of waves at the interface, consequently affecting the rate of
removal of the highly viscous layer. The study by Frigaard (2001) considered the
presence of a plug zone in between the Newtonian fluid and the unyielded zone of
the Bingham fluid. As a result, the interfacial modes were suppressed in their study,
resulting in super-stable two-layer flows similar to pressure-driven single-fluid flow.
Sahu et al. (2007) removed this interfacial plug zone in their analysis. Owing to this,
the interfacial modes no longer remained suppressed. This resulted in an interesting
observation: enhancement of dimensionless yield stress (quantified by Bingham
number) prior to the development of a plug zone had a destabilizing effect. Nouar &
Frigaard (2001) carried out a nonlinear energy stability analysis of the Poiseuille flow
of a Bingham fluid, and observed that the critical energy Reynolds number increases
as Bn0.5 for large values of Bn, Bn being the Bingham number (the ratio of the yield
stress to the viscous stress of the fluid). In their analysis, the yield stress of the fluid
did not directly contribute to the viscous dissipation. Instead, the effect of yield stress
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was implicitly present in the Reynolds number through the modification of the yielded
zone width, and also through the gradient of the base velocity profile. Frigaard &
Nouar (2003) analysed the linear stability of the Poiseuille flow of a Bingham fluid
to three-dimensional disturbances, and determined the eigenvalue bounds. For large
Bn, they observed the variation of critical Reynolds number as Bn0.75. However, they
did not consider the limiting case of Bn close to zero. Nevertheless, the limiting
problem was attempted by Métivier, Nouar & Brancher (2005). In comparison with
a Newtonian fluid, they observed a discontinuity of the critical conditions. Thus, the
critical conditions for Bn→ 0 are different compared to a Newtonian fluid (Bn= 0).
This discontinuity arises because of the assumption of a plug zone. They opined
that the replacement of the plug zone by assuming a suitable biviscous model could
possibly eradicate the discontinuity.

Non-modal stability analyses for plane Poiseuille as well as Hagen–Poiseuille flow
of viscoplastic fluids (Bingham and Herschel–Bulkley) have also been performed
(Nouar et al. 2007; Liu & Liu 2014; Bentrad et al. 2017; Liu, Ding & Hu 2018).
The study by Nouar et al. (2007) involved demonstration of the shape of optimal
perturbation, and its variation with dimensionless yield stress. The reduction in the
transient energy growth observed in their study, compared to plane Poiseuille flow of
a Newtonian fluid, may be attributed to increase in the viscous dissipation caused by
the viscoplastic behaviour of the fluid. The stability of Rayleigh–Bénard–Poiseuille
(RBP) flow for viscoplastic fluids was studied, both with and without the assumption
of thermal dependence, as well as by considering the effect of wall slip (Métivier
& Nouar 2008, 2009, 2011; Métivier, Frigaard & Nouar 2009; Métivier, Nouar &
Brancher 2010; Métivier & Magnin 2011). The stabilizing effect of Bn in these
studies is possibly because of the vanishing of velocity perturbations at the yield
surface for smaller values of Bn, and augmentation in effective viscous dissipation
at higher values of Bn. Nouar & Bottaro (2010) studied the stability of a Bingham
fluid in a channel with emphasis on eigenvalue sensitivity analysis. They observed
that very weak defects can successfully excite exponentially amplified streamwise
travelling waves. However, they neglected a fundamental fact that the stability operator
encountered in shear planar flow of the fluid is non-normal in nature. Thus, ignoring
the interplay between transient amplifications and exponential growth was a major
limitation in their analysis. Moyers-Gonzalez, Burghelea & Mak (2011) performed
linear stability analysis for plane Poiseuille flow of an elastoviscoplastic fluid, a
marked departure from the traditional consideration of a viscoplastic fluid. Instead
of assuming a direct solid–fluid transition regime, they considered a solid–fluid
coexistence regime where the behaviour of the material is viscoelastic. The findings
of their study resemble those of a normal viscoplastic fluid, possibly because the
viscoelastic core is limited to a region away from the wall boundary. In addition to
flow in parallel channels, the stability of viscoplastic fluids has also been analysed for
an annular geometry (Kabouya & Nouar 2003; Moyers-Gonzalez, Frigaard & Nouar
2004; Peng & Zhu 2004; Caton 2006; Landry, Frigaard & Martinez 2006; Soleimani
& Sadeghy 2010, 2011; Madani et al. 2013).

As stated in the beginning, viscoplastic fluids assume importance due to their
widespread presence in various physically relevant systems (e.g. blood flow, drilling
mud, toothpaste). An understanding of the conditions under which flow transition
occurs in viscoplastic fluids may possibly lead to better design of flow equipment
involving the flow of such fluids. Stability studies on a Bingham fluid in a non-porous
channel show that the critical Reynolds number increases with the Bingham number
of the fluid (Frigaard et al. 1994; Balmforth et al. 2014). Thus, yield stress adds to
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the stability of the flow in general for non-porous channels. Actually, the plug region
of the Bingham flow helps in resisting transition even when finite perturbations are
introduced in the channel. But stability analysis of the flow of viscoplastic fluids
over a porous layer has remained unexplored till now. However, several real-life
applications, like oil recovery, biological transport, deep filtration, etc., involve the
flow of viscoplastic fluids over porous media (Herzig, Leclerc & Goff 1970; Dash,
Mehta & Jayaraman 1996; Mandal & Bera 2015). Hence, stability analysis of
viscoplastic fluid flow over a porous media is of considerable interest. Although
studies exploring the analytical solutions for the flow of Bingham fluids involving
a porous interface exist (Chen & Zhu 2008; Sengupta & De 2019), there has been
no stability analysis on the same. This lack of literature on the stability analysis
of viscoplastic fluids involving porous media has necessitated the current study.
Linear stability analysis is important, as it provides an upper limit on the critical
Reynolds number necessary for flow to become unstable, leading to undesirable flow
manifestations, like unwanted mixing. In addition, it provides useful insight into the
role played by yield stress in viscoplastic fluids. The Bingham model, while providing
a simplistic representation of viscoplastic fluids, also incorporates the essential element
of viscoplastic behaviour, i.e. yield stress, thereby making the analysis intriguing.

To the best of the authors’ knowledge, there are no reported studies on the stability
analysis of Bingham fluids over a porous layer for any kind of flow configuration.
In addition, non-modal stability analysis for flow over porous media is rare. For
analysing fluid flow over a porous layer, earlier studies have adopted modal analysis
(Chang, Chen & Straughan 2006; Hill & Straughan 2008, 2009; Deepu, Anand &
Basu 2015; Chang, Chen & Chang 2017). A literature review suggests that variation
in porous layer parameters, like permeability, depth ratio, slip parameter, etc., can
induce instability via the fluid–porous interface in the case of Newtonian fluids
(Chang et al. 2006; Hill & Straughan 2008; Chang et al. 2017). Linear stability
analysis shows that the critical Reynolds number for porous configuration (Recr) can
be as low as approximately 2500, which is significantly lower than that of non-porous
configuration (Recr= 5772) (Chang et al. 2006). In fact, in the case of a fluid–porous
system, there is a rapid change in velocity at the interface, which is difficult to
avoid. This velocity gradient at the interface is known to influence the flow transition
characteristics significantly. Thus, the authors are interested in exploring how the
presence of a porous layer affects the flow transition in the case of Bingham fluids.
This was the major motivation behind attempting the current study.

