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Resolution and sequent calculus are two well-known formal proof systems. Their differences

make them suitable for distinct tasks. Resolution and its variants are very efficient for

automated reasoning and are in fact the theoretical basis of many theorem provers.

However, being intentionally machine oriented, the resolution calculus is not as natural for

human beings and the input problem needs to be pre-processed to clause normal form.

Sequent calculus, on the other hand, is a modular formalism that is useful for analysing

meta-properties of various logics and is, therefore, popular among proof theorists. The input

problem does not need to be pre-processed, and proofs are more detailed. However, proofs

also tend to be larger and more verbose. When the worlds of proof theory and automated

theorem proving meet, translations between resolution and sequent calculus are often

necessary. In this paper, we compare three translation methods and analyse their complexity.

1. Introduction

The representation of proofs as structured mathematical objects is in the core of proof

theory. Nevertheless, it is unlikely that a single best representation will ever be developed.

Depending on what one needs proofs for, it makes sense to prefer one proof system

over another. Two widely used formalisms are the resolution calculus and the sequent

calculus.

Variations, refinements and extensions of resolution are used in many contemporary

theorem provers (Benzmüller et al. 2015; Bouton et al. 2009; Itegulov et al. 2017; Korovin

2008; Kovács and Voronkov 2013; McCune 2005–2010; Schulz 2013; Weidenbach et al.

2009) due to their simplicity and efficiency in proof search. Simplicity is achieved by

requiring the input problem to be transformed to clause normal form (i.e., conjunction

of disjunctions of literals that are either atomic formulas or negated atomic formulas),

which allows the calculus to have only two inference rules (resolution and factoring).

Efficiency in proof search is achieved by restricting instantiation through unification and

by using various refinements that restrict the application of the inference rules while

retaining completeness. As a result, proofs are relatively compact, but do not hold much

information. To begin with, a resolution refutation is a proof of the unsatisfiability of the

negation of the theorem. This means that the theorem is valid, but the refutation is not a

direct validity proof. Then, since the need for a clause normal form requires modification

of the conjecture in a number of ways (negations are pushed deeper, quantifiers are

prenexified and skolemized and disjunctions are distributed over conjunctions – or new
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symbols are introduced to avoid the exponential blow-up of the distribution), it might

be hard to map each resolution step into some insight about the original problem

statement.

Sequent calculus was introduced by Gentzen (1969) as a meta-calculus to reason about

natural deduction derivations and it continues to be used by most proof theorists for

proof analysis and for meta-analysis of a logic’s properties. In principle, the calculus is

composed of two or more rules for each connective, which represent the semantics of

the connective when it appears in a goal or in a hypothesis (e.g., ∧ in a goal means one

needs to prove two subgoals, whereas ∧ in a hypothesis means one has two subhypotheses

available to use). The proximity to a semantic interpretation makes it convenient to

show the calculus’ soundness and completeness. Proving the logic’s consistency is also

straightforward (usually as a corollary of cut elimination). Additionally, sequent calculi

have been used as proof systems for many different logics, as the formalism is modular

and easily adaptable. The existence of many rules for connectives in different contexts

makes it possible to work on a theorem without having to transform it. This characteristic

also enables a better mapping of human reasoning steps to the formal proof steps.

Consequently, much more information can be extracted from a sequent calculus proof.

It is not a coincidence that many proof assistants (where proofs are constructed through

scripts written by humans) are based on (higher order) natural deduction and their basic

tactic commands resemble sequent calculus rules.

Occasionally, translations between the two systems are necessary. One situation where

this was the case was in studies of the compression of sequent calculus proofs via the

introduction of cuts, as in the methods proposed in Woltzenlogel Paleo (2010) (atomic

cuts) and Hetzl et al. (2014) (first-order cuts). In the former, the cuts to be introduced are

obtained from a resolution refutation of a clause set extracted from the cut-free proof:

the sequent calculus proof with cuts is the result of combining the resolution refutation

with parts of the original cut-free proof. In the latter, the cut-introduction method was

validated and evaluated on a large database of sequent calculus proofs that were obtained

by translating resolution-based proofs (Reis 2015).

Second, translations from resolution to sequent calculus are necessary in some ap-

proaches to proof checking. As automated theorem provers are complex pieces of software

and therefore vulnerable to bugs, the output of proofs is a common solution to the issue

of lack of trust arising from this complexity. Proofs certify that the answer given by the

prover is correct, even if the prover itself might not be completely correct. If a user can

successfully and independently check the proof, the user can trust the prover’s answer even

without fully trusting the prover. The foundational proof certificate (FPC) initiative (Miller

2013) adheres to this approach and proposes a conceptual framework to uniformly check

proofs in a variety of calculi and formats. Due to its versatility, a sequent calculus was

chosen as the meta-calculus for this general proof-checking task and, in Chihani et al.

(2017) in particular, an embedding of resolution into LKF (focused sequent calculus

for classical logic) was defined. Focusing is used to obtain a fine-grained correspondence

between the sequent calculus proof and the resolution proof, but focusing is not essential.

Leaving focusing aside, their embedding can be seen as a translation from resolution to

regular sequent calculus.

1062

https://doi.org/10.1017/S0960129518000476 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000476


Complexity of translations from resolution to sequent calculus

Yet, a third situation in which a translation from resolution to sequent calculus proofs

may arise is when proving soundness and completeness of one system with respect to

the other. This is the goal in Hermant (2010). Although there the translation is defined

between calculi with deduction modulo, this is not essential and can be left aside as well.

It should be noted that, given the theoretical context in which the third translation was

conceived, complexity was not as relevant a concern as it was for the first and second

translations. The third translation is nevertheless included in our analysis, because it can

be used to translate resolution refutations into cut-free sequent calculus proofs; a feature

the other two translations lack.

The translations proposed in the situations mentioned previously appeared as a side

product of the main work, and thus not much attention has been paid to them. In

this paper, we redefine all translations in a common setting such that their differences

and commonalities are more evident. Interestingly, each uses a different interpretation of

resolution in sequent calculus: as cuts on literals, as cuts on resolvents and as axioms.

Moreover we present a complexity analysis of each translation and discuss how they are

related.

2. Preliminaries

We work with classical first-order logic without equality. Terms are variables (x, y, . . . ) or

functions (f, g, . . . ) applied to terms (a constant is a 0-ary function). Formulas (P ,Q, . . . )

are composed of predicate symbols (p, q, . . . ) applied to terms, and the connectives ¬, ∨,

∧, ∀, ∃, � and ⊥. A variable is free in a formula if it is not quantified over. Otherwise

it is bound. An atom A is a formula composed of one n-ary predicate symbol and no

connective. A literal is an atom (A) or its negation (¬A). L denotes the dual of a literal

L (i.e., if A is an atom, A = ¬A and ¬A = A). A formula is said to be in conjunctive

normal form (i.e., CNF) if it is a prenexed (all quantifiers occur at the head) conjunction

of disjunction of literals. Every formula in classical logic can be transformed into CNF

form using logical equivalences. A clause (C,D, . . . ) is a disjunction of literals, possibly

with free variables. Let x1, . . . , xn denote the free variables of a clause C∗. The universal

closure of C∗ is defined as C = ∀x1 . . . ∀xn.C∗. In what follows, we use the ∗ superscript

to distinguish between a clause (with free variables) and its universal closure. While this

may seem counter-intuitive, we choose this notation because most of the time we will deal

with the universal closure C of a clause instead of its open form C∗.

2.1. Resolution

Resolution is a calculus used for proving unsatisfiability of a formula in propositional or

first-order (classical) logic. It works on skolemized formulas in CNF and it is used in most

first-order automated theorem provers in some modified and extended form. A formula F

is unsatisfiable iff there exists a resolution refutation of F (i.e., a derivation of the empty

clause � from the clauses in the CNF of F) (Robinson 1965). Due to the duality between

unsatisfiability and validity in classical logic, one can show the validity of a formula F by

presenting a resolution refutation of ¬F .
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Definition 2.1 (Resolution calculus). Let Ci be a disjunction of literals and σ be the most

general unifier (m.g.u.) of A and A′. The resolution and factoring rules of the resolution

calculus are

C1 ∨ A ∨ C2 D1 ∨ A′ ∨ D2

(C1 ∨ C2 ∨ D1 ∨ D2)σ
R

C1 ∨ A ∨ C2 ∨ A′ ∨ C3

(C1 ∨ A ∨ C2 ∨ C3)σ
F

Example 2.1. The following is the specification of a family of unsatisfiable clause sets,

where a, b are constants and xi are variables:

p1(x1) ∨ · · · ∨ pn(xn)
q1 ∨ ¬p1(a)

¬q1 ∨ ¬p1(b)

q2 ∨ p1(x1) ∨ ¬p2(a)

¬q2 ∨ p1(x1) ∨ ¬p2(b)

