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Shear flow over a surface containing a groove
covered by an incompressible surfactant phase
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We study shear-driven liquid flow over a planar surface with an embedded gas-filled
groove, with the gas–liquid interface protruding slightly above or below the planar surface.
The flow direction is along the groove, which is taken to be much longer than it is wide,
and the gas–liquid interface is assumed to be covered by an incompressible surface fluid,
representing a surfactant phase. Using the incompressibility condition for the surface fluid,
the equations of motion and corresponding boundary conditions for the liquid phase are
obtained by minimizing the dissipation rate. Assuming a moderate deformation of the
interface, a domain perturbation technique with the maximal deformation as the small
parameter is employed. The Stokes equation in the liquid phase under corresponding
boundary conditions is solved to second order in the deformation using the Keldysh–Sedov
formalism. The obtained analytical results are compared with numerical calculations of the
same problem, allowing an assessment of the limits of validity of the expansion. While on
a planar gas–liquid interface no flow is induced, a recirculating flow is observed on an
interface protruding slightly above or below the planar surface. The study sheds light onto
the mobility of curved gas–liquid interfaces in the presence of surfactants acting as an
incompressible surface fluid.

Key words: drag reduction, microfluidics

1. Introduction

The presence of surfactants can significantly impact the flow in the vicinity of fluid
interfaces. For bounded fluid interfaces, the convection of interface-bound surfactant
molecules can lead to their stacking up at stagnation points, which in turn results
in Marangoni stress, effectively rendering the interface incompressible through stress
directed along the negative concentration gradient (Manikantan & Squires 2020).
Well-known examples are the formation of a stagnant surfactant film in front of an obstacle
piercing the surface of a flowing liquid (Merson & Quinn 1965; Scott 1982; Harper 1992)
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and the reduced mobility of drops or bubbles moving through a liquid due to an increased
surfactant concentration on the downstream portion of their interface (Savic 1953; Levich
1962; Davis & Acrivos 1966; Sadhal & Johnson 1983).

Special attention has been given to liquid flow over ‘superhydrophobic’ surfaces with
gas-filled (or liquid-filled) cavities due to their potential for drag reduction (Rothstein 2010;
Schönecker, Baier & Hardt 2014; Lee, Choi & Kim 2016). The influence of surfactants
on such flows has been observed experimentally (Kim & Hidrovo 2012; Bolognesi,
Cottin-Bizonne & Pirat 2014; Schäffel et al. 2016; Peaudecerf et al. 2017; Song et al.
2018; Li et al. 2020) and analysed theoretically (Gaddam et al. 2018; Landel et al. 2020;
Baier & Hardt 2021; Temprano-Coleto et al. 2021). Also in this case, surfactant molecules
stack up at stagnation points and can severely impede the drag reduction compared with
expectations based on a surfactant-free situation. In the extreme case of large surfactant
concentrations or low enough shear rates, Marangoni stress at the interface can completely
balance the viscous shear stress, rendering the interface immobile (Peaudecerf et al. 2017;
Baier & Hardt 2021). One such situation where this can occur is homogeneous shear flow
over a flat gas–liquid interface embedded in an entirely flat surface, resulting in a constant
shear rate on the interface. However, when the interface experiences an inhomogeneous
shear stress, for example on a curved gas–liquid interface protruding into the channel
(Song et al. 2018) or sidewalls imposing an inhomogeneous shear field (Li et al. 2020),
recirculation zones can occur on the interface at sufficiently high surfactant concentrations.
A similar phenomenon is observed when vesicles attached to a flat interface are subjected
to shear flow, where recirculation becomes observable in the lipid bilayer enclosing the
vesicle (Woodhouse & Goldstein 2012; Honerkamp-Smith et al. 2013). In reality, flat
gas–liquid interfaces are more an exception than a rule. Gas dissolution in the liquid or
the pressure drop in a channel with superhydrophobic walls deforms gas–liquid interfaces.
It was shown experimentally that the interface curvature influences the flow over bubble
mattresses very significantly (Steinberger et al. 2007; Karatay et al. 2013). In contrast,
how the curvature of a surfactant-laden interface influences the flow along the interface
has remained largely unexplored.