Bingham flows are obviously known to be more stable. Thus, the current study
aims to investigate whether the presence of the porous layer is able to impact this
stable flow. Since the modal analysis underpredicts the experimentally observed
critical point in many cases, a non-modal analysis is attempted (because, for example,
modal analysis predicts Recr = 5772 for plane Poiseuille flow of Newtonian fluids,
while it is around 2000 in real experimental observations). Moreover, a literature
review reveals that non-modal studies on Bingham fluids in non-porous channels
have shown the presence of a transient growth that decays at large time (Nouar et al.
2007). Thus, there is substantial evidence that non-modal studies give insight into
the transient amplifications for Newtonian as well as non-Newtonian fluids. However,
to the best of our knowledge, non-modal analysis in a fluid–porous system is rare
in the open literature. Moreover, in a practical scenario, a porous layer has a high
possibility to exhibit directional variations in the permeability (Straughan & Walker
1996; Malashetty & Mahantesh 2010). Thus, it is imperative to consider anisotropy
and inhomogeneity of the porous layer, and analyse its effects on the flow stability for
an exhaustive understanding of practical applications involving fluid–porous systems.
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In the modal analysis, asymptotic long-time stability behaviour is analysed.
However, the response to infinitesimal perturbations at short times has not been
explored for a porous configuration. This necessitates the analysis of the response
to external excitations and initial conditions, in order to gain a more holistic
understanding of the fluid flow transition. In terms of non-modal analysis, the
resolvent and the growth functions give an indication about the amplification of
the external excitations and the initial conditions. The importance of non-modal
analysis can be stressed by the fact that there is always a possibility for occurrence
of subcritical transition if a non-normal linear stability operator is present, as in shear
flows (Schmid & Henningson 1992; Henningson, Lundbladh & Johansson 1993;
Reddy & Henningson 1993). Mathematically, it implies that there is a possibility for
energy extraction from the basic flow by a perturbation subspace. This may lead to
a transient growth, even though there is no long-time instability.

In the current work, an attempt has been made to carry out temporal linear
stability analysis of Poiseuille flow of a Bingham fluid overlying an anisotropic and
inhomogeneous porous layer. The constitutive equation for a Bingham fluid has been
considered together with the governing conservation equations, and the base velocity
profile is derived for the chosen flow configuration. Thereafter, an Orr–Sommerfeld
equation-like framework is obtained. Since traditional eigenvalue analysis did not
yield any unstable eigenvalue, non-modal analysis has also been attempted. The
effect of the porous layer parameters on the stability behaviour has been identified
in terms of transient growth curves. Critical energy Reynolds-number curves are also
obtained in order to comprehend the kinetic energy of the perturbations. To gain
insight regarding the short-time behaviour, the initial growth rate and pseudospectra
curves are also constructed. The authors believe that the present study provides a
much-needed framework for a basic understanding of the stability of viscoplastic
fluids over a porous layer. The current study is envisaged to be of critical help in
the better design of equipment dealing with Bingham-type flow, as observed in the
case of drilling mud, nanocomposites, etc. As already emphasized, studies involving
non-modal stability analysis for flow over porous media are rare for non-Newtonian
fluids. The current work aims to bridge this gap.

2. Problem formulation

The geometry of the flow configuration is elucidated in figure 1. A Bingham fluid
of density ρ flows in a channel overlying a porous medium having thickness dm. There
are two distinct flow regions: an unobstructed layer of fluid where no porous medium
is present, and a porous layer beneath it, where the fluid flows through the porous
medium in the axial direction, i.e. in the same direction as that of the unobstructed
zone. The thickness of the unobstructed zone (also referred to hereafter as the fluid
layer, being the zone where no porous medium is present) is d (extending from z= 0
to d). The porous medium is of thickness dm. The porous layer is saturated with the
same fluid. The bottom of the porous layer is impermeable, i.e. at z=−dm, wm = 0,
where wm refers to the normal velocity component in the porous layer. The flow occurs
under the action of an applied constant pressure gradient (−dp/dx) in the x direction.
The yield surfaces are located at z = z01 and z02. It may be noted that the velocity
profile is expected to be asymmetric with respect to the centreline of the channel
(z= d/2), due to the presence of the porous layer. This is evident from the schematic
given in figure 1.
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x

z = -dm

Yielded region

Plug zone
(unyielded region)

Yielded region

Porous layer

z

z = 0

z02

z01

z = d

FIGURE 1. Flow configuration for plane Poiseuille flow of a Bingham fluid overlying a
porous layer.

2.1. Governing equations
Now, the mass conservation equation and Cauchy’s momentum equation in the fluid
layer are given as

∇ · u= 0,

ρ
Du
Dt
=−∇p+∇ · τ .

 (2.1)

Equation (2.1) is simplified to obtain the x-momentum equation as

0=−
(

dp
dx

)
+

dτ
dz
. (2.2)

In the above equation, τ is the shear stress of the fluid.
The constitutive relation for a Bingham fluid is expressed as

τ =µ
du
dz
+ τ0 sgn

(
du
dz

)
, |τ |> τ0,

du
dz
= 0, |τ |< τ0,

 (2.3)

where u = u(z) is the streamwise velocity component, τ0 and µ represent the yield
stress and the plastic viscosity of the Bingham fluid, and sgn denotes the signum
function.

For characterizing flow in the anisotropic porous medium, the governing equations
are

∇ · um = 0,(
ρ

χ

)
∂um

∂t
=−∇pm −

µ

K
um.

 (2.4)

In the above equation, um is the velocity vector in the porous layer, and pm is
the interstitial pressure. Also, χ is the porosity, and K is a diagonal tensor used to
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represent the anisotropic and inhomogeneous permeability of the porous medium. This
tensor is expressed as K =Kxηx(z/dm)ii+Kyηy(z/dm)jj+Kzηz(z/dm)kk, where i, j and
k are the unit vectors in the x, y and z directions, respectively. In this expression, Kx,
Ky and Kz represent the permeabilities in the x, y and z directions; and ηx, ηy and ηz
denote the respective inhomogeneity functions. A generalized formulation would allow
each of these inhomogeneity functions to be multivariate. However, in the present
study, ηx, ηy and ηz have been assumed to be functions of z only. This is done in
order to ensure that the base solution is not multidimensional in nature. In this study,
an exponential variation of the inhomogeneity function is assumed, ηx = ηy = ηz =

exp(Ainh(1+ z̄m)), where Ainh is the inhomogeneity factor (Chen & Hsu 1991), and z̄m
is the dimensionless distance in the porous layer (as defined later in (2.10)). Continuity
of pressure is assumed at the fluid–porous interface, i.e. p = pm (Beavers & Joseph
1967).

The velocity profile in the porous layer is given by the plane Buckingham–Reiner
model (Rees 2015). In the present notation of variables, it is expressed as

um =−
Kxηx

µ

1−
3
2

 α0∣∣∣∣dp
dx

∣∣∣∣
+ 1

2

 α0∣∣∣∣dp
dx

∣∣∣∣


3(dp
dx

)
, for

∣∣∣∣dp
dx

∣∣∣∣>α0, (2.5)

where α0 = (β0τ0)/
√

Kx is essentially the threshold gradient, i.e. the limiting pressure
gradient for flow to occur, and β0 is a dimensionless parameter. When the applied
pressure gradient is unable to exceed the threshold gradient, there is no flow in the
porous layer. It may be observed that the velocity in the porous layer continuously
approaches zero, as the limiting pressure gradient is attained. This is a characteristic
feature of Bingham flow in porous media, as also confirmed by pore-scale studies
(Balhoff & Thompson 2004; Nash & Rees 2017).

The authors recognize the prevalence of the Darcy–Brinkman model for describing
porous layer flow. Brinkman (1949) suggested the incorporation of a viscous stress
component in the Darcy equation. The study describes an ‘effective viscosity’ to be
used in the viscous stress term. However, it seems that there is a lack of consensus in
the literature regarding the definition of this effective viscosity (Liu & Liu 2009). In
addition, it appears that most researchers have agreed upon the fact that the Brinkman
model is applicable for high-porosity configurations (Nield & Bejan 2006; Auriault
2009). A detailed Stokesian dynamics study for flow in porous media was carried out
by Durlofsky & Brady (1987), and they concluded that Brinkman’s equation should
be used for porosity greater than 0.95. On the contrary, in our analysis, we considered
a porosity of only 0.1, for which the validity of the Brinkman model is undoubtedly
debatable. Typical application of a viscoplastic fluid flow over a porous layer is in oil
recovery, where drilling fluid flows over porous soil. The porosity of major varieties
of soil lies in the range of 0.1–0.4 (Association of Swiss Road and Traffic Engineers
1999; Das 2013). Other researchers who have considered the porosity in a similar
range (0.1–0.4) have also neglected the Brinkman model for the similar reason of
a low-porosity configuration (Chang et al. 2006; Deepu et al. 2015, 2016; Chang
et al. 2017). Only researchers who have carried out the analysis for a ‘highly porous
material’ have adopted the Brinkman model (Hill & Straughan 2008, 2009). These
are the major factors why the Brinkman model is not considered to describe the flow
in porous medium in this study. Incorporation of the Brinkman model can be suitably
done in a future study, exploring the stability of a flow configuration consisting of a
highly porous medium.
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2.2. Boundary conditions
At the upper wall, the no-slip boundary condition is assumed, i.e.

at z= d, u= 0. (2.6a,b)

The fluid–porous interface (z = 0) is described by the Beavers–Joseph boundary
condition (Beavers & Joseph 1967), i.e.

at z= 0,
du
dz
=

αBJ
√

Kxηx(0)
(u− um), (2.7a,b)

where αBJ is the Beavers–Joseph constant. For a Bingham fluid, the velocity remains
invariant within the plug zone. In addition, both the velocity and its gradient are
assumed to be continuous at both yield surfaces. Therefore,

u|z=z01 = u|z=z02, (2.8)

and
du
dz

∣∣∣∣
z=z01

=
du
dz

∣∣∣∣
z=z02

= 0. (2.9)

2.3. Non-dimensionalization
The variables are made non-dimensional as follows:

z̄=
z
d
, z̄m =

z
dm
, ū=

u
Up
, τ̄ =

τd
µUp

, (2.10a−d)

where Up = (d2/µ)(−dp/dx).

