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ABSTRACT
This work aims to describe a mathematical model and a numerical method to simulate a
thin anisotropic membrane moving and deforming in 3D space under a dynamic load of an
arbitrary time and space profile. The anisotropic continuum medium model described in the
article can be used to model a membrane made of composite material using its effective
elastic parameters. The model and the method allow the consideration of problems when
the quasi-static approximation is not valid and elastic waves caused by the impact should be
calculated. The model and the method can be used for numerical study of different processes
in thin composite layers, such as shock load, ultrasound propagation, non-destructive testing
procedures and vibrations. The thin membrane is considered as a 2D object in 3D space, an
approach that allows a reduction in the computational time compared with full 3D models,
while still having an arbitrary material rheology and load profile.
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NOMENCLATURE

B gradient matrix

b distributed external load

D elastic moduli matrix

f load vector

h material thickness

K stiffness matrix

N(x, y) shape functions

u displacement vector
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u̇, ü time derivatives of displacement vector

x, y in-plane coordinates

z normal coordinate

Greek Symbols

εij deformation tensor

ρ material density

σij stress tensor

1.0 INTRODUCTION
Thin fabric composite structures are used for different engineering applications, so different
research groups have studied their properties. Commonly recognised areas of interest include
predicting the elastic behaviour of woven fabric composites(1,2,3), predicting the mechanical
behaviour, including the strength, of woven fabric-reinforced composites(4,5) and homogeni-
sation techniques for fabric structures, mostly based on repeating unit cell geometry(6). Finite
element analysis and theoretical analysis are the most common research methods applied in
these areas.

Any fabric composite is a complex multiscale structure in which three structural levels are
commonly distinguished—the micro-level of fibres, the meso-level of yarns and the macro-
level of relatively large fabric parts. Different problems are addressed using models that
target different structural levels. Research that aims to study the micro-structure uses more
complicated physical models(7,8), the study of the meso-structure typically requires handling
very complex geometry(9) while modelling of macro-structures is commonly built around
continuum medium models(10,11,12).

In the present study we concentrate on the macro-level. Our research is mostly inspired by
the fact that fabric composites are becoming an essential part of impact shields that protect
spacecraft from micro-meteoroids and orbital debris. Present protection systems are based on
the original Whipple shield(13) that consists of two rigid (typically metal) layers spaced some
distance from each other. This design can deal with particles with velocities up to 10–18km/s.
Additional protection can be provided by stuffed Whipple shields(14), which include high-
strength materials between rigid layers. The International Space Station uses different types
of Whipple shields widely(15). Moreover, the International Space Station has started to use
experimental inflatable modules, which include flexible fabric protection systems without
the rigid layers present in the original Whipple shield. Computer design and optimisation of
stuffed Whipple shields and flexible protection systems requires modelling of high-strength
fabric composites under high-speed dynamic loading.

A number of works have been published on numerical and experimental studies of fabric
materials under shock load, naming(16,17,18,19) as examples. Most of these consider a single,
relatively large impactor moving with a velocity of 300–700m/s, which is an order of mag-
nitude lower compared with the sound speed in the material. However, for stuffed Whipple
shields the load is completely different—the initial particle is destroyed by the outer rigid
layer, then the fabric layer is exposed to a cloud of small fragments distributed over time
and space and moving with a velocity of around 5–9km/s. From the mathematical modelling
point of view, this load profile means that it is not possible to consider the problem to be
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quasi-static, since the speed of the fragments is comparable to the sound speed in the com-
posite membrane. The stress–strain state of the composite layer should thus be calculated as
a dynamic problem, and the elastic waves caused by the impact should be analysed.

Modelling stuffed Whipple shields requires consideration of a relatively large specimen
of flexible composite with characteristic thickness ranging from 0.1 to 5.0mm and in-plane
size of 0.1–1.0m. Based on this fact, the present study operates on the macro-level only, and
describes the specimens as a continuum anisotropic medium using effective parameters.

Modelling a thin layer under asymmetric loading requires three degrees of freedom for
each point of the specimen. The present study aims to achieve this for an arbitrary anisotropic
material while still describing the layer as a 2D object in 3D space, since this allows a reduc-
tion in the computational time compared with full solid 3D models. This work is based on the
models for thin fibres and membranes similar to Ref.(20), although we do not obtain analytical
solutions for particular cases; rather, we solve the equations numerically and study the con-
vergence rate of the numerical scheme. The same mathematical model and numerical method
can be used later for the numerical study of different processes in thin composite layers, such
as ultrasound propagation, non-destructive testing procedures and vibrations.