...

qn ∨ p1(x1) ∨ · · · ∨ pn−1(xn−1) ∨ ¬pn(a)
¬qn ∨ p1(x1) ∨ · · · ∨ pn−1(xn−1) ∨ ¬pn(b)

We take the clause set when n = 2 for our example:

{p1(x1) ∨ p2(x2), q1 ∨ ¬p1(a), ¬q1 ∨ ¬p1(b), q2 ∨ p1(x1) ∨ ¬p2(a), ¬q2 ∨ p1(x1) ∨ ¬p2(b)}

The resolution refutation (with omitted parentheses) is

ρ1
q1

ρ2
¬q1

�
R

where ρ1 and ρ2 are, respectively,

q1 ∨ ¬p1a
η1
p1x1

q1
R

¬q1 ∨ ¬p1b
η1
p1x1

¬q1
R

And, η1 is

q2 ∨ p1x1 ∨ ¬p2a p1x1 ∨ p2x2

q2 ∨ p1x1
R, F

¬q2 ∨ p1x1 ∨ ¬p2b p1x1 ∨ p2x2

¬q2 ∨ p1x1
R, F

p1x1
R, F

Notice how the sub-derivation η1 of p1(x1) is used by both ρ1 and ρ2. By representing this

directed acyclic graph (DAG) graphically, this can be seen more clearly:
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¬q2 ∨ p1(x1) ∨ ¬p2(b)p1(x1) ∨ p2(x2)q2 ∨ p1(x1) ∨ ¬p2(a)

¬q2 ∨ p1(x1) ∨ p1(x1)q2 ∨ p1(x1) ∨ p1(x1)

¬q2 ∨ p1(x1)q2 ∨ p1(x1)

p1(x1) ∨ p1(x1)

¬q1 ∨ ¬p1(b)p1(x1)q1 ∨ ¬p1(a)

¬q1q1

�

It is straightforward to generalize the example DAG proof shown above to other values

of n. For any n, the DAG proof is a tower of fixed width, height 2n, length (i.e., number of

nodes) O(n) and size (i.e., number of symbols) O(n2). If, however, the DAG were expanded

to a tree, its length and its size would be Ω(2n) (i.e., an exponential blow up would occur),

because the sub-derivations ηk (1 � k � n) would have to be duplicated.

Because of the worst-case exponential blow-up that can happen if DAG proofs are

expanded to proof trees, as illustrated in Example 2.1, automated theorem provers

invariably represent resolution proofs as DAGs during and after proof search. Since

the translations analysed here use resolution proofs produced by automated theorem

provers, their complexities will be parameterized by the length of resolution proofs as

DAGs.

Moreover, the result of all translations are sequent calculus proofs of the refuted clause

set, i.e., skolemized and in CNF. Therefore, we shall not account for any blow-up on the

input size due to normalization.

2.2. Sequent calculus

Sequent calculus proof systems were proposed by Gentzen (1969) in order to study

normalization of proofs in classical and intuitionistic first-order logics. Their adaptability

to many logics and the uniformity with which one could prove the system’s consistency

made the formalism very popular among logicians. A sequent is a structure Γ � Δ, where

Γ and Δ are multi-sets of formulas and � denotes the entailment relation. Its meaning is

that the conjunction of the formulas in Γ implies the disjunction of the formulas in Δ. A

sequent calculus is a collection of inference rules on sequents. In this paper, we will use

the sequent calculus LK for classical logic in Figure 1. An LK proof is a tree of inference

rule applications where all leaves are axioms init, ⊥l or �r , otherwise we call it an LK

derivation.
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Fig. 1. LK: Sequent calculus for classical logic (A is an atom, α is a variable not

contained in P , Γ or Δ and t does not contain variables bound in P ).

Note that we are using the additive version of the binary rules. For certain translations,

a multiplicative version of the cut rule is needed (i.e., one that splits the conclusion contexts

between the premises). In this case, we can safely assume the use of weakening, since this

rule is length-preserving admissible. We formally show this property after defining proof

length†.

Remark 2.1. For the sake of space, the main formula of a rule is sometimes omitted and

considered to be in the context Γ.

Example 2.2. We show a sequent calculus proof for the same example as before with

n = 1. In this case, the clause set is {p1(x1), q1 ∨ ¬p1(a), ¬q1 ∨ ¬p1(b)}.
To show unsatisfiability of a set of formulas Γ in sequent calculus, we need to show a

proof of Γ �. Let Γ be {∀x1.p1(x1), q1∨¬p1(a), ¬q1∨¬p1(b)}. One of the possible sequent

calculus proofs of Γ’s unsatisfiability is

Γ, p1(a), p1(b), q1 � q1
init

Γ, p1(a), p1(b), q1,¬q1 �
¬l

Γ, p1(a), p1(b), q1 � p1(b)
init

Γ, p1(a), p1(b), q1,¬p1(b) �
¬l

Γ, p1(a), p1(b), q1 �
∨l

Γ, p1(a), p1(b) � p1(a)
init

Γ, p1(a), p1(b),¬p1(a) �
¬l

Γ, p1(a), p1(b) � ∨l

Γ, ∀x1.p1(x1), p1(a) � ∀l

Γ, ∀x1.p1(x1), ∀x1.p1(x1) � ∀l

Γ �
cl

† The dual argument also works with multiplicative rules, contraction is admissible. Choosing additive rules

maximizes the number of invertible rules and eases the definition of the translation described in Section 4.
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2.3. Length measures

Proofs are measured by number of nodes. Although the sizes of first-order terms are not

always negligible, all translations use the same term instantiation as the resolution proof

and, therefore, term size has no impact in comparing them.

Definition 2.2. The length |ψ| of a proof ψ is the number of nodes in the proof. In the

case of resolution, each node is a clause occurring in the DAG. In the case of sequent

calculus, each node is a sequent occurring in the proof tree.

Definition 2.3. The length |F | of a formula F is the number of logical connectives and

quantifiers (¬, ∨, ∧, ∀, ∃) occurring in F‡.

Remarks about weakening: Note that we use a sequent calculus where weakening is

implicit in the init, �r and ⊥l rules. In such a calculus, the following lemma can be

proven:

Lemma 2.1. Let ϕ be a proof of Γ � Δ, then there exist proofs ϕl and ϕr of Γ, P � Δ and

Γ � Δ, P , respectively, such that |ϕ| = |ϕr| = |ϕl |.

Proof sketch We proceed by structural induction on the proof tree. For the base case,

when ϕ contains a single nullary inference (init, ⊥l or �r) with conclusion Γ � Δ, then

ϕl and ϕr can be constructed by applying the corresponding nullary inference (init, ⊥l
or �r) with conclusions Γ, P � Δ and Γ � Δ, P , respectively. For the inductive cases (for

each rule), the induction hypothesis gives us subproofs with the desired extra formula P

for the premises and then we reapply the rule normally. As, in each step, the construction

of the proofs ϕl and ϕr use the same number of inferences as in the original proof ϕ,

|ϕ| = |ϕr| = |ϕl |.

This lemma is important, because the second and third translations defined in later

sections of this paper result in proofs with extra formulas in the contexts of sequents. We

shall also use the following notation to denote a proof ϕ′ obtained from ϕ by adding Π

and Θ to all sequents of ϕ (without length increase, as per Lemma 2.1):

ϕ
Γ � Δ

Π,Γ � Δ,Θ
weak

Note that weak is not an inference rule, but a meta-notation that allows us to write

proofs omitting context formulas.

‡ Any other definition of length that is linearly related to the number of connectives and quantifiers (e.g.,

number of symbols) would suffice and would not change the complexity results presented here. Defining

length by number of connectives makes Theorem 4.1 easier to state and to prove, because the length of a

sequent calculus proof is more clearly related to the number of connectives in the formulas in its end-sequent

than to the number of symbols.
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2.4. Complexity

In this paper, proof complexity is analysed using the asymptotic notations O or Ω. Since

we are dealing with proof length, the assumption that the functions are non-negative in

the definition below is reasonable.

Definition 2.4. Let f(x) and g(x) be two non-negative functions. We say that f(x) ∈ O(g(x))

iff there exists x0 and k > 0 such that f(x) � k × g(x) for every x � x0.

Intuitively, f(x) ∈ O(g(x)) means that the function f grows at most as fast as g. In

other words, g is an upper bound on the growth rate of f.

Definition 2.5. Let f(x) and g(x) be two functions. We say that f(x) ∈ Ω(g(x)) iff there

exists x0 and k > 0 such that f(x) � k × g(x) for every x � x0.

Therefore, Ω is the dual of O: f(x) ∈ Ω(g(x)) means that f grows at least as fast as g.

Hence, g is a lower bound on the growth rate of f.

Our analyses are comparing proof length, and in many cases, we use the worst possible

proof. This means the proof that would provide the highest growth rate. When using Ω,

we have a lower bound for the growth rate of the worst case. When using O, we have an

upper bound for all cases.