2.3.1. Non-dimensional governing equations
Equation (2.2) may be represented in terms of non-dimensional variables as

1+
dτ̄
dz̄
= 0, (2.11a)

i.e.
τ̄ =−z̄+ l1, (2.11b)

where l1 is the integration constant.
The constitutive relation for a Bingham fluid (2.3) may be represented in

dimensionless form as

τ̄ =
dū
dz̄
+ Bn sgn

(
dū
dz̄

)
, |τ̄ |> Bn,

dū
dz̄
= 0, |τ̄ |< Bn.

 (2.12)

In the above equation, Bn= (τ0d)/(µUp) is the Bingham number of the fluid.
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2.3.2. Non-dimensional boundary conditions
The boundary conditions (2.6)–(2.9) may be recast in terms of dimensionless

variables:
at z̄= 1, ū= 0, (2.13a,b)

at z̄= 0,
dū
dz̄
=

αBJ d̂
δ
√
ηx(0)

(ū− ūm), (2.14a,b)

ū|z̄=z̄01 = ū|z̄=z̄02, (2.15)
dū
dz̄

∣∣∣∣
z̄=z̄01

=
dū
dz̄

∣∣∣∣
z̄=z̄02

= 0, (2.16)

where δ =
√

Kx/dm represents the Darcy number, and d̂ = d/dm is the ratio of the
thicknesses of the fluid and the porous layers; d̂ is referred to as the depth ratio of
the channel.

2.4. Base flow – analytical solution
The velocity profile may be derived by solving (2.11) subject to boundary conditions
(2.13)–(2.16). For the region 06 z̄6 z̄01 (i.e. the lower shear zone), dū/dz̄> 0, i.e. the
velocity gradient is positive. The velocity may be given as

ū=
(

l1z̄−
z̄2

2
− Bn z̄

)
+ l2. (2.17a)

In the upper shear zone (i.e. z̄02 6 z̄ 6 1), dū/dz̄< 0. The velocity is expressed as

ū=
(

l1z̄−
z̄2

2
+ Bn z̄

)
+ l3, (2.17b)

where l2 and l3 are the integration constants.
For the intermediate unyielded zone (z̄01 6 z̄ 6 z̄02), the velocity is constant, given

by ū|z̄=z̄01 = ū|z̄=z̄02 .

2.4.1. Velocity profile in the fluid layer
The dimensionless base velocity in the fluid layer may be given as (v̄ and w̄

represent the dimensionless spanwise and normal velocity components)

ū(z̄)=
(

l1z̄−
z̄2

2
− Bn z̄

)
+ l2, 0 6 z̄ 6 z̄01,

=
z̄2

01

2
+ l2, z̄01 6 z̄ 6 z̄02,

=

(
l1z̄−

z̄2

2
+ Bn z̄

)
+ l3, z̄02 6 z̄ 6 1,

v̄ = 0, w̄= 0, 0 6 z̄ 6 1,


(2.18)

where

l1 = Bn+
αBJ d̂

δ
√
ηx(0)

[l2 − ūm(0)], (2.19)
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582 S. Sengupta and S. De

l2 =


1− 4Bn(1− Bn)+

2ūm(0)αBJ d̂(1− 2Bn)
δ
√
ηx(0)

2

(
1+

αBJ d̂(1− 2Bn)
δ
√
ηx(0)

)
 , (2.20)

l3 =
1
2
− 2Bn−

αBJ d̂
δ
√
ηx(0)

[l2 − ūm(0)]. (2.21)

The locations of the yield surfaces at z̄01 and z̄02 are expressed as

z̄01 =
αBJ d̂

δ
√
ηx(0)

[l2 − ūm(0)], (2.22)

z̄02 = 2Bn+
αBJ d̂

δ
√
ηx(0)

[l2 − ūm(0)]. (2.23)

Using (2.22) and (2.23), it is observed that

z̄02 = 2Bn+ z̄01. (2.24)

It is evident that the plug region should be within the fluid volume. Therefore, the
following constraint is imposed on z̄01 and z̄02:

0< z̄01 < 1, 0< z̄02 < 1. (2.25a,b)

In addition, it may be inferred from (2.24) and (2.25) that

Bn< 0.5. (2.26)

2.4.2. Velocity profile in the porous layer
The non-dimensional velocity profile in the porous layer is obtained as

ūm(z̄m)= l4ηx(z̄m), −1 6 z̄m 6 0,
v̄m = 0, w̄m = 0, −1 6 z̄m 6 0,

}
, for

δ

β0d̂
> Bn, (2.27)

where

l4 =
δ2

d̂2

1−
3
2

(
β0Bn d̂
δ

)
+

1
2

(
β0Bn d̂
δ

)3
 . (2.28)

When the threshold gradient is not reached (i.e. when δ/β0d̂ < Bn), the velocity is
zero in the porous layer.

2.5. Stability analysis
In earlier studies on stability analysis of viscoplastic fluids, there was no existence
of the porous layer. As a result, the flow profile was symmetric about the middle
of the plug zone. This eliminated the need to consider both the shear zones in the
analysis. Stability analysis for the decoupled problem was carried out only for the
upper shear zone. Here, it may be noted that the flow configuration consists of an
upper shear zone, a plug zone, a lower shear zone and a porous layer. The complexity
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Stability of Poiseuille flow of a Bingham fluid overlying a porous layer 583

of the current study is enhanced by the fact that the velocity profile is asymmetric
about the middle of the plug zone. There are two flow domains, separated by a plug
zone discontinuity. One is the domain I comprising the porous layer and the lower
shear zone, extending from z=−dm to z01. The other is the domain II, consisting of
the upper shear zone, extending from z= z02 to d. Fortunately, it may be noted that
the maximum velocity is the same for both domains, and is realized at the interface
of the shear and plug zones. It is evident that the governing perturbation equations
will be the same for both the shear zones. Since the maximum realizable velocity is
the same in either of the two shear zones, for the current study, we carry out the
stability analysis for the domain I. In other words, we study the zone extending from
z = −dm to z01 (comprising the porous layer and the lower shear zone). Henceforth,
z01 is represented as z0 for the sake of simplicity.

2.5.1. Perturbation equations
Now, we allow a perturbation to the system in the form

u= u+ u′, v = v + v′, w=w+w′,
um = um + u′m, vm = vm + v

′

m, wm =wm +w′m,
p= p+ p′, z0 = z0 + h′,

 (2.29)

where ū and u′ respectively denote x-direction steady-state velocity, and the velocity
perturbation. The rest of the variables also have analogous meanings.