2.0 MATHEMATICAL MODEL

2.1 Notation
All the computations below are performed in Cartesian coordinates with the OX and OY axes
lying in the plane of the undeformed membrane and the OZ axis orthogonal to that plane.
The vector (x0, y0, z0)T denotes the initial coordinates of the point of the specimen in the
undeformed state, while the vector (x, y, z)T denotes the coordinates of the same point at a
given moment of time. Let

u =
⎛
⎝u

v

w

⎞
⎠=

⎛
⎝x − x0

y − y0

z − z0

⎞
⎠

be the displacement vector.

2.2 Assumptions
The membrane is considered to be an object with a characteristic size in one dimension (z)
that is several orders of magnitude smaller than in the other two. Due to this fact, only the
displacement of the mid-surface of the membrane in considered(21). Based on this, we suggest
that the difference in displacement in z-direction can be neglected:

u(x, y, z) = u(x, y) · · · (1)

Thus, the membrane is effectively a 2D object in 3D space.
Only small strains are considered. Cauchy’s strain tensor in the following form is used:

εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
· · · (2)
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We suppose that the materials are subject to Hooke’s law at the deformation rates
considered:

σij = Cijklεkl · · · (3)

The assumptions of small strains and linear elasticity up to destruction are generally valid
for rigid composites during high-speed interactions(22). Other materials may show different
behaviour; in this case, they will not be covered by the model presented in this work.

2.3 Stress–strain and strain–displacement relations
We use the following vector notation for displacements in 3D linear elastic theory:

ε =
(

∂u

∂x

∂v

∂y

∂w

∂z

∂u

∂y
+ ∂v

∂x

∂v

∂z
+ ∂w

∂y

∂w

∂x
+ ∂u

∂z

)T

· · · (4)

However, due to the kinematic assumption in Equation (1), the differential operator ∂
∂z is

always zero over the displacement fields we consider. Considering that, we use the following
notation for strains:

ε = Su

with the linear differential operator S defined as

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂

∂x
0 0

0
∂

∂y
0

0 0 0

∂

∂y

∂

∂x
0

0 0
∂

∂y

0 0
∂

∂x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· · · (5)

Hooke’s law then takes the form

σ = (
σxx σyy σzz τxy τyz τxz

)T = Dε · · · (6)

with D being the compliance matrix. In the most general case, D is symmetric and depends
on 21 independent elastic moduli.

2.4 Equations of motion
We derive the equations of motion using the virtual work principle. Let us first consider the
equilibrium conditions for the unit volume under external loading in the static case. Let δu, δε
be variations of the corresponding values. b denotes the distributed external force per unit
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volume. Then, the virtual work per unit volume is given by

δw = δεTσ − δuTb̄ · · · (7)

With u sufficiently smooth, δε = Sδu. For the transition to the dynamic case, according to
d’Alembert’s principle, we add a distributed inertia force:

b̄ = b − ρü,

where b is the distributed load and −ρü is the inertia force. Taking this into account along
with Equations (5), (6), we get the equation

δuT
(
STDSu + ρü − b

)= 0,

which must be satisfied for any variation δu. The term in brackets must thus be equal to zero.
We finally get the equation of motion as

STDSu + ρü − b = 0 · · · (8)

Further expansion of this equation appears inconvenient, in particular when D is given by
more than two independent parameters, as for an isotropic material. On the other hand, pre-
cisely those cases are of interest when modelling composite materials. Thus, in the following
section, we derive the governing equations for the computational element.

3.0 NUMERICAL METHOD
The Finite Element Method (FEM) is chosen for the task. One of the advantages of this
approach is the possibility of treating complex geometries, laying the foundation for future
study of the movement of perforated constructions or screens with holes created by impacts.

The formulation of the computational algorithm follows the general methodology described
in Ref.(23). This paper differs from the traditional approach in that the material points are
parameterised with two coordinates (x0, y0) but have three degrees of freedom (u, v, w).
Traditionally, for 2D problems, only formulations with either one (normal, w) or two (in-
plane, (u, v)) degrees of freedom are studied. This is because, for an isotropic material, due
to the particular structure of the matrix D, the system of equations of motion splits into two
systems, namely a wave equation for w and Lamé equations for the in-plane motion, which
can be solved independently.