3. First translation: Resolutions as cuts on the resolved literal

The translation described in this section is basically the one defined by the algorithm

from Hetzl et al. (2013). One notable difference is that we consider the problem to be in

CNF. Note that there is no complexity analysis in Hetzl et al. (2013), and the translation

is presented as a pseudo-code without a formal definition.

3.1. Translation

Let R be a resolution refutation of a set of clauses C∗1 , . . . , C
∗
n with free variables. The

translation defined will transform R into an LK proof of the sequent C1, . . . , Cn �, where

Ck is the universal closure of C∗k . This is obtained by using the resolution refutation as a

skeleton for the sequent calculus proof, where each clause is represented as a sequent and

each resolution step is interpreted as an atomic cut. In order to do this, we must ground

the resolution DAG (because the cut rule does not allow unification as the resolution rule

does). In turn, grounding requires expansion of the DAG into a tree, because a DAG

node that is used as a premise more than once may have to be distinctly instantiated

more than once.

Definition 3.1. Let R be a resolution refutation DAG, we denote by ̂R the representation

of R as a ground derivation tree in the resolution calculus (Definition 2.1). This is achieved

in two steps. First, the DAG is transformed into a tree by duplicating sub-graphs with

more than one parent. Grounding is achieved by propagating the m.g.u. computed at each
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rule application upwards, i.e., each resolution step is rewritten as

ρ1

C1 ∨ A ∨ C2

ρ2

D1 ∨ A′ ∨ D2

(C1 ∨ C2 ∨ D1 ∨ D2)σ
R
�

ρ1σ
(C1 ∨ A ∨ C2)σ

ρ2σ

(D1 ∨ A′ ∨ D2)σ

(C1 ∨ C2 ∨ D1 ∨ D2)σ
R

Therefore, on the ground resolution, all m.g.u.s computed below a clause will be applied

to it compositionally.

Theorem 3.1. In the worst case, | ̂R| ∈ Ω(2|R|).

Proof. The ̂· transformation expands the DAG into a tree, and it is well-known

that certain DAGs (e.g., the one shown in Example 2.1) result in exponentially larger

trees.

The exponential blow-up is not a defect of ̂·. As the following stronger theorem states,

any grounding operation must suffer an exponential blow-up.

Theorem 3.2. There is a sequence of clause sets Sn admitting DAG resolution refutations

Rn with |R| ∈ O(n) such that any ground resolution refutation R′n of a grounding of Sn
is such that |R′n| ∈ Ω(2n).

Proof. Let Sn be the sequence of clause sets described in Example 2.1. It admits

DAG resolution refutations of linear size, as shown in Example 2.1. A grounding of Sn
would require instantiating p1(x1) to p1(a) and p1(b), and p1(x1) ∨ p2(x2) to p1(a) ∨ p2(a),

p1(a)∨p2(b), p1(b)∨p2(a) and p1(b)∨p2(b), and so on. The clause/node p1(x1)∨ . . .∨pn(xn)
would need 2n instances.

Definition 3.2. Let C be a clause ¬A1 ∨ . . .∨¬An ∨B1 ∨ . . .∨Bm, where Ai (1 � i � n) and

Bk (1 � k � m) are atoms. Then, seq(C) is the sequent A1, . . . , An � B1, . . . , Bm.

Definition 3.3. Let R be a resolution refutation DAG. We define seq(R) as the LK

derivation obtained by taking ̂R and transforming each clause C into seq(C), and

interpreting resolution and factoring inferences as cut and contraction, respectively.

Observe that the cuts obtained from resolution inferences will be multiplicative.

Nevertheless, we can use additive cuts instead due to the weakening lemma (Lemma 2.1).

Note that seq(R) is an LK derivation of the empty sequent · � · from non-tautological

axioms. This structure is transformed into the desired proof of C1, . . . , Cn � via the

operation of context product. In the definition below, the notation ◦ denotes merging of

sequents, i.e., (Γ � Δ) ◦ (Λ � Π) is Γ,Λ � Δ,Π.

Definition 3.4 (Context product). Let T be a sequent and ϕ be an LK derivation with

end-sequent S such that no free variable in T occurs as eigen-variable in ϕ. We define

the context product T � ϕ (which yields a derivation of T ◦ S) inductively:

— If ϕ consists of a leaf, then T � ϕ is composed of one sequent: T ◦ S .
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— If ϕ ends with a unary rule ξ:

ϕ′

S ′

S
ξ

then T � ϕ is defined as

T � ϕ′

T ◦ S ′
T ◦ S ξ

Since T does not contain free variables which are eigen-variables of ϕ, the context

product is well defined also if ξ is ∀r or ∃l , although this case does not occur in our

application since formulas need to be skolemized for using resolution.
— If ϕ ends with a binary rule ξ:

ϕ1

S1

ϕ2

S2

S
ξ

then T � ϕ is defined as

T � ϕ1

T ◦ S1

T � ϕ2

T ◦ S2

T ◦ S ξ

Since T is part of the context, and all binary rules are additive in the calculus

considered, their formulas are copied to both premises. S1 and S2 differ from each

other at most on auxiliary formulas.

The result of (C1, . . . , Cn �) � seq(R) is a derivation of C1, . . . , Cn � from (C1, . . . , Cn �)

◦ seq(C ′i ) for i ∈ {1, . . . , n}, where C ′i is a ground instance of Ci. These axioms are

tautological and can be proved easily.

Theorem 3.3. Let C1, . . . , Cn be the universally closed formulas of a refutable clause set. Let

C ′i be a ground instance of one of those formulas. Then, the sequent (C1, . . . , Cn �)◦seq(C ′i )

has an LK proof ϕ such that |ϕ| ∈ O(|Ci|).

Proof. To see that the sequent is provable, it suffices to observe that all atoms occurring

in seq(C ′i ) occur in the defined sequent in a dual position because of Ci on the left

(remember that in seq(C ′i ) positive atoms are on the right and negative atoms are on the

left). A proof of the sequent can be obtained by instantiating the variables properly and

decomposing Ci exhaustively, until its atomic parts. Since this formula has |Ci| connectives,

this will be the length of the proof.

All those steps are summarized in the definition of the translation below.

Definition 3.5. Let R be a resolution refutation DAG of a clause set C∗1 , . . . , C
∗
n . We

define TL(R) as the LK proof obtained from (C1, . . . , Cn �) � seq(R), where each Ci is the

universal closure of C∗i and all axioms are proved (according to the LK proof provided

by Theorem 3.3).

Example 3.1. For brevity, we use the clause set of Example 2.1 for n = 1. Let R be its

resolution refutation:
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¬q1 ∨ ¬p1(b)p1(x1)q1 ∨ ¬p1(a)

¬q1q1

�

According to Definition 3.3, seq(R) (using additive cuts) is

� p1(a), q1 p1(a) � q1

� q1
cut

q1 � p1(b) p1(b), q1 �
q1 �

cut

� cut

Let Γ = {¬q1 ∨ ¬p1(b), q1 ∨ ¬p1(a), ∀x.p1(x)}. Next, we compute the context product

(Definition 3.4) (Γ �) � seq(R), resulting in

Γ � p1(a), q1 Γ, p1(a) � q1

Γ � q1
cut

Γ, q1 � p1(b) Γ, p1(b), q1 �
Γ, q1 �

cut

Γ � cut

Proofs of the leaves are straightforward:

Γ, p1(a) � p1(a), q1
init

Γ � p1(a), q1
∀l

Γ, p1(a), q1 � q1
init

Γ, p1(a) � p1(a), q1
init

Γ, p1(a),¬p1(a) � q1

¬l

Γ, p1(a) � q1

∨l

Γ � q1
cut

ϕ
Γ, q1 �

Γ � cut

where ϕ is

Γ, q1, p1(b) � p1(b)
init

Γ, q1 � p1(b)
∀l

Γ, p1(b), q1 � q1
init

Γ, p1(b), q1,¬q1 �
¬l

Γ, p1(b), q1 � p1(b)
init

Γ, p1(b), q1,¬p1(b) �
¬l

Γ, p1(b), q1 �
∨l

Γ, q1 �
cut

3.2. Complexity

Theorem 3.4. If R is a resolution refutation, then |TL(R)| ∈ Ω(2|R|) in the worst case.

Proof. The first step of TL(R) consists of obtaining seq(R), which requires expanding

the DAG. According to Theorem 3.1, this operation may cause an exponential blow-up

in the length of the proof.

1071

https://doi.org/10.1017/S0960129518000476 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000476


G. Reis and B. Woltzenlogel Paleo

4. Second translation: Resolutions as cuts on the resolvent

The second translation of resolution to sequent calculus analysed here is essentially the

one used in the FPC framework for checking resolution proofs (Chihani et al. 2017),

with only one minor difference. Whereas the FPC framework uses the one-sided polarized

focused calculus LKF (Miller 2017b), here the two-sided calculus for classical logic without

focusing (as defined in Section 2.2) is used.