The perturbation equations for the fluid layer are given as (D = d/dz; in addition,
we write ū=U for convenience in the following equations)

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0, (2.30)

∂u′

∂t
+U

∂u′

∂x
+w′DU = −

∂p′

∂x
+

1
Re
∇

2u′

+
Bn
Re

1
|DU|

(
∇

2u′ −
∂2w′

∂x∂z
−
∂2u′

∂z2

)
, (2.31)

∂v′

∂t
+U

∂v′

∂x
= −

∂p′

∂y
+

1
Re
∇

2v′

+
Bn
Re

[
∇

2v′

|DU|
+

(
∂v′

∂z
+
∂w′

∂y

){
d
dz

(
1
|DU|

)}]
, (2.32)

∂w′

∂t
+U

∂w′

∂x
= −

∂p′

∂z
+

1
Re
∇

2w′

+
Bn
Re

2
(
∂w′

∂z

){
d
dz

(
1
|DU|

)}
+

∇
2w′ −

∂2w′

∂x2
−
∂2u′

∂x∂z
|DU|

 .
(2.33)

The perturbation equations for the porous layer are expressed as

∂u′m
∂xm
+
∂v′m

∂ym
+
∂w′m
∂zm
= 0, (2.34)
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∂u′m
∂tm
=−

(
χ

Rem

) [
∂p′m
∂xm
+

u′m
δ2ηx

]
, (2.35)

∂v′m

∂tm
=−

(
χ

Rem

) [
∂p′m
∂ym
+
ξ1v
′

m

δ2ηy

]
, (2.36)

∂w′m
∂tm
=−

(
χ

Rem

) [
∂p′m
∂zm
+
ξ2w′m
δ2ηz

]
. (2.37)

It is known that Squire’s transformation is not valid for Bingham fluids (Frigaard et al.
1994; Métivier & Nouar 2011). Thus, to perform stability analysis, we assume three-
dimensional disturbances of the form

u′ = û(z, t)ei(αx+βy), v′ = v̂(z, t)ei(αx+βy), w′ = ŵ(z, t)ei(αx+βy),

u′m = ûm(zm, tm)ei(αmxm+βmym), v′m = v̂m(zm, tm)ei(αmxm+βmym),

w′m = ŵm(zm, tm)ei(αmxm+βmym),

p′ = p̂(z, t)ei(αx+βy), p′m = p̂m(zm, tm)ei(αx+βy), h′ = ĥ(t)ei(αx+βy),

 (2.38)

where α and β are the real streamwise and spanwise wavenumbers, respectively. It
is to be noted that yield stress fluids are unique in the sense that the yield surface
also undergoes perturbation. Hence, perturbation in the yield surface is also being
considered. Incorporation of the above disturbance expressions (2.38) in the governing
perturbation equations (2.30)–(2.37) results in an initial value problem (the hats are
dropped from u, v, etc., for convenience). Thus, in the following equations, u is
essentially û. Also, Q=D2

− (α2
+ β2). In addition, we write ū=U for convenience

in the following equations, wherever applicable.
For the fluid layer, the following set of equations is obtained:

0= i(αu+ βv)+Dw, (2.39)
∂u
∂t
=−iαUu−wDU − iαp+

1
Re

Qu+
Bn
Re

[
−(α2

+ β2)u− iαDw
|DU|

]
, (2.40)

∂v

∂t
= −iαUv − iβp+

1
Re

Qv

+
Bn
Re

[
1
|DU|

Qv + (Dv + iβw)
{

D
(

1
|DU|

)}]
, (2.41)

∂w
∂t
= −iαUw−Dp+

1
Re

Qw

+
Bn
Re

[
(2Dw)

{
D
(

1
|DU|

)}
+
(D2
− β2)w− iαDu
|DU|

]
. (2.42)

For the porous layer, the following initial value problem is obtained:

i(αmum + βmvm)+Dpwm = 0, (2.43)
∂um

∂tm
=−

(
χ

Rem

) [
1
δ2ηx

um + iαmpm

]
, (2.44)

∂vm

∂tm
=−

(
χ

Rem

) [
ξ1

δ2ηy
vm + iβmpm

]
, (2.45)
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∂wm

∂tm
=−

(
χ

Rem

) [
ξ2

δ2ηz
wm +Dppm

]
, (2.46)

where ξ1 = Kx/Ky and ξ2 = Kx/Kz respectively denote the spanwise and normal
anisotropy parameters. Also, Dp = d/dzm. The Reynolds numbers in the two layers
are related as

Re= d̂Rem

 l2 +
z̄2

01

2
l4ηx(0)

 . (2.47)

For modal analysis, the disturbance expressions in the governing perturbation
equations (2.30)–(2.37) are replaced, using the following relations:

u′ = û(z)ei(αx+βy−ct), v′ = v̂(z)ei(αx+βy−ct), w′ = ŵ(z)ei(αx+βy−ct),

u′m = ûm(zm)ei(αmxm+βmym−cmtm), v′m = v̂m(zm)ei(αmxm+βmym−cmtm),

w′m = ŵm(zm)ei(αmxm+βmym−cmtm),

p′ = p̂(z)ei(αx+βy−ct), z′0 = ẑ0(z)ei(αx+βy−ct),

p′m = p̂m(zm)ei(αmxm+βmym−cmtm), h′ = ĥ(t)ei(αx+βy).


(2.48)

Thus, the following eigenvalue problem is obtained in the fluid and the porous layers:

0= i(αu+ βv)+Dw, (2.49)

−icu=−iαUu−wDU − iαp+
1

Re
Qu+

Bn
Re

[
−(α2

+ β2)u− iαDw
|DU|

]
, (2.50)

−icv = −iαUv − iβp+
1

Re
Qv

+
Bn
Re

[
1
|DU|

Qv + (Dv + iβw)
{

D
(

1
|DU|

)}]
, (2.51)

− icw = −iαUw−Dp+
1

Re
Qw

+
Bn
Re

[
(2Dw)

{
D
(

1
|DU|

)}
+
(D2
− β2)w− iαDu
|DU|

]
, (2.52)

i(αmum + βmvm)+Dpwm = 0, (2.53)

−icmum =−

(
χ

Rem

) [
1
δ2ηx

um + iαmpm

]
, (2.54)

−icmvm =−

(
χ

Rem

) [
ξ1

δ2ηy
vm + iβmpm

]
, (2.55)

−icmwm =−

(
χ

Rem

) [
ξ2

δ2ηz
wm +Dppm

]
. (2.56)

At the yield surface (interface of yielded and unyielded zone), the following boundary
conditions prevail:

u(z0)= 0, v(z0)= 0, w(z0)= 0,
Du(z0)=−hD2U(z0), Dv(z0)= 0, Dw(z0)= 0.

}
(2.57)
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Other boundary conditions are obtained from the Beavers–Joseph condition at the
fluid–porous interface, along with the continuity of normal and spanwise velocity, and
pressure.

Thus, at the fluid–porous interface (z̄= z̄m = 0), we have

Du(0)=
αBJ d̂

δ
√
ηx(0)

[
u(0)−

d̂Rem

Re
um(0)

]
,

Re v(0)= d̂Remvm(0),
Re w(0)= d̂Remwm(0),

p(0)=
d̂2

Re
Rempm(0).


(2.58)

At the bottom surface of the porous layer (z=−dm, or z̄m =−1), we have

vm(−1)= 0, wm(−1)= 0. (2.59a,b)

The following relation exists among the wavenumbers (α, αm, β, βm) in the fluid and
porous layers:

α = d̂αm, β = d̂βm. (2.60a,b)

Equations (2.49)–(2.56) are second order in u, v, w, and first order in wm, p, pm.
For solving the same, we are seemingly using 12 boundary conditions (2.57)–(2.59).
In other words, the system is apparently over-specified. However, a careful observation
will reveal the reality that is typical of yield stress fluids. In (2.57), the relation for
Du essentially specifies the condition for the amplitude of the perturbation of the yield
surface. Thus, the relation basically defines h, and not u. The relations for Dv and
Dw are also required, as they take care of the singularity of |DU|−1 as the yield
surface is approached. The same has been elucidated by other researchers as well
(Frigaard & Nouar 2003; Nouar et al. 2007).

It may be highlighted here that the disturbance waves arising in the fluid and porous
layers are the same, i.e. they have the same wavelength. As a result, the dimensional
wavenumbers, being the reciprocal of wavelength, are also the same in the two layers.
However, in our analysis, we are considering non-dimensional wavenumbers, namely
α in the fluid layer and αm in the porous layer: α is non-dimensionalized with respect
to d (thickness of the fluid layer), while αm is made non-dimensional with respect to
dm (thickness of the porous layer). Thus, α 6= αm (in fact, α= d̂αm, as already stated;
in fact, β = d̂βm as well). In a similar way, the non-dimensional distances in the two
layers are related as d̂x= xm and d̂y= ym. Thus, the Fourier expressions are identical
in the two layers, i.e. ei(αx+βy−ct)

= ei(αmxm+βmym−cmtm). The modal expressions u and u′
differ in the z direction, which is logical, as the base profiles are also different in
the two layers. These assumptions are in conformity with earlier studies (Chang et al.
2006; Hill & Straughan 2008; Deepu et al. 2015; Chang et al. 2017).