We aim here at a qualitative understanding of shear-driven flow along a long narrow
gas-filled groove in a planar surface, similar to the experimental set-up employed by
Song et al. (2018), by modelling the surfactants as an incompressible non-viscous surface
fluid. We thus assume that even small variations in surface concentrations impose such
large Marangoni stresses on the bulk fluid that the surface flow is rendered virtually
incompressible (large Marangoni number), while viscous stresses within the surface fluid
are insignificant compared with viscous stresses in the bulk (small Boussinesq number)
(Barentin et al. 2000; Elfring, Leal & Squires 2016; Manikantan & Squires 2020). This
simplification allows for an analytical solution of the flow field for small deflections of
the gas–liquid interface away from the planar surface. For a shear-free gas–liquid interface
without surfactants, the analogous situation of pressure-driven or shear-induced flow over
surfaces with grooves containing gas pockets with curved menisci has been analysed
numerically (Ng & Wang 2011; Li, Alame & Mahesh 2017; Ageev, Golubkina & Osiptsov
2018; Alinovi & Bottaro 2018), analytically (Sbragaglia & Prosperetti 2007; Crowdy
2010, 2015, 2016; Asmolov, Nizkaya & Vinogradova 2018; Kirk 2018) and experimentally
(Karatay et al. 2013; Kim & Park 2019). Similarly, thermocapillary flow along such
surfaces due to a thermal gradient along the grooves (Baier, Steffes & Hardt 2010) has
received considerable attention in the case of curved menisci (Kirk et al. 2020; Yariv &
Crowdy 2020; Yariv & Kirk 2021). Both of these situations bear some similarities to the
one involving an incompressible surface fluid, and similar techniques can be employed in
their solution.
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Figure 1. (a) Sketch of the geometry with a liquid above a surface with a long, narrow gas-filled cavity of
width 2a and length 2b. The gas–liquid interface, S , is assumed to have the shape of a circular arc and is laden
with an insoluble surfactant. Application of a shear stress τ∞ far away from the surface and in a direction
normal to the x–y-plane drives a Couette flow along the groove. (b) Side view of the geometry. The region
of interest is sufficiently far away from the ends of the groove, such that the deflection h(x) of the gas–liquid
interface can be considered independent of z.

2. Mathematical model

The configuration under investigation is sketched in figure 1, showing the view along the
flow direction in (a) and a side view in (b). A Newtonian liquid of viscosity μ is driven
by application of a shear stress τ∞ along the z-axis far above a planar surface containing
a single long, narrow gas-filled groove of width 2a and length 2b, with a � b, oriented
in the same direction as the applied shear stress. The region of interest is an x–y-plane
perpendicular to the flow direction not too close to the ends of the groove at |z| = b, such
that the flow is described sufficiently well by a unidirectional velocity field w(x, y) along
the groove, unaffected by its finite length. In this region, the deflection y = h(x) of the
gas–liquid interface S can be assumed to have the form of a circular arc, independent of
the z-coordinate along the groove, and we assume the flow to be slow enough that the shape
of the gas–liquid interface is unaffected by viscous stresses acting on it. Furthermore, the
viscosity of the gas in the cavity is assumed to be small enough that viscous stresses acting
on the interface from the gas are negligible compared with stresses exerted by the liquid.

The gas–liquid interface is assumed to be covered by an incompressible, inviscid surface
fluid, insoluble in the liquid. Since the flow is unidirectional, the mass conservation
equation for the surface fluid becomes∫

S
w(x, y) ds = 0, (2.1)

where the integral is along the part S of the gas–liquid interface cut by the x–y-plane
containing the liquid domain Ω of interest. In the limit of vanishing Reynolds number,
the local momentum conservation for the liquid together with the local form of the mass
conservation equation for the surface fluid can be obtained by minimizing the dissipation
rate (Batchelor 2000; Kim & Karrila 2005) subject to the constraint (2.1),

Φ[w] = μ

∫
Ω

∇w · ∇w d2x + 2μc
∫
S

w ds, (2.2)

where c is a Lagrange multiplier. Expanding δΦ = Φ[w + δw] −Φ[w] to first order in the
variation δw, which is assumed to vanish on all boundaries of Ω except for S , and setting
it equal to zero, leads to