4.1. Translation

This translation also interprets resolution steps as cuts, but this time the cut formula
is the resolvent, including factoring, instead of the resolved atom. The key idea is that
each resolution (plus factoring) step deriving a clause C∗ from clauses D∗ and E∗ can be
represented in sequent calculus by a derivation of the following form:

ϕ
Δ � C

...
Δ, C �

Δ � cut

where C,D and E denote the universal closure of clauses C∗, D∗ and E∗ and Δ is a set of

formulas containing D and E. Note that this cut can be quantified, as C∗ may contain

free variables. Δ � C is provable (not surprisingly, because C∗ is derived from D∗ and

E∗, which are in Δ and resolution is sound and sequent calculus is complete), and the

construction of its proof ϕ is explained in the demonstration of Theorem 4.1. On the right

branch, the same construction is repeated for the next resolvent, and this continues until

the empty clause (i.e., ⊥) is reached, in which case the right branch can be closed by the

rule ⊥l . The translation procedure based on this idea is formally defined below.

Definition 4.1. Let R be a resolution refutation of the clause set C∗1 , . . . , C
∗
n , with resolvents

(plus factoring) C∗n+1, . . . , C
∗
n+m and C∗n+m = ⊥. Letting Γ be the set of universally closed

clauses C1, . . . , Cn, the sequence of proofs ψj (0 � j < m) is defined as

ϕj+1

Γ, . . . , Cn+j � Cn+j+1

ψj+1

Γ, . . . , Cn+j , Cn+j+1 �
Γ, . . . , Cn+j �

cut

with ϕj+1 being any linearly sized proof of Γ, . . . , Cn+j � Cn+j+1 (cf. Theorem 4.1) and ψm
being defined as

Γ, Cn+1, . . . , Cn+m �
⊥l

Finally, TR(R) is defined as the sequent calculus proof ψ0 of Γ �.

The existence of the linearly sized proofs ϕk needed in Definition 4.1 is shown in the

following theorem.

Theorem 4.1. Let C∗1 and C∗2 be two clauses that resolve to C∗3 , and let Ci denote the

universal closure of a clause C∗i . Then, the sequent C1, C2 � C3 has an LK proof ϕ such

that |ϕ| ∈ O(|C1|+ |C2|+ |C3|).
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Proof. The proof ϕ can be constructed in a bottom-up manner as follows. Begin by

instantiating the quantified variables of C3 and decomposing C3 until only atoms are left.

Then, instantiate the variables of C1 and C2 using either the eigen-variable used for C3 or

terms used in the unifier of the resolution step that derives C∗3 from C∗1 and C∗2 . Finally,

apply ∨l to C1 and then to C2 exhaustively. Note that after C1 is completely decomposed,

all branches will be closed (the dual atom is available from C3), except the one that

contains the resolved literal. This is continued by the decomposition of C2 and eventually

the dual of the resolved atom will be in the sequent.

The total number of nodes in this proof is equal to the number of logical connectives

and quantifiers occurring in C1, C2 and C3. Therefore, |ϕ| ∈ O(|C1|+ |C2|+ |C3|).

Due to the weakening lemma (Lemma 2.1), the sequent Γ, C1, C2 � Δ, C3 is provable.

Example 4.1. We translate part of the proof from Example 2.1, namely

¬q2 ∨ p1(x1)q2 ∨ p1(x1)

p1(x1) ∨ p1(x1)

¬q1 ∨ ¬p1(b)p1(x1)q1 ∨ ¬p1(a)

¬q1q1

�

Let Γ = {q1 ∨ ¬p1(a),¬q1 ∨ ¬p1(b), ∀x.(q2 ∨ p1(x)), ∀x.(¬q2 ∨ p1(x)), }. According to
Definition 4.1, ψ0 is

ϕ1

Γ � ∀x.p1(x)
ψ1

Γ, ∀x.p1(x) �
Γ � cut

where ϕ1 is the proof:

Γ, q2 � p1(α), q2
init

Γ, q2,¬q2 � p1(α)
¬l

Γ, q2, p1(α) � p1(α)
init

Γ, q2,¬q2 ∨ p1(α) � p1(α)
∨l

Γ, p1(α),¬q2 ∨ p1(α) � p1(α)
init

Γ, q2 ∨ p1(α),¬q2 ∨ p1(α) � p1(α)
∨l

Γ � p1(α)
∀l

Γ � ∀x.p1(x)
∀r

Observe that the factoring step is considered as part of the resolution (cf. Chihani et al.

2017, Section 7.3). ψ1 begins with a cut on another resolvent (ϕ2 is explicit):
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Γ, p1(a), q1 � q1
init

Γ, p1(a) � q1, p1(a)
init

Γ, p1(a),¬p1(a) � q1

¬l

Γ, p1(a) � q1

∨l

Γ, ∀x.p1(x) � q1
∀l ψ2

Γ, ∀x.p1(x), q1 �
Γ, ∀x.p1(x) � cut

ψ2 continues as

Γ, p1(b), q1 � ¬q1, q1
init

Γ, p1(b), q1,¬q1 � ¬q1

¬l
Γ, p1(b), q1 � ¬q1, p1(b)

init

Γ, p1(b), q1,¬p1(b) � ¬q1

¬l

Γ, p1(b), q1 � ¬q1

∨l

Γ, ∀x.p1(x), q1 � ¬q1
∀l ψ3

Γ, ∀x.p1(x), q1,¬q1 �
Γ, ∀x.p1(x), q1 �

cut

Finally, ψ3 cuts on ⊥, corresponding to the empty clause:

Γ, ∀x.p1(x), q1 � ⊥, q1
init

Γ, ∀x.p1(x), q1,¬q1 � ⊥
¬l

Γ, ∀x.p1(x), q1,¬q1,⊥ �
⊥l

Γ, ∀x.p1(x), q1,¬q1 �
cut

Observe how, even though the clause p1(x) was used twice in the resolution refutation,

we only need to cut on it once in the sequent calculus proof. Since it persists in the

context, it can be used to prove the left branch of the cuts on both q1 and ¬q1.

4.2. Complexity

In this translation, the resolution refutation DAG does not need to be expanded. Each

resolution step in the DAG is translated to a single cut in the sequent calculus proof.

Resolvents become universally closed clauses in the antecedent of the sequent in the

right branch of the proof being constructed, which remain in the context and can be

reused as many times as needed. Consequently, the length of the sequent calculus proof

is polynomial in the length of the DAG resolution refutation.

Theorem 4.2. Let R be a DAG resolution refutation. Then, |TR(R)| ∈ O(|R|2) in the

worst case.

Proof. The DAG resolution refutation R contains at most O(|R|) resolution steps

(each node is either an input clause or the result of a resolution step). In the result

of TR(R), each of these steps will be a cut, whose left branch has a proof of size

at most 3 ∗ k, where k is the size of the biggest universally closed clause in R.

It is known that |k| ∈ O(|R|) (see Ben-Sasson and Wigderson 2001). Consequently,

|TR(R)| ∈ O(|R|2).
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5. Third translation: Resolutions as axioms

The third translation defined and analysed here is inspired by (and essentially the same

as) the translation used in the proof of relative soundness of Resolution Modulo (i.e.,

extended narrowing and resolution, more precisely) with respect to (cut-free) sequent

calculus modulo in Hermant (2010) (which was itself inspired by works on the inverse

method (Degtyarev and Voronkov 2001; Maslov 1964; Mints 1990, 1993)). For the

sake of simplicity, deduction modulo is left aside, as it is (like focusing, in the case

of the second translation) outside the scope and unnecessary to the goals of this

paper.

5.1. Translation

The intuition of this translation is the following. Assume two clauses a∨ b and ¬b∨ c are

resolved to obtain a ∨ c. Moreover, let Γ denote a set with the other clauses in the leaves

of this resolution refutation. Our goal is to find a proof of Γ, a ∨ b,¬b ∨ c �. This proof

begins like this:

Γ, a �
Γ, a,¬b � weak

Γ, b � b init

Γ, b,¬b �
¬l

Γ, a ∨ b,¬b � ∨l
Γ, c �

Γ, a ∨ b, c � weak

Γ, a ∨ b,¬b ∨ c � ∨l

Note how the resolution step on the atom b became an init (a.k.a. axiom) inference

with main formula b. Now, we need to find proofs for the open leaves. Imagine the fringe

of the resolution refutation. If, for a moment, we ignore the resolution of a ∨ b,¬b ∨ c
into a ∨ c, the set of ‘leaves’ of the refutation will be Γ, a ∨ c. Since the sequent calculus

proof is built by induction on the resolution steps (starting from the lower most one), we

know that that there exists a derivation of Γ, a∨ c �. By invertibility of ∨l , we can obtain

derivations of Γ, a � and Γ, c �, which are precisely what we need to finish the proof

above.