For a general anisotropic material, the structure of the elastic moduli tensor D may be
different, depending on the degrees of material symmetry possessed by the specimen. For
example, a monoclinic medium, i.e. one that has only one plane of material symmetry, does
not allow the system of equations to be split in this way. The equations for a monoclinic
medium are discussed in more detail in the Appendix, since they are rather complicated and
their exact representation does not influence the model or method presented in the following
sections. However, their representation in the Appendix explains why the authors cannot just
split the system of equations of motion into two systems for some materials.

https://doi.org/10.1017/aer.2020.61 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2020.61


114 THE AERONAUTICAL JOURNAL JANUARY 2021

3.1 Domain decomposition
The computational domain corresponds with the physical membrane. An unstructured grid
of triangular elements is used. We suppose the thickness h, density ρ and elastic moduli E, ν
of the material to be constant around the element. It is suggested that the external force b is
distributed uniformly in the element. The following values are associated with the vertices:
their initial coordinates (x0, y0), the displacements a and the velocities v. Figure 1 depicts an
example of the domain decomposition.

3.2 Displacement approximation
Consider a triangular element with vertices (xm

0 , ym
0 ), (xn

0, yn
0), (xp

0, yp
0). Let us denote the

displacement vector at vertex i as

ai = u(xi
0, yi

0)

Displacements are approximated in the domain of the element as linear functions of the nodal
displacements by defining the shape functions Ni(x, y, z):

u(x, y, z) =
∑

i∈{m,n,p}
Niai = Na · · · (9)

with N = [ Nm Nn Np ], a =
[ am

an
ap

]
— displacements of the vertices, as only a linear approxima-

tion is considered. Taking (1) into account, one gets

Ni = (αi + βix + γiy)E · · · (10)

with coefficients defined by

Ni(xj, yj) =
{

E, i = j

0, i �= j
i, j ∈ {m, n, p} · · · (11)

The final coefficients for given shape functions are given by

αi = 1

Se

∣∣∣∣xj yj

xk yk

∣∣∣∣ βi = − 1

Se
(yk − yj) γi = 1

Se
(xk − xj) Se =

∣∣∣∣∣∣
1 xi yi

1 xj yj

1 xk yk

∣∣∣∣∣∣
3.3 Approximate stress and strain
Let us approximate Equation (4) by substituting the displacement with the approximation
from Equation (9)

ε = Su = SNa = Ba · · · (12)

Taking into account the formulas for N, the matrix B becomes

B =
(

B1
1 B1

2 B1
3

B2
1 B2

2 B2
3

)
· · · (13)
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B1
i =

⎛
⎝βi 0 0

0 γi 0
0 0 0

⎞
⎠ , B2

i =
⎛
⎝γi βi 0

0 0 γi

0 0 βi

⎞
⎠ · · · (14)

Stress and strain are connected via Hooke’s law as expressed in equation (6). Substituting
with the equation for deformation from above, one gets

σ = Dε = DBa · · · (15)

In the current implementation, it is possible to define either all 21 independent elastic con-
stants, or, for the case of isotropic material, the Young’s modulus E and Poisson’s ratio ν. The
compliance matrix in the former case has the form

D =
(

D1 0
0 D2

)
.D1 = E

(1 + ν)(1 − 2ν)

⎛
⎝1 − ν ν ν

ν 1 − ν ν

ν ν 1 − ν

⎞
⎠ · · · (16)

D2 = E

(1 + ν)(1 − 2ν)

⎛
⎜⎝

1−2ν
2 0 0

0 1−2ν
2 0

0 0 1−2ν
2

⎞
⎟⎠

3.4 Virtual work for the element
Let us obtain the approximation for Equation (7) by substituting the variations with finite
element approximations in Equations (9), (12):

δu = Nδa, δε = Bδa · · · (17)

Taking these into account along with (15), the virtual work Equation (7) becomes

δw = δεTσ − δuTb̄ = δaT
(
BTDBa − NTb̄

)
· · · (18)

Let us integrate the equation over the element volume and introduce fictitious nodal forces
qi that balance the internal elastic forces and external loads:

δaT

(∫
Ve

BTDBa dV −
∫

Ve

NTb̄ dV

)
= δaTqe · · · (19)

Te transition to the dynamic case is done according to d’Alembert’s principle:

b̄ = b − ρü, · · · (20)

where b is the external force and −ρü is the force of inertia. For acceleration, we use the
same approximation as for displacement:

ü(x, y) = N(x, y)ä. · · · (21)
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Taking into account Equation (20) and (21) for the computational element from Equation
(19), one finally gets

Meä + Kea + fe = qe · · · (22)

Here, the following matrices are introduced

Ke =
∫

Ve

BTDB dV — stiffness matrix · · · (23)

Me = ρ

∫
Ve

NTN dV — mass matrix · · · (24)

fe = −
∫

Ve

NTb dVe — load vector · · · (25)

3.5 Global equations assembly
We now have to account for the effect of all the elements to which a certain vertex belongs.
Instead of a local displacement vector, defined in Equation (9), consider a 3Nnodes-dimensional
vector consisting of the stacked displacement vectors of each vertex.