2.6. Numerical solution
We have assumed porosity χ = 0.1 throughout. Unless otherwise explicitly specified,
the parameters assume the following values: Bn= 0.2, β0 = 0.016, d̂= 0.3, αBJ = 0.2,
δ = 0.001, ξ1 = 2, ξ2 = 2 and Ainh = 2. For modal analysis, the resultant generalized
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eigenvalue problem of the form AX = cBX is solved via the Chebyshev spectral
collocation method using QZ decomposition. Here, X = (u, v,w, p), and A and B are
the matrices comprising Chebyshev derivatives. The discretization of the equations
is carried out on the Gauss–Lobatto grid, consisting of (N + 1) collocation points.
The details of the spectral collocation method using Chebyshev polynomials have
been discussed by Schmid & Henningson (2001). MATLAB 2014b software was
used for the computation. The calculations were checked with increasing number of
Chebyshev polynomials (N = 32, 64, 96, 128, 192, 256, 384, 512). It was observed
that for N = 192, the first 50 eigenvalues (sorted in terms of increasing imaginary
part) gave accuracy up to five digits. In other words, the first five digits remained
invariant with further increase in N. Hence, all the computations reported in this
paper were carried out with N = 192.

2.7. Non-modal analysis and energy growth
For non-modal analysis, the following linear initial value problem needs to be solved:

∂

∂t
q=−iLq, (2.61)

where q is expressed as q= (û, v̂, ŵ, p̂)T, and L is defined as L=−iB−1A. The solution
is expressed as q(t)=q(0) exp(−iLt), where q(0) is the initial value of the perturbation
variables.

2.7.1. Response to initial conditions: growth function
In the above context, the growth function defines the maximum possible

amplification of the initial condition, and is mathematically expressed as

G(t)= max
q(0)6=0

‖q(t)‖2

‖q(0)‖2
= ‖ exp(−iLt)‖2, (2.62)

where ‖ · ‖ is the norm.
In general, for a flow stability problem, if the Reynolds number Re is less than the

critical energy Reynolds number Re1, then the growth function G(t) is never greater
than unity, i.e. Gmax = 1. In such a case, optimal time topt is zero. On the other hand,
if the Reynolds number is greater than the critical Reynolds number Re2, then one
of the eigenvalues of the linear Orr–Sommerfeld operator has a positive imaginary
part, and the flow becomes unstable. Mathematically, the growth function becomes
unbounded at infinite time. In the case of Re1 < Re< Re2, modal analysis yields no
unstable eigenvalue and thus the flow is linearly stable. However, a transient growth is
observed which decays with time. For the current work, stability analysis is performed
for a vast range of Reynolds numbers, but no unstable eigenvalues are obtained. Thus,
for analysing non-modal behaviour, a Reynolds number higher than the critical energy
Reynolds number Re1 is taken into consideration.

2.7.2. Response to external excitations: resolvent
Let us assume that a flow configuration is subjected to an input signal V ,

represented as
V(x, y, z, t)= exp(−iωt)v(x, y, z), (2.63)
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where ω is the frequency of V , and ω is assumed to be complex. Then, the
relationship among the input signal V and the response U is given by the following
differential equation:

dU
dt
=−iLU + exp(−iωt)v. (2.64)

Solution of the above equation leads to the following expression for U:

U(x, y, z, t)= i exp(−iωt)u= i exp(−iωt)(ωI − L)−1v. (2.65)

In the above relation, I is the identity matrix, and (ωI − L)−1 is referred to as the
resolvent; L has already been defined earlier. For an input signal of frequency ω, the
maximum amplification of the external excitation, R(α, β, ω), is given by the norm
of the resolvent operator. Thus,

R(α, β, ω)=max
v 6=0

‖u‖
‖v‖
= ‖(ωI − L)−1

‖, (2.66)

where I is the identity matrix, and ω is the eigenvalue of L, such that ‖(ωI − L)−1
‖→

∞. In mathematical terms, the resolvent norm is equivalent to amplification of the
response under external forcing. In this context, it is essential to discuss the definition
of the ‘ε-pseudospectrum’. A basic understanding of the pseudospectrum is critical to
non-modal stability analysis. For any ε > 0, the pseudospectrum of L is defined as
(Trefethen & Embree 2005)

Λε(L)= {ω ∈C : ‖(ωI − L)−1
‖> ε−1

}. (2.67)

With a variation in ε, contours of pseudospectra are obtained. When ε = 0, the
pseudospectrum reduces to the spectrum, i.e. the set of eigenvalues obtained from
normal mode analysis. Thus, with increasing ε, there is deviation from the traditional
eigenvalue analysis. In a non-modal stability analysis problem, there are two major
components that need to be explored. One is the response of the system to external
excitations, the other being the transient growth of the initial conditions. The resolvent
norm describes the maximum possible amplification in response to external excitations.
On the other hand, transient growth of the initial conditions is expressed by the growth
function G(t). In the current study, we have considered only the response to initial
conditions, i.e. G(t). The pseudospectrum has been studied only in the limiting case
of Newtonian fluids, in order to validate our simulation methodology with that of the
existing literature.

2.8. Energy stability
For carrying out energy stability analysis, the perturbation kinetic energy is quantified
as

E =
αβ

8π2

[
1
z0

∫ z0

0

∫ 2π/α

0

∫ 2π/β

0
(u′2r + v

′2
r +w′2r ) dy dx dz

]
+
αmβm

8π2

[∫ 0

−1

∫ 2π/αm

0

∫ 2π/βm

0
(u′2mr + v

′2
mr +w′2mr) dym dxm dzm

]
, (2.68)
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where u′r = Real(û(z, t)ei(αx+βy)), u′mr = Real(ûm(zm, tm)ei(αmxm+βmym)), and so on. No
energy growth is possible if dE/dt< 0 as t→∞ (Butler & Farrell 1992). Thus, the
condition for no energy growth may be expressed as

1
Re1
= sup

u

I1(u)
I2(u)+ I3(u)

, (2.69)

with

I1(u)=−(〈(urwr + uiwi)DU〉 + J(umrwmr + umiwmi)DUK), (2.70)
I2(u)= 〈|Du|2 + (α2

+ β2)|u|2〉 + J|Dum|
2
+ (α2

m + β
2
m)|um|

2K, (2.71)

I3(u) = Bn
[〈

3|Dw|2 + (α2
+ β2)|u|2

|DU|

〉
+

〈
(α2
+ β2)|αu− iDw|2 + |αDu− i(D2w+ βw)|2

β2|DU|

〉]
. (2.72)

In the above expressions, the following terminology is applicable:

|u|2 = u2
r + u2

i , |u|
2
= |u|2 +

∣∣∣∣−αu+ iDw
β

∣∣∣∣2 + |w|2,
〈·〉 =

∫ z0

0
(·) dz, J·K=

∫ 0

−1
(·) dzm,

 (2.73)

and ur and ui are the real and imaginary components of the perturbation. The
corresponding variational problem needs to be solved. The Euler equations for the
same may be given as

(D2
− α2
− β2)2w

+Bn
[
−4(α2

+ β2)D
(

Dw
|DU|

)
− i(D2

+ α2
+ β2)

{
D(−αu+ iDw)+ iβ2w

|DU|

}]
=−
λ

2
[(α2
+ β2)uDU + iαD(wDU)], (2.74)

(α2
+ β2)(D2

− α2
− β2)u− iαD(D2

− α2
− β2)w− Bn

×

[
(α2
+ β2)2u− iα3Dw
|DU|

+ αD
(

D(iDw− αu)
|DU|

)]
=
λβ2

2
wDU, (2.75)

1
δ2

[
D2

pum

ηx
−

(
ξ1α

2
m

ηy
+
ξ2β

2
m

ηz

)
(um + iDpwm)−

DpηxDp(um + iDpwm)

η2
x

]

=
iλ

d̂χ

 l4ηx(0)

l2 +
z̄2

01

2

 (D2
p − α

2
m − β

2
m)(um + iDpwm). (2.76)
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The above eigenvalue problem in λ is solved subject to the following boundary
conditions:

u(z0)= 0, w(z0)= 0, Dw(z0)= 0,

Du(0)=
αBJ d̂

δ
√
ηx(0)

[
u(0)−

d̂Rem

Re
um(0)

]
, Re w(0)= d̂Remwm(0), Dwm(0)= 0,

um(−1)= 0, wm(−1)= 0, Dwm(−1)= 0.