The definition of this translation is more involved when quantification and factoring are

considered, but the idea is essentially the same. It relies on the following lemmas (Hermant

2010, Lemma 14).

Lemma 5.1. Let C∗a and C∗b be two clauses that resolve into C∗, and let π be a proof of

Γ, C � Δ. Then, there exists a proof π′ of Γ, Ca, Cb � Δ.

Proof. The proof proceeds by structural induction on π.

1. Base case: π consists of an axiom. Then, it is either an application of init, ⊥l or �r .
We distinguish two cases:
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a. The main formula is not C .

In this case, π′ consists of the same rule applied to the sequent Γ, Ca, Cb � Δ.

b. The main formula is C .

Then, the applied rule is either init or ⊥l . We treat both these cases separately:

i. π ends with ⊥l .
Then, without loss of generality, we have that

C = ⊥
Ca = ∀x.p(x)

Cb = ∀y.¬p′(y)

With p and p′ unifiable by m.g.u. σ. Therefore, p(x)σ = p(t) = p′(t′) = p′(y)σ,
and π′ is constructed by instantiating the variables with the m.g.u.:

Γ, p(t),� Δ, p′(t′)
init

Γ, p(t),¬p′(t′) � Δ
¬l

Γ, ∀x.p(x), ∀y.¬p′(y) � Δ
∀l

ii. π ends with init.
Then, without loss of generality, we have that

C = Aσ

Ca = ∀x.(p(x) ∨ A)

Cb = ∀y.¬p′(y)

With p and p′ unifiable by m.g.u. σ. Therefore, p(x)σ = p(t) = p′(t′) = p′(y)σ,
and π′ is

Γ, p(t) � Δ, p′(t′)
init

Γ,¬p′(t), p(t) � Δ
¬l Γ, Aσ � Δ

init

Γ,¬p′(t), Aσ � Δ
weak

Γ, p(t) ∨ Aσ,¬p′(t) � Δ
∨l

Γ, ∀x.(p(x) ∨ A), ∀y.¬p′(y) � Δ
∀l

The rightmost application of init is the same one as in π.

2. Inductive case: π ends with an application of ρ. We distinguish three cases:

a. ρ operates on a formula in Γ or Δ. In this case, the rule is simply duplicated on

π′, whether it is unary or binary:
Unary ρ:

ϕ
Γ′, C � Δ′

Γ, C � Δ
ρ
�

ϕ′

Γ′, Ca, Cb � Δ′

Γ, Ca, Cb � Δ
ρ

1076

https://doi.org/10.1017/S0960129518000476 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000476


Complexity of translations from resolution to sequent calculus

Binary ρ:

ϕ1

Γ1, C � Δ1

ϕ2

Γ2, C � Δ2

Γ, C � Δ
ρ
�

ϕ′1
Γ1, Ca, Cb � Δ1

ϕ′2
Γ2, Ca, Cb � Δ2

Γ, Ca, Cb � Δ
ρ

By induction hypothesis, ϕ′, ϕ′1 and ϕ′2 can be constructed.

b. ρ is a contraction on C . In this case, the contraction is applied twice to obtain π′:

ϕ
Γ, C, C � Δ

Γ, C � Δ
cl
�

ϕ′

Γ, Ca, Ca, Cb, Cb � Δ

Γ, Ca, Ca, Cb � Δ
cl

Γ, Ca, Cb � Δ
cl

Applying the induction hypothesis once to ϕ yields a derivation of Γ, Ca, Cb, C � Δ.

Technically, the IH cannot be applied to this derivation because the lemma changes

the structure of the proof, so we lose the guarantee that the inductive measure

has decreased. This case can be solved by generalizing the lemma to handle an

arbitrary number of occurrences of C . All cases above will proceed analogously. In

the present case, the IH could be applied to ϕ obtaining ϕ′ without problems. The

next case would be slightly more complicated, though, since the IH would need to

be applied to ϕ1 and ϕ2. Moreover, the notation would be considerably heavier. We

choose to maintain this cleaner proof, so that the process is easier to understand.

The interested reader is invited to go through the exercise of generalizing the proof.

c. ρ is a logical rule operating on C .
Then, without loss of generality, we have that

C = ∀z.(D1σ ∨ D2σ)

Ca = ∀x.(D1 ∨ p(x))

Cb = ∀y.(D2 ∨ ¬p′(y))

where σ is the m.g.u. of p and p′. Therefore, p(x)σ = p(t) = p′(t′) = p′(y)σ.
Since all quantifiers can be introduced at once§, we can assume π ends with

Γ, D1σ
′ ∨ D2σ

′ � Δ

Γ, ∀z.(D1σ ∨ D2σ) � Δ
∀l

where σ′ is the composition of σ with the instantiation of the variables in z.
Because of associativity of ∨, invertibility of ∨l and admissibility of weakening
(Lemma 2.1), we can assume the existence of the following proofs:

ϕ1

Γ, D1σ
′ � Δ

ϕ2

Γ, D2σ
′ � Δ

§ One way to see this is by focusing on the formula.
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Using those proofs, we can construct π′:

ϕ1

Γ, D1σ
′ � Δ

Γ, D1σ
′, D2σ

′ ∨ ¬p′(t′) � Δ
weak

ϕ2

Γ, D2σ
′ � Δ

Γ, p(t), D2σ
′ � Δ

weak
Γ, p(t) � Δ, p′(t′)

init

Γ, p(t),¬p′(t′) � Δ
¬l

Γ, p(t), D2σ
′ ∨ ¬p′(t′) � Δ

∨l

Γ, D1σ
′ ∨ p(t), D2σ

′ ∨ ¬p′(t′) � Δ
∨l

Γ, ∀x.(D1 ∨ p(x)), ∀y.(D2 ∨ ¬p′(y)) � Δ
∀l

The proof of the next Lemma for factoring rules is essentially the same as before.

Lemma 5.2. Let C∗a be a clause that factors into C∗, and let π be a proof of Γ, C � Δ.

Then, there exists a proof of Γ, Ca � Δ.

Proof. The proof proceeds by structural induction on π.

1. Base case: π consists of an axiom. Then, it is either an application of init, ⊥l or �r .
We distinguish two cases:

a. The main formula is not C .

In this case, π′ consists of the same rule applied to the sequent Γ, Ca � Δ.

b. The main formula is C .

Then, the applied rule must be init, since it is impossible to get the empty clause

by factoring.
Then, without loss of generality, we have that

C = p(t)

Ca = ∀x.(p(x) ∨ p′(x))

With p and p′ unifiable with m.g.u. σ. Therefore, p(x)σ = p(t) = p′(t′) = p′(x)σ, and
π′ is

Γ, p(t) � Δ
init

Γ, p′(t′) � Δ
init

Γ, p(t) ∨ p′(t′) � Δ
∨l

Γ, ∀x.(p(x) ∨ p′(x)) � Δ
∀l

Both applications of init are the same as in π, since p(t) = p′(t′).

2. Inductive case: π ends with an application of ρ. We distinguish three cases:

a. ρ operates on a formula in Γ or Δ. In this case, the rule is simply duplicated on

π′, whether it is unary or binary:
Unary ρ:

ϕ
Γ′, C � Δ′

Γ, C � Δ
ρ
�

ϕ′

Γ′, Ca � Δ′

Γ, Ca � Δ
ρ
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Binary ρ:

ϕ1

Γ1, C � Δ1

ϕ2

Γ2, C � Δ2

Γ, C � Δ
ρ
�

ϕ′1
Γ1, Ca � Δ1

ϕ′2
Γ2, Ca � Δ2

Γ, Ca � Δ
ρ

By induction hypothesis, ϕ′, ϕ′1 and ϕ′2 can be constructed.

b. ρ is a contraction on C . In this case, the contraction is applied twice to obtain π′:

ϕ
Γ, C, C � Δ

Γ, C � Δ
cl
�

ϕ′

Γ, Ca, Ca, Cb, Cb � Δ

Γ, Ca, Ca, Cb � Δ
cl

Γ, Ca, Cb � Δ
cl

Analogously to the previous case, ϕ′ can be obtained by generalizing the lemma

for an arbitrary number of occurrences of C .

c. ρ is a logical rule operating on C .
Then, without loss of generality, we have that

C = ∀y.(D1σ ∨ p(t) ∨ D2σ)

Ca = ∀x.(D1 ∨ p(x) ∨ p′(x) ∨ D2)

where σ is the m.g.u. of p and p′. Therefore, p(x)σ = p(t) = p′(t′) = p′(x)σ.
Since all quantifiers can be introduced at once¶, we can assume π ends with