∇2w = 0, in Ω (2.3)

and, with the normal vector n pointing into the liquid domain,

n · ∇w = c, on S. (2.4)
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The former of these is the Stokes equation for unidirectional shear-driven flow, while the
latter describes a constant shear stress at the interface, reminiscent of a situation with
thermal Marangoni flow along a groove with a constant temperature gradient along its
surface (Baier et al. 2010). However, while Marangoni flow is induced towards regions
of higher surface tension only, here, the boundary condition (2.1) requires a backflow on
parts of the interface. This is particularly striking when the interface is flat; in this case the
shear rate dictated by the far-field condition,

∂yw → τ∞/μ, for y → ∞, (2.5)

extends all the way to the planar surface, since the velocity field and Lagrange multiplier

w0(x, y) = τ∞
μ

y, c0 = τ∞
μ

(2.6a,b)

solve the Laplace equation (2.3) with boundary conditions (2.4), (2.5) and (2.1). Thus, the
velocity vanishes at the gas–liquid interface and the Lagrange multiplier c0 is the gradient
of the surface pressure within the incompressible surface fluid. In the following, we will
use this velocity field as the starting point of a perturbation expansion in the dimensionless
deflection ε = h(0)/a at the centre of the gas–liquid interface.

We remark that the boundary condition (2.4) is compatible with a constant Marangoni
stress opposing the main flow in the limit of large Marangoni number when surface
compressibility is small. In this case, the surfactant concentration remains virtually
constant on the entire interface and even small gradients in surfactant concentration lead
to large stresses opposing a compression of the surfactant layer. This is briefly explored in
Appendix A.

2.1. Dimensionless formulation
Using the length scale a and the velocity scale u0 = aτ∞/μ allows us to introduce
dimensionless coordinates (X, Y) = (x/a, y/a) and a dimensionless velocity W(X, Y) =
w(aX, aY)/u0 in Ω . The integral boundary condition (2.1) then reads∫

S
W(X, Y) dS = 0, (2.7)

and the no-slip condition on the planar surface L̄, condition (2.4) on the gas–liquid
interface S and the far-field condition (2.5) become

W(X, 0) = 0, on L̄, (2.8)

n · ∇̃W(X, Y) = C, on S, (2.9)

∂YW(X, Y) → 1, for Y → ∞, (2.10)

where C = μc/τ∞ is the dimensionless Lagrange multiplier and ∇̃ is the gradient in the
dimensionless coordinates (X, Y). Since W solves the Laplace equation (2.3),

∇̃2W = 0, in Ω, (2.11)

shear-driven Stokes flow can be written as the imaginary part of an analytic function

f (Z) = V(X, Y)+ iW(X, Y), Z = X + iY, (2.12)

by introducing the complex coordinate Z = X + iY . Denoting the complex derivative of f
as f ′, and writing Re[ · ] and Im[ · ] for real and imaginary parts, the Cauchy–Riemann
conditions, Re[ f ′] = ∂XV = ∂YW and Im[ f ′] = −∂YV = ∂XW, allow rewriting of the
boundary conditions (2.8)–(2.10) as conditions for f and its derivative.
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Flow over a groove covered by incompressible surfactant

2.2. Domain perturbation
We parameterize the deflection y = h(x) of the gas–liquid interface S by its maximal
dimensionless deflection ε = h(0)/a at its centre. The radius of curvature of its circular arc
then becomes r = (a2 + h(0)2)/(2h(0)) = a(ε−1 + ε)/2, counted as positive for ε > 0,
that is, when the deflection is into the upper half-plane. Up to second order in ε the
deflection then becomes

h(x) = σ(ε)
(√

r2 − x2 −
√

r2 − a2
)

= εa
(

1 −
( x

a

)2
)

+ O
(
ε3
)
, (2.13)

where σ(ε) = {1 for ε > 0;−1 for ε < 0; 0 for ε = 0} is the sign function. Thus, the
dimensionless deflection H(X) = h(aX)/a has the expansion