(2.77)

As already emphasized earlier, the solution gives the conditions for no energy growth.
The solution methodology for this eigenvalue problem set is also Chebyshev spectral
collocation (presented in § 2.6). The results are discussed subsequently in § 3.4.

3. Results and discussion
3.1. Validation

For the purpose of validation, we compare our findings with two different studies
(both modal and non-modal) reported in the literature, in the limiting cases. First, we
compare our non-modal results with that obtained for Poiseuille flow of a Newtonian
fluid. As discussed in the preceding section, the pseudospectrum for Poiseuille flow
of a Newtonian fluid (Bn = 0) is constructed in order to validate our findings with
the literature. The same is depicted in figure 2(a,b). Both streamwise (α 6= 0, β = 0)
as well as spanwise (α = 0, β 6= 0) perturbations are considered at Re= 3000. It is
found that the response to streamwise perturbation is a spectrum consisting of the
A, P and S branches. On the other hand, the spectrum for the spanwise perturbation
is a single vertical branch. Our results coincide with those of Reddy & Henningson
(1993), thereby validating the current numerical approach. In addition, we have
also validated our modal stability results with Poiseuille flow of a Newtonian fluid
overlying a porous layer, as reported by Chang et al. (2006). Figure 2(c) shows the
neutral stability curve in the case of streamwise perturbation for the set (Bn = 0,
Ainh = 0, Ky = 1, Kz = 1). The neutral stability results reported in the literature by
Chang et al. (2006) are also displayed on the same plot (figure 2a in Chang et al.
2006). As evident from the figure, they show a satisfactory match.

3.2. Variation of z̄01 and z̄02

As already discussed in the beginning, the existence of a plug zone is a characteristic
feature of yield stress fluids. The thickness of the plug zone can be determined
from the location of yield surfaces, z̄01 and z̄02. Thus, studying the variations of z̄01
and z̄02 with various parameters can provide useful insight into flow characteristics.
Figure 3 demonstrates the effect of Bingham number, as well as various porous
layer parameters, on z̄01 and z̄02. Figure 3(a) shows that, although the variations of
both z̄01 and z̄02 are monotonic with Bn, the trends are opposite to each other. The
lower yield surface z̄01 reduces with Bn, unlike z̄02, which increases monotonically.
Physically, this represents widening of the plug zone with Bn. The values of z̄01 and
z̄02 coincide at Bn = 0, indicating no plug zone (Newtonian fluid). Essentially, as
yield stress increases, there is a gradual transition from single shear (Newtonian) to
double shear flow with a plug zone in the middle. Figure 3(b,c) reveals that both
z̄01 and z̄02 increase with depth ratio d̂ and slip parameter αBJ . However, there is
saturation at higher values of d̂ and αBJ . Increase in αBJ translates to rise in velocity
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Re = 3000
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FIGURE 2. (Colour online) Validation with literature. (a,b) Comparison with Reddy &
Henningson (1993) for (a) streamwise (α = 1, β = 0) and (b) spanwise (α = 0, β = 2)
perturbations. (c) Comparison with Chang et al. (2006) for Bn= 0. For (a), the boundaries
of the ε-pseudospectra from outer to inner are ε = 10−1, 10−2, 10−3, 10−4. For
(b), they are ε = 10−1, 10−2. In (a,b), the legend denotes the following: RH-EV,
eigenvalues reported by Reddy & Henningson (1993); CS-EV, eigenvalues obtained in the
current study; RH-PS, pseudospectra reported by Reddy & Henningson (1993); CS-PS,
pseudospectra obtained in the current study.

gradient at the fluid–porous interface. This results in higher momentum transfer in
the transverse direction, leading to plug behaviour in the upper shear zone and a
more pronounced lower shear zone, represented by an upward shift of both the yield
surfaces (Sengupta & De 2019). Of course, there cannot be prolonged monotonic rise
of the interface velocity gradient, leading to saturation at higher values of αBJ . As per
the Beavers–Joseph condition, depth ratio is also proportional to the interface velocity
gradient, thereby exhibiting similar trend as that of αBJ . As shown in figure 3(d), the
trend is reverse for δ. Darcy number represents the permeability of the porous layer.
As the porous layer becomes more permeable, the porous layer velocity increases.
Thus, there is a reduction in the velocity gradient at the fluid–porous interface,
resulting in a downward shift of the yield surfaces with δ. In figure 3(e), the yield
surfaces exhibit an asymmetric variation with inhomogeneity factor Ainh with respect
to Ainh = 0, in addition to being non-monotonic. For Ainh > 0, there is a reduction in
the values of z̄01 and z̄02. Increase in inhomogeneity amounts to increase in overall
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FIGURE 3. Variation of z̄01 and z̄02 with various parameters: (a) Bingham number;
(b) depth ratio; (c) slip coefficient; (d) Darcy number; and (e) inhomogeneity factor.

permeability of the porous medium. Owing to this, the trend of a downward shift in
the yield surfaces with Ainh somewhat resembles the behaviour of δ. High negative
values of Ainh indicate drastic (exponential) reduction in the permeability, due to
which the fluid–porous interface almost behaves as an impermeable wall. Thus, the
porous layer no longer affects the location of the yield surfaces, due to which both
z̄01 and z̄02 become almost invariant at large negative Ainh.
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FIGURE 4. (Colour online) Eigenvalue spectra studying the effect of depth ratio d̂:
(a) d̂= 0.1 and (b) d̂= 1. Dotted lines represent the oblique branches.

3.3. Eigenvalue spectra
The dependence of the normal modes on Bn is shown in figures 4–6, in addition to
the effect of the various parameters of the porous layer. It is observed that increase
in Bn from 0.01 to 0.1 leads to reduction in ci. However, there is no value of ci > 0
in each of the cases. Unlike non-porous channel shear flow, there is no vertical S
branch here. Instead, there is an oblique branch at approximately cr = 0.48 (the
oblique line is represented by dotted line in figure 4a). The complex interplay of
the fluid and porous modes makes the branches oblique. Also, two distinct branches
can be located on either side of this oblique line, similar to A and P branches of
non-porous Newtonian flow. Reduction in the value of ci is due to the increase in the
viscoplasticity of the fluid with Bn. Thus, the flow becomes increasingly stable with
increased Bn (even though it is never linearly unstable).

Figures 4–6 explore the effects of the porous layer parameters on the spectra. The
P and S branches are not very sharp, unlike the case of non-porous flow configuration.
Although these A and P branches are diffused, there is an interesting observation
regarding the imaginary part of the eigenvalues. To explain the same, let us observe
the two modes marked 1 and 2 in figure 4(a). Their coordinates in figure 4(a) are
as follows: mode 1 (0.53624,−0.06912) and mode 2 (0.72222,−0.06976). Thus, for
d̂= 0.1, mode 1 would dominate the transition behaviour. But as d̂ is increased to 1 in
figure 4(b), the coordinates for the two modes are: mode 1 (0.53624,−0.11480) and
mode 2 (0.72222,−0.11411). So, mode 2 becomes dominant in this case. Thus, with
increase in depth ratio from 0.1 to 1, there is a ‘switching’ of the modes carrying the
maximum value of ci, from mode 1 to mode 2. Similar behaviour of mode switching
is also observed in the case of slip parameter and permeability, depicted in figures 5
and 6. Thus, slip parameter and permeability also induce mode switching in the
eigenvalue spectra. However, the mode switching is not explicitly demonstrated in
figures 5 and 6, to avoid repetition. The mode switching phenomenon leads to the
development of unique behaviour in the neutral curves, as discussed later in § 3.4.