Γ, D1σ
′ ∨ p(t)σ′ ∨ D2σ

′ � Δ

Γ, ∀y.(D1σ ∨ p(t) ∨ D2σ) � Δ
∀l

where σ′ is the composition of σ with the instantiation of the variables in y.
Because of associativity of ∨, invertibility of ∨l and admissibility of weakening
(Lemma 2.1), we can assume the existence of the following proofs:

ϕ1

Γ, D1σ
′ � Δ

ϕ2

Γ, p(t)σ′ � Δ
ϕ3

Γ, D2σ
′ � Δ

Using those proofs, we can construct π′:

ϕ1

Γ, D1σ
′ � Δ

ϕ2

Γ, p(t)σ′ � Δ

ϕ2

Γ, p′(t′)σ′ � Δ
ϕ3

Γ, D2σ
′ � Δ

Γ, p′(t′)σ′ ∨ D2σ
′ � Δ

∨l

Γ, p(t)σ′ ∨ p′(t′)σ′ ∨ D2σ
′ � Δ

∨l

Γ, D1σ
′ ∨ p(t)σ′ ∨ p′(t′)σ′ ∨ D2σ

′ � Δ
∨l

Γ, ∀x.(D1 ∨ p(x) ∨ p′(x) ∨ D2) � Δ
∀l

¶ One way to see this is by focusing on the formula.
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Using the construction in the proofs of Lemmas 5.1 and 5.2, we can define the following

translation.

Definition 5.1. Let R be a resolution refutation of the clause set C∗1 , . . . , C
∗
n and let Γ

be the set of universally closed clauses C1, . . . , Cn. We define TA(R), a cut-free sequent
calculus proof of Γ �, by traversing the rules of R (bottom-up). We start from the trivial
proof:

⊥ � ⊥l

corresponding to the empty clause. This proof is transformed as we traverse R upwards,

depending on the inferences we encounter:

— If the inference is a resolution, then it looks like

Ca Cb
C

We can assume that there exists a proof of Γ, C �. By Lemma 5.1, we can transform

this proof into a proof of Γ, Ca, Cb �.

— If the inference is factoring, then we proceed analogously, only using Lemma 5.2.

It is important to note that the proofs of Lemmas 5.1 and 5.2 are completely constructive

apart from one small detail: on the relevant inductive cases, we need to argue the ‘existence’

of proofs due to invertibility of ∨l and associativity of ∨. The examples below show that,

since all the proofs in the process are constructed using the same process, finding the

relevant sequents and their proofs is straightforward (they are the highlighted ones).

Example 5.1. Let us apply this translation to a part of our running example, namely,

p1(x1) ∨ p1(x1)

¬q1 ∨ ¬p1(b)p1(x1)q1 ∨ ¬p1(a)

¬q1q1

�

In the proofs below, highlighted sequents indicate that the proofs above them will be

used later on.
We start with the trivial proof:

⊥ � ⊥l

corresponding to the empty clause, and proceed upwards. The next rule is a resolution on
q1 and ¬q1, hence a proof of q1,¬q1 � must be constructed. This corresponds to case 1(b)i
of Lemma 5.1, which yields π0:

q1 � q1
init

q1,¬q1 �
¬l
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There is a choice for the next resolution to be processed. We (arbitrarily) chose the one

resulting in q1. The clause q1 was obtained from q1 ∨ ¬p1(a) and ∀x.p1(x) (note that we

need the universal closure of the clauses). According to Lemma 5.1, we can construct a

derivation of q1 ∨¬p1(a), ∀x.p1(x),¬q1 � from a derivation of q1,¬q1 � (i.e., π0). Since the

lowermost rule (¬l) in π0 does not operate on the resolvent in question, we apply this rule

to our new proof first (Lemma 5.1, case 1a). The next rule (init) does operate on q1, so,

following case 1(b)ii of Lemma 5.1, we apply ∀l and ∨l to the clauses that generated q1

and close, yielding π1:

q1 � q1
init

q1, p1(a) � q1
weak

p1(a) � q1, p1(a)
init

¬p1(a), p1(a) � q1

¬l

q1 ∨ ¬p1(a), p1(a) � q1

∨l

q1 ∨ ¬p1(a), ∀x.p1(x) � q1
∀l

q1 ∨ ¬p1(a), ∀x.p1(x),¬q1 �
¬l

Note how the new init rule operates on p1(a), the resolved literal to obtain q1. We

proceed with the resolution of ¬q1. We need to obtain a proof of

q1 ∨ ¬p1(a), ∀x.p1(x), ∀x.p1(x),¬q1 ∨ ¬p1(b) �

from π1. Since the first rule is already one operating on ¬q1, case 2c of Lemma 5.1 is

applicable. In this particular resolution step, D1 does not exist so only one application

of ∨l is needed. The leftmost premise is closed using π1 (note the highlighted sequents).

Thus, π2 is

q1 ∨ ¬p1(a), ∀x.p1(x),¬q1 �
q1 ∨ ¬p1(a), ∀x.p1(x), p1(b),¬q1 �

weak
q1 ∨ ¬p1(a), ∀x.p1(x), p1(b) � p1(b)

init

q1 ∨ ¬p1(a), ∀x.p1(x), p1(b),¬p1(b) �
¬l

q1 ∨ ¬p1(a), ∀x.p1(x), p1(b),¬q1 ∨ ¬p1(b) �
∨l

q1 ∨ ¬p1(a), ∀x.p1(x), ∀x.p1(x),¬q1 ∨ ¬p1(b) � ∀l

Observe how ∀x.p1(x) occurs twice in the end-sequent (and it must), representing the

fact that it was used twice in the resolution proof. On the next step, one occurrence of

∀x.p1(x) is replaced by its premise ∀x.(p1(x) ∨ p1(x)). Let Γ = {q1 ∨ ¬p1(a),¬q1 ∨ ¬p1(b)}.
According to Lemma 5.2, we can construct a proof of

Γ, ∀x.p1(x), ∀x.(p1(x) ∨ p1(x)) �

from π2. The lowermost rule in π2 operates on one of the occurrences of ∀x.p1(x). Let

us assume it is on the occurrence that we are considering. Then, case 2c of Lemma 5.2

is applicable. This situation is simplified due to the fact that D1 and D2 are empty, so

only one application of ∨l is needed. The (duplicated) proofs of the premises (ϕ2 in the

Lemma) are obtained from π2 (the sequent highlighted in blue ). Observe that these are
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the ones whose existence is argued in the proof of the Lemma. The resulting proof is π3:

Γ, ∀x.p1(x), p1(b) � Γ, ∀x.p1(x), p1(b) �
Γ, ∀x.p1(x), p1(b) ∨ p1(b) � ∨l

Γ, ∀x.p1(x), ∀x.(p1(x) ∨ p1(x)) � ∀l

The last step is to transform π3 into a proof of

Γ, ∀x.(p1(x) ∨ p1(x)), ∀x.(p1(x) ∨ p1(x)) �

Following case 2a of Lemma 5.2, all rules that do not apply to ∀x.p1(x) are simply copied

in the new proof π4:

ϕ
Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) �

ϕ
Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) �

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) ∨ p1(b) � ∨l

Γ, ∀x.(p1(x) ∨ p1(x)), ∀x.(p1(x) ∨ p1(x)) � ∀l

ϕ continues as

ϕ′

Γ, ∀x.(p1(x) ∨ p1(x)),� q1

Γ, ∀x.(p1(x) ∨ p1(x)),¬q1 �
¬l

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b),¬q1 �
weak

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) � p1(b)
init

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b),¬p1(b) �
¬l

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) � ∨l

ϕ′ is at the point where ∀l is applied to ∀x.p1(x) in π3, which falls under case 2c of

Lemma 5.2. We perform the transformation getting to

q1 ∨ ¬p1(a), p1(a) � q1

Γ, p1(a), p1(b) � q1
weak

q1 ∨ ¬p1(a), p1(a) � q1

Γ, p1(a), p1(b) � q1
weak

Γ, p1(a) ∨ p1(a), p1(b) � q1

∨l

Γ, ∀x.(p1(x) ∨ p1(x)), p1(b) � q1
∀l

Note that the proofs for the green sequents come from the point of π3 where we

stopped copying the application of rules. Also, since ϕ was used twice, there are four

copies of this sub-proof.