H(X) = εH1(x/a)+ O
(
ε3
)

= ε
(

1 − X2
)

+ O
(
ε3
)
. (2.14)

For small values of the dimensionless deflection ε, the velocity field W can be found
using a domain perturbation method (Leal 2007), by projecting the boundary conditions
(2.9) and (2.7) onto L, the projection of S into the real axis (cf. figure 1a). For this, we
use a regular perturbation expansion in ε for f , W and C,

f (Z) = Z + εf1(Z)+ ε2f2(Z)+ · · · , (2.15)

W(X, Y) = Y + εW1(X, Y)+ ε2W2(X, Y)+ · · · , (2.16)

C = 1 + εC1 + ε2C2 + · · · , (2.17)

where we have used the fact that, for a flat interface, f0(Z) = Z, W0(X, Y) = Y and C0 = 1.
The boundary condition (2.9) projected onto L then becomes, up to second order in ε,

n · ∇̃W|S = −H′(X)∂XW(X, Y)+ ∂YW(X, Y)√
1 + (H′(X))2

∣∣∣∣∣
Y=H(X)

= 1 + ε∂YW1(X, 0)

+ ε2
[
∂YW2(X, 0)− ∂X (H1(X)∂XW1(X, 0))− 1

2

(
H′

1(X)
)2]+ · · ·

= 1 + εC1 + ε2C2 + · · · , (2.18)

where the Laplace equation (2.11) was used in the second equality. Similarly, for the
projected integral boundary condition (2.7) we obtain

0 =
∫ 1

−1
W(X,H(X))

√
1 + (H′(X))2 dX

=
∫ 1

−1

[
ε (W1(X, 0)+ H1(X))+ ε2 (W2(X, 0)+ H1(X)∂YW1(X, 0))

]
dX + · · · .

(2.19)

Note that the measure for the arclength containing the square root does not contribute to
the expansion to order ε2 in (2.19).
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2.3. Solution
At each order in ε we successively seek solutions for fi(Z) and Wi(X, Y) in the whole upper
half-plane Ω0 = {Z | Im[Z] ≥ 0}, obeying the boundary conditions (2.8) on the no-slip
surface L̄, (2.10) in the far field and the projections (2.18) and (2.19) on L.

2.3.1. Order ε0

For the flat surface we already established

f0(Z) = Z, C0 = 1. (2.20)

2.3.2. Order ε1

Using (2.8), (2.18) and (2.10), W1(X, Y) obeys the boundary conditions

W1(X, 0) = 0 on L̄, (2.21)

∂YW1(X, 0) = C1 on L, (2.22)

∂YW1(X, Y) → 0 for Y → ∞. (2.23)

We recognize this as the boundary conditions for the flow above an infinite plane, driven
by a constant shear rate C1 along a strip of constant width on an otherwise no-slip surface.
The well-known solution is (Philip 1972)

f1(Z) = C1

(
Z −

√
Z2 − 1

)
. (2.24)

Note that f1(Z) and hence W1(Z) vanish far from the surface. While the far-field boundary
condition explicitly only forces the shear rate to vanish, this behaviour is expected, as
the momentum flux occurs between the surface of the groove (where momentum is
introduced) and the surrounding no-slip surface. Inserting W1 into (2.19), we obtain for
the Lagrange multiplier

C1 = 8
3π
. (2.25)

2.3.3. Order ε2

The boundary conditions for W2 inferred from (2.8), (2.18) and (2.10) become

W2(X, 0) = 0 on L̄, (2.26)

∂YW2(X, 0) = 1
2

(
H′

1(X)
)2 + ∂X (H1(X)∂XW1(X, 0))+ C2 on L, (2.27)

∂YW2(X, Y) → 0 for Y → ∞. (2.28)

It is instructive to rewrite these as conditions on the real and imaginary parts of the
analytic function f ′

2, using the fact that ∂XW2 = 0 on L̄, together with the Cauchy–Riemann
conditions, H1(X) = 1 − X2, and (2.24)

Im[ f ′
2(X)] = 0 on L̄, (2.29)

Re[ f ′
2(X)] = 2X2 + C1

1 − 2X2
√

1 − X2
+ C2 on L, (2.30)