Thus, we introduce the global matrices K and M with dimensions 3Nnodes × 3Nnodes and
the vector f with dimension 3Nnodes. They are assembled using the following rules:

Kij =
∑

e

Ke
ij · · · (26)

Mij =
∑

e

Me
ij · · · (27)

fi =
∑

e

fe
i · · · (28)

Here Kij denotes a 3 × 3 block of K, standing at the intersections of the row and column
corresponding to the i-th and j-th vertex. Ke

ij is a local stiffness matrix defined above in Sect.
3.4. The summation is over for all the elements containing both the i-th and j-th vertex. The
fictitious nodal forces are summed too, and, obviously, the sum equals zero in case of equi-
librium. Eventually, one arrives at the following equation for the whole domain, analogous to
Equation (22):

Mä + Ka + f = 0 · · · (29)

3.6 Applying constraints
To study pinpoint strikes, we need to constrain the velocity of the strike point. Problems
involving a membrane with fixed border may also arise. We shall demonstrate that such con-
straints can be taken into account without changing the structure of the governing Equation
(29). Let us fix node i. In K, we fill the line Kik , k ∈ 1, Nnodes with zeros. In M, let Mii = E,
and fill the rest of the blocks Mik , k �= i with zeros. Finally, in the vector f, we fill fi with
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zeros. As a result, the system now contains an equation äi = 0, i.e. vi(t) = vfix. To constrain
the displacement, we determine vfix = 0.

3.7 Time integration
The procedure described above allows us to reduce the initial problem for the PDE to an ODE
problem as expressed in Equation (29). We then integrate this equation numerically using the
Newmark method(25):

ȧn = ȧn + τ (1 − β1)än

an = an + τ ȧn + 1

2
τ 2(1 − β2)än

än+1 = −A−1 (fn+1 + Kan) , A = M + 1

2
τ 2β2K · · · (30)

ȧn+1 = ȧn + β1τ än+1

an+1 = a + 1

2
τ 2β2än+1

If β2 ≥ β1 ≥ 1
2 , the method is unconditionally stable. If β1 = 1

2 , then the method has the second
order of approximation(23). For all the numerical experiments below, the parameter values
β1 = β2 = 1

2 were used.

3.8 Remarks on computational time
When using the model and the method proposed above, we do not need to create a com-
putational grid through the thickness direction z of the specimen. We address 3D problems,
but we represent the specimen using a triangular surface mesh only. This allows us to have
fewer vertices and elements in the grid compared with a full 3D model of the membrane,
since we do not have vertices in the volume of the specimen. Additionally, the elements of
the grid are simpler—triangles in our case, instead of tetrahedrons when using the full 3D
geometry, and each vertex in the triangular grid has fewer connections compared with a tetra-
hedral grid. These facts cause the global matrices K and M to have fewer dimensions and
be more sparse, compared with full 3D geometry modelling. Numerical solutions for smaller
and sparser matrices require less computational time.

3.9 Numerical results
The described method works on arbitrary irregular grids. Figure 2 shows an example of a grid
constructed using the gmsh mesh generator(26).

Figure 3 shows an example of a calculation using this grid. A single central mesh element
is impacted at a constant speed directed normal to the membrane plane. The involvement
of the membrane material in the movement is shown. It can be seen that, for a symmetric
formulation, the solution is symmetric and does not contain numerical artefacts.

The implemented method allows one to model asymmetric load profiles. Figure 4 shows
an example of a calculation in which a blow with a constant speed is applied at an angle to
the normal. The involvement of the membrane material in the motion and its substantially
asymmetric deformation are seen.
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Figure 1. Sample domain decomposition. Elements ei and vertices nj are presented along with corre-
sponding values.

Figure 2. Example calculation grid.

Figure 5 shows an example of a calculation using an anisotropic material model. A sin-
gle central mesh element is impacted at a constant speed directed normal to the membrane
plane. The elastic properties of the material are presented in Table 1. The elliptic wave pattern
formed due to the anisotropy of the material is seen in the figure.
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Figure 3. Exposure to a point load impulse, showing the dynamics of the involvement of the membrane
material in the motion. The colour shows the modulus of the velocity at different points in time: (a) initial
state, (b) wave propagation in the membrane, (c) wave reaches the border of the membrane, and (d) wave

is reflected from the border.