Example 5.2. We use a clause set Cm that is associated with the complete binary tree of

depth m, as described in Cook and Reckhow (1974) and Urquhart (1995). Cm contains 2m

disjunctions of the form‖

◦p1 ∨ ◦p2
± ∨ ◦p3

±± ∨ . . . ∨ ◦pm±...±

‖ Parentheses have been omitted from these disjunctions, and the ∨ connective is assumed to be left associative.
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where ◦ is either empty or ¬ and the i th ± of pk±...± (with i < k) is either +, if the ◦
preceding pi±...± is empty, or −, if the ◦ preceding pi±...± is ¬. For example††,

C2 = {p1 ∨ p2
+,¬p1 ∨ p2

−, p
1 ∨ ¬p2

+,¬p1 ∨ ¬p2
−}

For this example, the resolution refutation R we will use is the following (note that it

is actually a tree, since no clause is used more than once):

p1 ∨ p2
+ p1 ∨ ¬p2

+

p1 ∨ p1
R

p1
F

¬p1 ∨ p2
− ¬p1 ∨ ¬p2

−

¬p1 ∨ ¬p1
R

¬p1
F

�
R

Let Γ = C2 (since this is a propositional clause set, there is no need to universally close
the clauses). For the sake of comparison, we present the proof TL(R) obtained from the
first translation:

ϕ1

Γ � p1, p1, p2
+

ϕ2

Γ, p2
+ � p1, p1

Γ � p1, p1
cut

Γ � p1
cr

ϕ3

Γ, p1, p1 � p2
−

ϕ4

Γ, p1, p1, p2
− �

Γ, p1, p1 �
cut

Γ, p1 �
cl

Γ � cut

where ϕ1, ϕ2, ϕ3, ϕ4 are

ϕ1 : ϕ2 :

Γ, p1 � p1, p1, p2
+

init
Γ, p2

+ � p1, p1, p2
+

init

Γ � p1, p1, p2
+

∨l
Γ, p2

+, p
1 � p1, p1

init
Γ, p2

+ � p1, p1, p2
+

init

Γ, p2
+,¬p2

+ � p1, p1
¬l

Γ, p2
+ � p1, p1

∨l

ϕ3 : ϕ4 :

Γ, p1, p1 � p2
−, p

1
init

Γ, p1, p1,¬p1 � p2
−
¬l

Γ, p1, p1, p2
− � p2

−
init

Γ, p1, p1 � p2
−

∨l

Γ, p1, p1, p2
− � p1

init

Γ, p1, p1, p2
−,¬p1 �

¬l
Γ, p1, p1, p2

− � p2
−

init

Γ, p1, p1, p2
−,¬p2

− �
¬l

Γ, p1, p1, p2
− �

∨l

We compute now TA(R), according to Definition 5.1 and following the same idea of

highlighted sequents from the previous example. We begin with the lowermost resolution

step, between p1 and ¬p1 and obtain π0:

p1 � p1
init

p1,¬p1 �
¬l

†† Note that, in the clause p1 ∨ p2
+, the subscript of the second disjunct is +, because the first disjunct is not

negated, whereas in the clause ¬p1 ∨ p2
−, the subscript is −, because the first disjunct is negated. For a clause

with m disjuncts, the kth disjunct (for 0 < k � m) will contain k − 1 subscripted + or − signs. For example,

¬p1 ∨ p2
− ∨ p3

−+.
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Next, we choose the negative literal ¬p1 and obtain a proof of p1,¬p1 ∨¬p1 �. We call
this proof π1:

p1,¬p1 � p1,¬p1 �

p1,¬p1 ∨ ¬p1 �
∨l

We will continue on the factoring of p1 and construct a proof of p1 ∨ p1,¬p1 ∨ ¬p1 �.
The last step consists on case 1b of Lemma 5.2. We call this proof π2:

p1 � p1
init

p1 � p1
init

p1 ∨ p1 � p1
∨l

p1 ∨ p1,¬p1 �
¬l

p1 � p1
init

p1 � p1
init

p1 ∨ p1 � p1
∨l

p1 ∨ p1,¬p1 �
¬l

p1 ∨ p1,¬p1 ∨ ¬p1 �
∨l

We now process the resolution step resulting in ¬p1 ∨ ¬p1 and construct a proof of

p1 ∨ p1,¬p1 ∨ p2
−,¬p1 ∨ ¬p2

− �. This is π3:

p1 ∨ p1,¬p1 �

p1 ∨ p1,¬p1,¬p1 ∨ ¬p2
− �

weak

p1 ∨ p1,¬p1 �

p1 ∨ p1, p2
−,¬p1 �

weak
p1 ∨ p1, p2

− � p2
−

init

p1 ∨ p1, p2
−,¬p2

− �
¬l

p1 ∨ p1, p2
−,¬p1 ∨ ¬p2

− �
∨l

p1 ∨ p1,¬p1 ∨ p2
−,¬p1 ∨ ¬p2

− �
∨l

The last remaining inference is the resolution step resulting in p1 ∨ p1. Using π3, we

construct a proof of p1 ∨ p2
+, p

1 ∨ ¬p2
+,¬p1 ∨ p2

−,¬p1 ∨ ¬p2
− �, which is the final cut-free

proof. Let Γ = {p1 ∨ p2
+, p

1 ∨¬p2
+}. The proof π4 starts by mimicking the inferences of π3

until p1 ∨ p1 becomes the main formula:

ϕ

Γ � p1

Γ,¬p1 �
¬l

Γ,¬p1,¬p1 ∨ ¬p2
− �

weak

ϕ

Γ � p1

Γ,¬p1 �
¬l

Γ, p2
−,¬p1 �

weak
Γ, p2

− � p2
−

init

Γ, p2
−,¬p2

− �
¬l

Γ, p2
−,¬p1 ∨ ¬p2

− �
∨l

Γ,¬p1 ∨ p2
−,¬p1 ∨ ¬p2

− �
∨l

At this point, we use the case 2c of Lemma 5.1 and continue ϕ with (expanding Γ):

p1 � p1

p1, p1 ∨ ¬p2
+ � p1

weak

p1 � p1

p2
+, p

1 � p1
weak

p2
+ � p1, p2

+

init

p2
+,¬p2

+ � p1
¬l

p2
+, p

1 ∨ ¬p2
+ � p1

∨l

p1 ∨ p2
+, p

1 ∨ ¬p2
+ � p1

∨l

The final parts of the proof are obtained from π3 at the highlighted sequents.

1084

https://doi.org/10.1017/S0960129518000476 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000476


Complexity of translations from resolution to sequent calculus

5.2. Complexity

This translation gives a cut-free proof, but at a high cost in the worst case.

In Lemma 5.1, a clause Ci is replaced by its premises Ck and Cj regardless of whether

they are already in the context or not. This is necessary because it might have been

the case that, even if, for example, Ck was already in the context, its quantifiers are

being instantiated by other variables (that is the case with ∀x.p1(x) and its premises on

Example 5.1). At the end, the end sequent will contain as many formulas as leaves in a

grounding of the resolution refutation, which has to be a full tree expansion of the DAG,

in the worst case.

Even if the resolution refutation is a tree, an exponential blow up may still occur in

the presence of factoring, as shown in Example 5.2. This is so because the subproof φ2 is

duplicated in the case of factoring in Lemma 5.2.

Theorem 5.1. Let R be a DAG resolution refutation. Then, |TA(R)| ∈ Ω(2|R|) in the worst

case.

Proof. To prove this theorem formally, it suffices to exhibit a sequence of proofs Rn

with the desired lengths. Note that the sequence of proofs from Example 2.1 is such

that |Rn| ∈ O(n) and |TA(Rn)| ∈ Ω(2n), for the reasons discussed above and illustrated

in Example 5.1. Additionally, note that the sequence of proofs from Example 5.2 is such

that |Rn| ∈ O(2n) and |TA(Rn)| ∈ Ω(22n ) (also an exponential blow-up, but of a different

kind). We refer the reader to Woltzenlogel Paleo (2010) for more technical details about

the complexity of the sequence of proofs used in Example 5.2.

Observe that the worst case lower bound Ω of translation TL is the same as TA.

Nevertheless, it is possible to exhibit an exponential separation between TL and TA for a

particular sequence of proofs.

Theorem 5.2. There exists a sequence of resolution proofs Rn such that |TL(Rn)| ∈ O(|Rn|),
whereas |TA(Rn)| ∈ Ω(2|Rn|).

Proof. Let Rn be the sequence of proofs defined in Example 5.2. As Rn are already

trees, no duplications occur in the phase when DAGs are expanded to trees, in the first

translation. Therefore, |TL(Rn)| ∈ O(|Rn|). As discussed in the proof of Theorem 5.1,

|TA(Rn)| ∈ Ω(22n ) = Ω(2|Rn|).

6. Discussion

In the previous sections, we have surveyed and compared (from a complexity perspective)

three different translations from resolution to sequent calculus. The first one translates

resolution steps to cuts having (the grounding of) the resolved atom as cut formula. The

second one translates resolution steps to cuts having (a universal closure of) the whole

resolvent as the cut formula. And, finally, the third one translates resolution steps to

axiom/init inferences having the resolved atom as main formula.

To ease comparison, all three translations were defined here using the same resolution

calculus and the same simple sequent calculus, with neither focusing nor deduction
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modulo. This is the first time that the first translation is formally defined. And we hope

that the re-definition of the second and third translations using simpler calculi will make

them more accessible to people working on applications where focusing and deduction

modulo are not essential.