Re[ f ′
2(Z)] → 0 for Z → X + i∞. (2.31)

We recognize this as a mixed boundary value problem for f ′
2(Z) on the real line, which

can be converted into a Riemann–Hilbert problem for which the methods of solution
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are well developed (Gakhov 1966; Lawrentjew & Schabat 1967; Muskhelishvili 2008). In
particular, using the Keldysh–Sedov formula (Gakhov 1966, § 46.3; see also Appendix B)
we obtain

f ′
2(Z) = 1

iπ
1√

Z2 − 1

∫ 1

−1

√
X2 − 1

X − Z

(
2X2 + C1

1 − 2X2
√

1 − X2
+ C2

)
dX + A√

Z2 − 1
,

(2.32)

=
2
(√

Z2 − 1 − Z
)

Z2 + Z
√

Z2 − 1
+ C1

(
2Z2 − 1

)
log

(
Z + 1
Z − 1

)
− 4Z

π
√

Z2 − 1

+C2

(
1 − Z√

Z2 − 1

)
+ A√

Z2 − 1
. (2.33)

The line integrals above can be performed by standard techniques (England 2003;
Muskhelishvili 2013; Gogolin 2014), and the term proportional to A is a solution obeying
homogeneous boundary conditions (i.e. Im[ f ′(X)] = 0 on L̄, Re[ f ′(X)] = 0 on L, f ′(X +
i∞) = 0). The function f2 can be obtained by taking the antiderivative of (2.33),

f2(Z) =
2
(√

Z2 − 1 − Z
)

Z3 + Z2 + 1

3
√

Z2 − 1

+ C1

√
Z2 − 1

(
Z log

(
Z + 1
Z − 1

)
− 2

)
π

+ C2

(
Z −

√
Z2 − 1

)
, (2.34)

where we have taken into account that, just as for W1, the velocity field W2 vanishes in the
far field, requiring A = 0. The Lagrange multiplier C2 is obtained from (2.19) as

C2 = 1
2

((
8

3π

)2

− 1

)
. (2.35)

This concludes our determination of the velocity field as a perturbation series up to second
order in the dimensionless deflection ε. As an aside, we note that the solution (2.24) at
order ε1 also appears as the last part of the solution (2.34) at order ε2, corresponding to a
constant shear rate C2 instead of C1 on L.

2.4. Branch cuts and choice of analytic functions

The principal branches of the analytic functions
√

Z and log(Z) both have branch cuts on
the negative real axis. By the nature of the solution method, some of the functions in our
solution are discontinuous across the section −1 < X < 1 of the real axis. However, for
ε < 0 the functions sought after must be analytic across this line segment. We thus replace√

Z2 − 1 → i
√

1 − Z2, (2.36)

log
(

Z + 1
Z − 1

)
→ log

(
1 + Z
1 − Z

)
− iπ, (2.37)

which have branch cuts along the real axis except on −1 < X < 1, agree with their original
expressions in the first quadrant and thus solve the Laplace equation in the region of
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Figure 2. Contour plot of (a) Im[ f1(Z)] and (b) Im[ f2(Z)]. In the grey region Im[ f2(Z)] > 0; since here
X > 1 and Y < 0, this region lies outside the considered liquid domain. The interval between contour lines is

0.05.

interest while obeying the same boundary conditions when approaching the real line from
above. We will assume these replacements to have been carried out in the expressions
(2.24) and (2.34) for f1 and f2 without further mentioning them. In order to illustrate the
resulting expressions, we have plotted their imaginary parts, i.e. their contribution to the
velocity, in figure 2. In order to simplify the presentation we restrict the plot of Im[ f2(Z)]
to negative values, since the corresponding region (shown in grey) is of no interest for the
problem at hand. Above the real axis both functions have a very similar appearance, while
marked differences are apparent for Y < 0. This is an indication that our approximation
may be better for positive deflection, ε > 0, than for negative deflection.