Figure 4. Exposure to a point load impulse at an angle of 30 degrees to the normal. The colour shows
the modulus of the velocity at different points in time: (a) initial stage of loading and (b) asymmetric

deformation.
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Table 1
Anisotropic material elasticity matrix: non-zero elements

Element Value, GPa

D11 150
D12 40
D13 10
D22 150
D23 80
D33 150
D44 80
D55 20
D66 30

Figure 5. Anisotropic material exposed to a point load impulse. The colour shows the modulus of the
velocity at different points in time. An elliptic wave pattern is formed due to the material anisotropy. (a)

Initial stage of loading. (b) Wave reaches the border of the membrane.

The method not only allows one to obtain the initial membrane dynamics and elastic waves
from the shock load, but also can be used to calculate deformations that develop over a con-
siderable time. For example, Fig. 6 shows the result of calculating the deformation of the
membrane under the action of a distributed load directed normal to the undeformed membrane
and with a modulus

b(r) =
⎧⎨
⎩

b0 cos2 r, r ≤ L

0, otherwise
r = π

2L

√(
x − 1

2
L

)2

+
(

y − 1

2
L

)2

, L — membrane size

· · · (31)

4.0 ACTUAL CONVERGENCE RATE
The scheme’s actual convergence rate was examined by using a method similar to that pre-
sented in Ref.(27). First, a rather coarse regular grid, composed of rectangles, each split into
two triangles by a diagonal, is generated. The choice of a regular grid is dictated by the need
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Table 2
Test case formulations

Test case Description

1 Normal strike with fixed load
2 Strike with fixed load, inclined π

6 to normal
3 Normal strike with fixed speed
4 Strike with fixed speed, inclined π

6 to normal
5 Normal load defined by Equation (31)

Table 3
Convergence rates

Actual rate
Case L1 L2 L∞

1 2.558 2.504 2.511
2 1.534 1.482 1.445
3 2.024 1.990 1.668
4 1.599 1.660 1.964
5 1.748 1.678 1.561

to easily control the coarseness of the grid. The solution is calculated up to some fixed time T .
The velocities and displacements at all the points of this coarse grid are saved as the baseline
solution. Then, the calculations are repeated on a grid refined by splitting each rectangle into
four smaller ones. The timestep is also scaled down accordingly. The norms of the difference
of the displacements and velocities between consecutive solutions on finer grids are calcu-
lated. The displacements and velocities for the norm calculation are taken at the same space
and time points as during the baseline solution.

Several test cases are examined; their descriptions are summarised in Table 2. In cases
1 and 2, the loading force is applied to one central square (a pair of triangular elements) in the
middle of the membrane. In cases 3 and 4, the velocity at the point closest to the geometric
centre of the membrane is constrained, with the velocity vector being respectively normal or
inclined at an angle π

6 to normal.
To demonstrate the results of this convergence rate study, in the Figure 7 we present the

plot used in the convergence rate assessment for test case 3. The number of grid refinements
k is plotted on the OX axis, while the norm of the difference between the solutions on con-
secutive grids is plotted on a logarithmic scale on the OY axis. Three norms, namely L1,
L2, and Linf, are considered. The slope of the fitted line represents the actual convergence
rate.

The results of the convergence rate study are presented in Table 3.
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Figure 6. Distributed load example.

Figure 7. Convergence: normal strike.
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5.0 CONCLUSION
This paper describes a mathematical model and numerical method for modelling a thin
anisotropic composite membrane under a dynamic shock load with an arbitrary time and
space profile. The results presented show that the convergence rate of the numerical scheme
in the worst case is 1.4 (oblique strike when using the norm Linf), and in the best case it is
2.5 (symmetric load using any norm). This order allows the described numerical method to
be applied for calculations in conjunction with field experiments. Anisotropic materials sup-
ported by the numerical method can be used to describe multilayer fabric membranes using
effective parameters.

The model and the method are designed to consider the composite membrane as a 2D object
in 3D space, still having an arbitrary material rheology and load profile. This approach allows
a reduction in computational time compared with direct modelling using full 3D models.