Complexity-wise, the second translation is clearly superior to the other two. It avoids

the expansion and the worst-case exponential blow-up by using universally quantified

cuts. However, it is important to note that a (worst-case exponential) blow-up would

occur if these cuts were eliminated (using Gentzen’s cut-elimination procedure). This is so

because duplications occur whenever a cut inference has to be moved above a sequence of

contractions and universal quantifications. Such sequences occur in the translated sequent

calculus proofs when a resolvent is used more than once in the DAG resolution refutation.

Nevertheless, the other two translations have their advantages too, which become

clear when we look at the contexts in which they were developed. The first translation

was developed in the context of proof analysis, where there is an interest in extracting

Herbrand sequents (Hetzl et al. 2008; Woltzenlogel Paleo 2008), expansion trees (Hetzl

et al. 2013; Miller 2017a) and generate potentially interesting new lemmas (Hetzl et al.

2014). For these goals, a sequent calculus proof without quantified cuts is essential. For

the third translation, the goal was to prove relative soundness of a resolution calculus with

deduction modulo. A soundness proof under the assumption that cut is admissible was

already known, but cut admissibility in sequent calculi with deduction modulo is tricky

and depends on the rewrite system. By providing a direct translation to a cut-free sequent

calculus, the third translation strengthened the soundness for the resolution calculus with

deduction modulo, making it independent of assumptions about the rewrite system.

Finally, we hope that the comparison pursued here will shed some additional light on

the debate of whether resolution steps are better seen as cuts or axioms. Two of the

three known translations see resolution steps as cuts, albeit as cuts of crucially different

kinds; the third translation sees resolutions as axioms and, in Hermant (2010), the view

of resolution steps as cuts is considered to be confusing and misleading.

In our (subjective) view, the first translation is the most straightforward: the resulting

cut preserves as much as possible the local structure of the resolution step (i.e., exploiting

a natural analogy, a resolution with resolved atom p becomes a cut with cut formula pσ

for some σ and with a context that is (an instantiation of) a super-set of the context in the

resolution step); however, the need for the substitution σ requires expansion of the DAG

and hence breaks the global structure of the proof. The preservation of the local structure

is a strong support for the resolution-as-cut view. On the other hand, the breaking of the

global structure is a clear (although unsurprising) indication that the analogy between

resolution steps and cuts is not perfect. This imperfection is closely related to Hermant’s

observation that resolution is forward chaining, whereas sequent calculus is backward

chaining. It is resolution’s forward-chaining nature that naturally gives rise to non-tree

DAG proofs.

The second translation also uses cuts for resolution steps, but in a way that does not

exploit the natural analogy between resolution steps and cuts. The whole sequent calculus

is used more as a meta calculus in this translation, with one premise of the cut storing

information that a whole resolvent is derivable from previously derived clauses and the
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other premise continuing the procedure, now with that resolvent added to the derived

clauses. The global structure of the proof is preserved and a shorter polynomially bound

sequent calculus proof is obtained, at the cost of having more complex cut-formulas.

In the third translation, a resolution step resolving a literal in a clause and its dual in

another clause becomes an axiom/init inference connecting these two literals. However,

it is important to note that, in fact, each resolution step may become several axiom/init

inferences. This one-to-many correspondence speaks against the resolution-as-axiom view

(although note that the first translation also suffers this problem to a lesser extent).

Moreover, from a complexity perspective, the third translation may produce proofs that

are exponentially longer than those obtained with the first translation (at least for one

particular sequence of proofs, as shown in Theorem 5.2), whereas it is not known whether

the converse would be possible (for some other sequence of proofs).

The relative complexities of the translations and the distinct shape of the cut formulas

that they use lead us to conjecture that, for a suitable notion of proof equality, all three

translations are essentially the same but in different stages of cut elimination. It seems

that if we start with the second translation and partially eliminate the quantified cuts until

only atomic cuts are left, the resulting sequent calculus proof is essentially the same as the

proof obtained through the first translation; furthermore, if we then eliminate the atomic

cuts completely, the result is essentially the same as the proof obtained through the third

translation. In each of the cut-elimination steps (i.e., from quantified cuts to atomic cuts,

and then to no cuts), an exponential blow-up in proof length may occur.

Finding a suitable notion of proof equality is a major challenge for showing this

conjecture. Take for example a proof resulting from the first translation. Indeed, it

contains only atomic cuts, but they occur at the lower part of the proof. But all known

reductive cut-elimination methods push cuts up in the proof and, when used to reduce

arbitrary cuts to atomic cuts, will yield a proof with atomic cuts at the upper part of

the proof. Thus, applying any known reductive cut-elimination procedure to the proofs

obtained by the second translation does not result in proofs that are syntactically equal

to the proofs obtained with the first translation. Therefore, the conjecture would be

trivially false if syntactically equality were taken as the notion of proof equality. For the

conjecture to possibly be true, we would certainly need a more sophisticated notion of

proof equality, taking the permutatibility of inferences into account‡‡. And permutability

is only one of many non-trivial details about proofs that we may need to take into account

in a definition of proof equality to be able to show this conjecture. In principle, we see

that some of the complexity theorems shown here might follow as corollaries from this

conjecture. However, given the conjecture’s non-triviality, this alternative route to showing

the complexity theorems would be unnecessarily indirect and more difficult than the route

taken here.

We wonder if, by combining ideas from Examples 5.1 (exponential blow-up due to DAG

shape of the refutation) and 5.2 (exponential blow-up due to factoring), a sequence of

‡‡ Notice that focusing provides a notion of equality of proofs modulo some permutation of inferences, but

more pervasive permutations would be needed to equate a proof with atomic cuts in the bottom and a proof

with cuts in the top.
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refutations could be constructed for which the length of the proofs obtained through the

third translation would be doubly exponentially longer than the proofs obtained through

the second translation.

We conjecture that the worst-case bounds for the first and second translations (The-

orems 3.4 and 4.2) are tight. We are unsure whether the worst-case bounds for the

third translation is tight. If there are resolution proofs of elementary size for sequences

of formulas that admit only non-elementarily long cut-free sequent calculus proofs

(e.g., Orevkov (1982); Statman (1979)), then a stronger non-elementary worst-case lower

bound for the third translation should be possible.

Another possible direction for future work is to investigate the complexity of the

translations in the average case, to complement the worst-case analysis presented here.

An average case analysis would require knowledge of the probabilistic distribution of

resolution proofs, which will depend on the proof search method used to generate the

resolution proofs and on the application domain. Different resolution search refinements

tend to generate proofs of certain shapes more frequently than others§§, and the average

complexity of the translations will depend on how non-tree-like the generated resolution

proofs are. The application domain also matters because problems of certain domains may

tend to have easy solutions with tree-like resolution proofs, whereas in other domains (e.g.,

combinatorial problems) this is not the case. Because of these issues, a theoretical average

case analysis would not only be difficult to pursue, but would also be of limited use

in practice. An experimental average case analysis focusing on problems of a particular

domain and with proofs generated according to particular search method would be

feasible and useful in helping to decide which translation to choose in these particular

cases.

The complexity analysis presented here considered only first-order logic without equality.

Whether our results generalize to the case with equality may depend on how equality

is incorporated into the resolution calculus. For example, some smt-solvers (Bouton

et al. 2009) generate resolution proofs where equality is handled simply by having leaf

clauses that are instances of equality axioms. In this case, the complexity results trivially

generalize without any change, because these equality clauses are not different from

ordinary clauses from the point of view of the translations. If the resolution calculus

incorporates equality reasoning through a paramodulation rule (of which the superposition

rule used by many modern first-order theorem provers is a special case), then the worst-

case lower bounds proven here still apply, because the sequences of resolution proofs

used in the demonstrations of these lower bounds are still correct proofs in a resolution

calculus with paramodulation; they just do not use the paramodulation rule. Nevertheless,

one may wonder whether it would be possible to prove higher lower bounds using

sequences of proofs that do use the paramodulation rule. The first translation has been

defined (Baaz and Leitsch 2011) and implemented (Dunchev et al. 2010; Ebner et al. 2016)

for the resolution calculus with paramodulation and into a sequent calculus extended

§§ For example, the CDCL proof search method used by sat-solvers generates long tree-like chains of resolution

steps, and only the conclusion of these chains may be used more than once and give rise to non-tree-like

proofs.
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with a paramodulation-like equality rule. Because of the direct one-to-one correspondence

between paramodulation and these paramodulation-like sequent calculus rules in the

translation, it would not be possible to prove a worse lower bound for this translation by

using paramodulation rules. We conjecture that, as for the first translation, with a suitable

choice of target sequent calculus, these translations could be extended to first-order logic

with equality without worsening the worst-case complexity lower bounds.
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