3.3.1. Effect of the porous modes
In order to have a better understanding of the effect of viscoplasticity on porous

modes, the effect of Bn on the eigenfunction is studied. As demonstrated in figure 7,
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FIGURE 5. (Colour online) Eigenvalue spectra studying the effect of slip parameter αBJ:
(a) αBJ = 0.1 and (b) αBJ = 0.4. Dotted lines represent the oblique branches.
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FIGURE 6. (Colour online) Eigenvalue spectra studying the effect of Darcy number δ:
(a) δ = 0.0001 and (b) δ = 0.001. Dotted lines represent the oblique branches.

for low Bn (Bn = 0.01), there is a flow reversal near the interface. Also, there is
significant protrusion of the momentum into the porous layer. With gradual increase
in Bn to Bn = 0.05, the degree of protrusion reduces. The extent of flow reversal
is also less. But both these effects of flow reversal and protrusion are exhibited at
this stage. However, with further increase in Bn to 0.1, there is no more protrusion.
Only flow reversal near the interface is observed. For higher Bn (Bn= 0.2), even the
flow reversal ceases to exist. All these effects reveal the effect of the porous layer
in deciding the mode of stability. At lower Bn, Newtonian flow characteristics are
more dominant. Thus, there is significant perturbation in the porous layer as well,
in addition to the fluid layer. This is the cause of the flow reversal and protrusion
in figure 7(a,b). At this stage, the effects of the fluid layer and the porous layer on
flow transition are comparable. As Bn further increases to 0.1, the protrusion of the
perturbation becomes negligible, owing to the onset of yield stress effects. At even
higher Bn, the viscoplastic effects dominate the porous layer completely. As a result,
the porous layer is unable to influence the transition behaviour. The dominant role is
now played by the fluid layer alone.
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FIGURE 7. (Colour online) Variation of the eigenfunctions with Bn: (a) Bn = 0.01;
(b) Bn= 0.05; (c) Bn= 0.1; and (d) Bn= 0.2. Here um is the eigenfunction corresponding
to the domain −1 6 zm 6 0, whereas u is the eigenfunction corresponding to the domain
0 6 z 6 1. Solid lines refer to the real components, while the dashed lines refer to the
imaginary components.

3.4. Non-modal analysis
3.4.1. Neutral stability

As already discussed, in the current study, modal analysis did not yield any unstable
eigenvalue for Bn > 0. Thus, non-modal study is attempted in order to investigate
the possible sources of perturbation amplifications. First, the conditions for no
energy growth are explored, i.e. when G(t) is never greater than unity. Therefore, in
figure 8(a–f ), the neutral stability curves are constructed for critical energy Reynolds
number Re1 versus the spanwise disturbances β. Spanwise disturbances are selected,
as they have been found to be the source of greater amplification of perturbations
(Reddy & Henningson 1993; Liu & Liu 2014; Liu et al. 2018). It is observed that
the curves are multimodal, as opposed to the unimodal curves obtained for flow of
viscoplastic fluids in a non-porous environment (Liu et al. 2018). The additional
modes are imparted by the existence of the porous layer. Figure 8(a) delineates the
effect of depth ratio d̂ on critical energy Reynolds number. It is found that, with
increase in the depth ratio from 0.1 to 3, there is a shift in the dominant mode
of critical Re1 towards long-wave (i.e. small-β) perturbations. This exhibition of
multimodal behaviour can be traced back to the phenomenon of mode switching,
as discussed in § 3.3. Mode switching leads to multiple critical points in the neutral
curve, dictated by the relative influence of the fluid layer and porous layer modes. The
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FIGURE 8. Plots of energy Reynolds number versus spanwise wavenumber (α = 0) to
depict the effects of: (a) depth ratio d̂; (b) slip parameter αBJ; (c) Darcy number δ;
(d) inhomogeneity factor Ainh; (e) spanwise anisotropy parameter ξ1; and ( f ) normal
anisotropy parameter ξ2. The numbers in the panels denote the respective values of the
parameters. Here Bn= 0.2 in all cases.

complex interaction between the porous and fluid modes decides the dominant mode
of instability, depending on the value of the porous layer parameters. Figure 8(b)
demonstrates the effect of the Beavers–Joseph coefficient αBJ , which is essentially
a slip parameter. As slip parameter increases from 0.2 to 0.4, the fluid layer mode
dominates the criticality. The only difference is that, at higher values of slip parameter
(αBJ > 0.2), the shifting of dominant modes is less significant. As far as the effect
of the permeability (in terms of Darcy number) is concerned, it depicts an opposite
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trend. Thus, the long-wave perturbation is dominant with increasing permeability. With
higher Darcy number, the critical energy Reynolds number is lowered. This is because
with lower permeability there is a greater flow resistance in the porous layer. As a
result, more fluid is pushed into the fluid layer, establishing the dominance of the fluid
layer mode in deciding the stability of the system. The effect of the inhomogeneity
factor Ainh is depicted in figure 8(d). Porous layer modes are found to be dominant
with Ainh. This is possibly because an increase in Ainh is found to lower the value
of z̄01 significantly for Ainh > 0 (figure 3), leading to the porous modes becoming
more prominent. Also, there is a monotonic lowering of criticality with Ainh due to
the prominence of porous modes. Thus, inhomogeneity acts as a destabilizing agent.
The effects of anisotropy factors ξ1 and ξ2 on the transition behaviour are depicted
in figure 8(e, f ). The criticality is found to lower with decrease in the anisotropic
parameters. Decrease in anisotropic parameters implies relative increase in the values
of Ky and Kz. Thus, the permeabilities enhance in the spanwise and normal directions.
This increases the total volume of fluid flowing through the porous layer, for a fixed
Kx. This increased volume of fluid contributes to the momentum enhancement in
the porous layer, and thus, is responsible for the lowering of criticality. Thus, the
anisotropy parameters generally aid stabilization of flow.

3.4.2. Growth rate
Figure 9 shows the effects of the porous layer parameters on the growth rate

curves for a spanwise perturbation. It is observed that, with increase in depth ratio
in figure 9(a), the maximum possible growth as well as the time corresponding to
maximum growth is reduced. However, beyond d̂= 1, the reduction is not substantial.
The slip parameter also depicts a similar tendency in figure 9(b), but the reduction
in G(t) is significant even at high slip coefficient, i.e. at high velocity gradient at the
fluid–porous interface. As far as permeability is concerned in figure 9(c), increase
in Darcy number leads to monotonic increase in the maximum growth, as well as
the time of maximum growth. These effects illustrate the relative roles played by
each of the porous layer parameters in deciding the non-modal growth. With increase
in depth ratio, the fluid layer gradually grows in thickness. Thus, both the porous
and the fluid layers simultaneously contribute to intermediate growth. This explains
the growth characteristics with d̂. For the slip parameter, increase signifies increased
momentum transfer across the interface, thus establishing the dominance of the fluid
layer in influencing the criticality. Increase in permeability (characterized by the
Darcy number) assists relatively greater flow in the porous layer. Thus, with increase
in permeability, the porous layer is able to influence the transient amplifications. Thus,
the complex interactions among these parameters decide the short-time growth.

In further discussions, we consider oblique perturbations (α 6= 0, β 6= 0), and
the effect of the parameters of the porous layer on the same. Figure 10 describes
the effect of viscoplasticity, in terms of contours of maximum growth in the plane
of streamwise and spanwise perturbations. At Bn = 0.01, the maximum growth
is achieved by a spanwise perturbation. As the perturbations become oblique, the
maximum growth is reduced. It is observed from figure 10(a) that the disturbance is
streamwise at lower values of optimal, whereas it turns into a spanwise disturbance at
the highest value of Gmax. This is in conformity with earlier studies highlighting the
role of spanwise disturbances in amplifying growth (Liu & Liu 2014; Liu et al. 2018).
Nouar et al. (2007) also constructed contours of Gmax for plane Bingham–Poiseuille
flow. Their results are also presented in figure 10(a), for the sake of comparison. It
is observed from figure 10(a) that, for a particular combination of (α, β), the Gmax
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FIGURE 9. Growth rate curves depicting the effects of: (a) depth ratio d̂; (b) slip
parameter αBJ; and (c) Darcy number δ. The numbers in the panels denote the respective
values of the parameters. Here Re= 600 and β = 4 in all cases.

values obtained in the current study are higher than those of Nouar et al. (2007).
This is because of the dominant role played by the porous layer in the present study
for low Bn, as demonstrated in figure 7. Figure 10(b) depicts the contours of Gmax

for Bn= 0.1. A decrease in Gmax with Bn is observed, for the same combination of
(α, β). The decrease in maximum growth with increased viscoplasticity is due to the
enhanced viscous dissipation. From figure 10(a,b), it is found that the magnitude of
optimal growth reduces with Bn. Thus, although there is asymptotic long-time decay,
viscoplasticity plays a stabilizing role in amplifying the short-time growth.