An obvious limitation of the described model and method is the lack of the possibility of
a detailed calculation of problems associated with destruction of the membrane. Using the
presented approach, it is only possible to determine the start of failure using strain or stress
thresholds. Enhancing the method to cover destruction is a topic for future work.
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APPENDIX

6.0 On the system of equations for monoclinic material
To expand the spatial derivatives term STDS we first introduce the following block notation
for convenience:

D =
[

D1 T

TT D2

]
, S =

[
S1

S2

]
, S1 =

⎡
⎢⎢⎣

∂
∂x 0 0

0 ∂
∂y 0

0 0 0

⎤
⎥⎥⎦ , S2 =

⎡
⎢⎣

∂
∂y

∂
∂x 0

0 0 ∂
∂y

0 0 ∂
∂x

⎤
⎥⎦
· · · (32)

Note that all the blocks, just as the resulting term, are 3×3 matrices. The following blocks are
also symmetrical

D1 = DT
1 , D2 = DT

2 , S1 = ST
1 · · · (33)
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Block-matrix multiplication yields

STDS = S1D1S1 + S1TS2 + ST
2 TTS1 + ST

2 D2S2 · · · (34)

Note that ST
2 TTS1 = (S1TS2)

T. The terms are

S1D1S1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

D11
∂2

∂x2
D12

∂2

∂x∂y
0

D12
∂2

∂x∂y
D22

∂2

∂y2
0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ · · · (35)

S1TS2 + (S1TS2)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2D14
∂2

∂x∂y
D14

∂2

∂x2
+ D24

∂2

∂y2
D15

∂2

∂x2
+ D16

∂2

∂x∂y

D14
∂2

∂x2
+ D24

∂2

∂y2
2D24

∂2

∂x∂y
D25

∂2

∂x∂y
+ D26

∂2

∂y2

D15
∂2

∂x2
+ D16

∂2

∂x∂y
D25

∂2

∂x∂y
+ D26

∂2

∂y2
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · · (36)

ST
2 D2S2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D44
∂2

∂y2
D44

∂2

∂x∂y
pyD45

∂2

∂x∂y
+ D46

∂2

∂y2

D44
∂2

∂x∂y
D44

∂2

∂x2
D45

∂2

∂x2
+ D46

∂2

∂x∂y

D45
∂2

∂x∂y
+ D46

∂2

∂y2
D45

∂2

∂x2
+ D46

∂2

∂x∂y
D55

∂2

∂x2
+ 2D56

∂2

∂x∂y
+ D66

∂2

∂y2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · · (37)

By combining the terms, one gets the spatial derivatives operator in question. For the sake of
brevity of the formulas, we consider a monoclinic material, i.e. a material with only one plane
of symmetry, in our case, the xy-plane. The elastic tensor for such a material takes the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 0 0 D16

D12 D22 D23 0 0 D26

D13 D23 D33 0 0 D36

0 0 0 D44 D45 0

0 0 0 D45 D55 0

D16 D26 D36 0 0 D66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · · (38)
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The spatial derivatives term then becomes

STDS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11
∂2

∂x2
+ D44

∂2

∂y2

∂2

∂x∂y
(D12 + D44)

∂2

∂x∂y
(D16 + D45)

∂2

∂x∂y
(D12 + D44) D22

∂2

∂y2
+ D44

∂2

∂x2
D26

∂2

∂y2
+ D45

∂2

∂x2

∂2

∂x∂y
(D16 + D45) D26

∂2

∂y2
+ D45

∂2

∂x2
D55

∂2

∂x2
+ D66

∂2

∂y2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · · (39)

Separation of the bending problem occurs only if additional conditions (D16 + D45 = 0,
D26 = 0, D45 = 0) are satisfied; thus, this may not occur for a general monoclinic material. For
this reason, all three degrees of freedom for each material point are considered simultaneously,
and not the in-plane and transverse motions separately.

In contrast, for an isotropic material:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E(1−ν)

(1−2ν)(ν+1)
Eν

(1−2ν)(ν+1)
Eν

(1−2ν)(ν+1)
0 0 0

Eν
(1−2ν)(ν+1)

E(1−ν)

(1−2ν)(ν+1)
Eν

(1−2ν)(ν+1)
0 0 0

Eν
(1−2ν)(ν+1)

Eν
(1−2ν)(ν+1)

E(1−ν)

(1−2ν)(ν+1)
0 0 0

0 0 0 E
2(ν+1)

0 0

0 0 0 0 E
2(ν+1)

0

0 0 0 0 0 E
2(ν+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · · (40)

The conditions mentioned above are thus satisfied for the isotropic material, and the system
of equations of motion can be split into two systems, which will be solved independently.
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