Figures 11–13 depict the effects of Darcy number, depth ratio and slip parameter
with regards to the oblique perturbations. In figure 11, with increase in permeability,
the optimal perturbation is increased. It increases from 150 to 290 as the permeability
increases from δ = 5 × 10−4 to 5 × 10−3. This again demonstrates the destabilizing
role played by permeability in creating short-time amplifications. The reason for
this is the increased momentum in the porous layer with permeability. Also, as the
perturbations turn from spanwise to oblique to streamwise, the maximum growth
is lowered. However, at higher permeability, the perturbation producing maximum
growth is oblique, although the streamwise component is negligible compared to the
spanwise component.
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FIGURE 10. Effect of Bingham number: contours of Gmax at (a) Bn= 0.02 and (b) Bn=
0.1. In (a), dashed lines refer to the studies of Nouar et al. (2007).
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FIGURE 11. Effect of Darcy number: contours of Gmax at (a) δ = 5× 10−4 and
(b) δ = 5× 10−3.

Figure 12 expresses the effect of depth ratio. It is observed that the maximum
growth is reduced with the increase in fluid layer thickness. Thus, as the relative
influence of the fluid layer compared to the porous layer is increased in the flow
system, there is a reduction in transient amplifications. The fluid modes restrict
the growth of amplifications, leading to the reduction in the magnitudes of Gmax.
At very low depth ratio, the fluid layer has a small thickness, and a large part of
the momentum is influenced by the porous layer. This explains the trend of the
maximum growth with depth ratio. A similar behaviour is depicted by slip parameter
in figure 13. At lower slip coefficient, the maximum growth perturbation is spanwise
in nature. However, as the slip coefficient is increased, the perturbation becomes
oblique.

3.5. Mechanism of transient growth
The shape of the optimal perturbation is explored in detail in figure 14. Figure 14(a)
shows the shape of the optimal perturbation for Bn= 0.02 and d̂= 0.3. It is observed
that the perturbation is spanwise. Moreover, the optimal perturbations also protrude
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FIGURE 12. Effect of depth ratio: contours of Gmax at (a) d̂= 0.3 and (b) d̂= 3.
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FIGURE 13. Effect of slip parameter: contours of Gmax at (a) αBJ= 0.05 and (b) αBJ= 0.2.

into the porous layer. This explains the significance of the porous layer in deciding the
flow transition characteristics, as also revealed in figure 7. Figure 14(b,c) displays the
optimal perturbations for a high value of depth ratio (d̂= 3) for two different Bingham
numbers, Bn = 0.02 and 0.3. From the plots, it is observed that, at lower Bn, the
optimal perturbation consists of spanwise streaks. However, it becomes oblique with
larger Bn. This obliqueness of the optimal perturbation is possibly because of the fact
that the effective viscosity of the Bingham fluid varies in a nonlinear fashion across
the width of the channel. Moreover, at higher depth ratio, there is no protrusion of
the optimal perturbation into the porous layer. The perturbations are confined to the
fluid layer alone. This explains the relative significance of the fluid and the porous
layers at high depth ratio.

It is worth while to discuss the mechanism of transient growth occurring here. In the
case of inviscid shear flow, the streamwise component of the velocity perturbation has
been found to grow linearly with time (Ellingsen & Palm 1975). This mechanism is
commonly referred to as ‘lift-up’ (Reddy & Henningson 1993; Trefethen et al. 1993).
However, for viscous shear flows, viscous dissipation plays an important role. In this
case, there is initial linear growth of the streamwise velocity with time due to lift-up,
and consequent damping due to viscosity (Butler & Farrell 1992; Farrell & Ioannou
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FIGURE 14. Optimal perturbation at x= 0, Re= 600 for: (a) d̂= 0.3, Bn= 0.02; (b) d̂= 3,
Bn= 0.02; and (c) d̂= 3, Bn= 0.3. Contour levels from outer to inner denote the values
of u in the following order [0.1, 0.3, 0.5, 0.7, 0.9].

1993; Trefethen et al. 1993). The interplay of lift-up and Orr mechanisms contributes
to transient growth of the oblique disturbances (Farrell & Ioannou 1993). They both
act simultaneously, and the interaction between the two leads to the development of
the transient growth. In our analysis, in the case of lower Bn, the shape of the optimal
disturbance is found to be similar to that reported by Reddy & Henningson (1993) in
the case of plane Newtonian–Poiseuille flow. It is known that the lift-up mechanism
dominates transient growth in the case of such perturbations. However, at higher Bn,
the perturbation becomes oblique in shape. As discussed, when the perturbation is
oblique, both lift-up and Orr mechanisms become comparable. Thus, it may be said
that transient growth is dominated by lift-up at lower Bn, while both lift-up and Orr
mechanisms contribute to transient response at higher Bn.

3.6. Description of the fluid–porous interface and the porous layer
As may be observed from the expressions of the velocity profiles, there is a
discontinuity in the axial velocity profile at the interface between the fluid and
the porous layers. This discontinuity arises because of the Beavers–Joseph boundary
condition, which is generally obtained from experimental study, and thus backed by
experimental verification. The authors acknowledge the existence of more refined
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interface conditions that have been proposed in recent times, for example, the ones
by Ochoa-Tapia & Whitaker (1995a,b) and Bars & Worster (2006). However, each
of these interface conditions also carries its own set of limitations. For example,
the validity of the Bars–Worster boundary condition is questionable in the case of
a sharp fluid–porous interface (Bars & Worster 2006). In addition, some of these
conditions, like the boundary condition by Ochoa-Tapia & Whitaker, are generally
used together with the Brinkman model. The limitations of the Brinkman model with
regard to the current study have already been discussed in § 2.1. Taking all these
factors into consideration, the current study uses the Beavers–Joseph condition to
model the fluid–porous interface. The same has been adopted by other researchers as
well (Chang et al. 2006; Deepu et al. 2015, 2016; Chang et al. 2017).

It may be mentioned that the Forchheimer model is not considered in the current
analysis. Incorporation of the Forchheimer model ensures that the inertial effects
are taken care of (Lyubimova et al. 2016). The Forchheimer model is generally
considered when the Reynolds number in the porous layer (Rem) is high. However,
in the present study, Rem in the porous layer is less than Re by approximately four
orders of magnitude. This can be easily checked from the relation (2.47) between
Re and Rem. By taking representative values of the parameters (Bn= 0.2, β0 = 0.016,
d̂ = 0.3, αBJ = 0.2, δ = 0.001, Ainh = 2), Re/Rem = 1.29 × 104. Therefore, Rem is
significantly small even for a seemingly high Re. Thus, there is negligible inertial
effect in the porous layer. This is the primary reason behind neglecting inertial effects
by a majority of researchers (Chang et al. 2006; Hill & Straughan 2008, 2009; Deepu
et al. 2015, 2016; Chang et al. 2017).

4. Conclusion
The current study provides interesting insights into flow transition for Bingham

fluids overlying an anisotropic and inhomogeneous porous layer. A linear stability
analysis subject to infinitesimal perturbations shows the existence of fluid layer and
porous layer modes, and the interplay between them in deciding the dominant mode
of instability. Plots of critical energy Reynolds number versus the wavenumber are
constructed to comprehend the conditions for no energy growth. The effects of
permeability of the porous medium (in terms of Darcy number), the depth ratio
(relative thicknesses of the fluid and porous layers), the slip coefficient and the
yield stress (in terms of Bingham number) on criticality are assessed. The effect of
anisotropy in the porous medium is found to be stabilizing. On the other hand, the
inhomogeneity of the medium lowers the critical point, and is thus destabilizing in
nature. The optimal perturbations are found to be spanwise at lower Bn, while they
become oblique at higher Bn. It is observed that the lift-up mechanism dominates the
transient growth at lower Bn, while at higher Bn, both lift-up and Orr mechanisms
contribute to transient amplifications. It is envisaged that the present analysis would
help in having a fundamental understanding of flow stability involving viscoplastic
fluids in a porous channel configuration. In addition, it would also consequently lead
to better designing of flow equipment involving viscoplastic fluid flow.
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