2.5. Finite element calculation
For comparison with the analytical results, numerical calculations were performed using
the commercial finite element solver COMSOL Multiphysics (version 5.6, COMSOL AB,
Stockholm, Sweden), employing its ’Coefficient form PDE’ interface. The symmetry of
the problem with respect to reflection at the Y-axis allows us to restrict the calculation
to the region with X ≥ 0 of the liquid domain of figure 1(a). Specifically, the Laplace
equation, (2.11), was solved in a quadratic domain 0 < X, Y < D of width and height
D = 25 with a circular-arc section, corresponding to the deflected gas–liquid interface,
added below (or removed above) the X-axis at X < 1. On the circular arc the integral
conservation equation (2.7) is prescribed as a constraint, while a Dirichlet condition,
W = 0, enforces the no-slip condition on the rest of the bottom surface. A constant
shear rate ∂YW = 1 is applied on the top surface at Y = D, and a vanishing shear rate,
∂XW = 0, is assumed on the left and right edges at X = 0 and D, corresponding to a
symmetry condition. The domain is discretized using quadratic Lagrange elements on a
triangular mesh with cells of size hB = 0.05 away from the surface and hS = hB/5 on
the circular arc, with a maximal element growth rate of 1.01. It was verified that in the
range −0.3 < ε < 0.4 the velocity at the centre of the interface at (X, Y) = (0, ε) changes
by less than 0.01 % when quadrupling the domain size D and by less than 0.4 % when
halving the element size hB and hS, indicating that the results are independent of the grid,
and the influence of the finite extent of the domain plays no significant role.
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Figure 3. Contour plot of velocity W(X,Y) for (a) ε = 0.1, (b) ε = 0.2, (c) ε = 0.3, (d) ε = −0.1, (e) ε =
−0.2. The interval between contour lines is 0.025 and the contour W(X,Y) = 0 is shown as a dashed white
line.

3. Results and discussion

Velocity fields W(X, Y) = Im[ f (X + iY)] are shown in figure 3 for ε varying between
−0.2 and 0.3 in steps of 0.1. Due to the symmetry of the problem, only half of the cavity
and its immediate vicinity is shown. As can be seen, for ε > 0 the velocity at the centre of
the interface near X = 0 is positive and becomes negative towards the edge of the cavity
close to X = 1. By contrast, for ε < 0 a backflow is induced at the centre of the cavity,
while the flow velocity is positive towards the edge of the cavity. It is also apparent that
the velocity on the interface is relatively small, and when leaving the interface into the fluid
domain is quickly dwarfed by the increasing velocity due to the constant shear rate applied
in the far field. As expected, compared with a pure Couette flow, the velocity profile in
the vicinity of the groove attains slightly larger values for negative deflection and slightly
smaller values for positive deflection. Due to the smallness of the interface velocity the
situation is not much different from the case of a solid protrusion into the channel. Note
that without an incompressible surface fluid the dimensionless velocity at the centre of
a flat (ε = 0) shear-free interface is 1 (Philip 1972), and thus the corresponding velocity
field in the vicinity of the groove becomes markedly different.

The velocity on the interface is more clearly shown in figure 4(a), where it is plotted
for the same values of ε as in figure 3. Here, it becomes particularly transparent that, with
an incompressible surface fluid, the velocity only reaches a few per cent of the values that
would be reached on a shear-free interface. At the same time, the corresponding velocities
from the numerical calculations using the finite element discretization are shown as dashed
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Figure 4. (a) Velocity on the interface, W(X, εH1(X)) (solid lines) and the corresponding numerical results
(dashed lines) for ε = −0.2, −0.1, 0, 0.1 0.2, 0.3. The arrow indicates increasing values of ε. (b) Velocity
W(0, ε) on the interface at X = 0 (blue solid line), projected velocity W̃S(0) ((3.1), yellow dashed line) and
corresponding numerical values (green circles). (c) Shear rate, ∂Y W(0, ε), on the interface at X = 0 (blue solid
line), C(ε) (yellow dashed line) and corresponding numerical values (green circles).

lines. It is evident that the analytical solution agrees well with the numerical calculation
in the chosen range of ε, with the largest deviations occurring close to the centre of the
cavity. The fact that backflow occurs on the interface, with flow in opposite directions
close to the centre of the groove and close to its edges, is evidently a prerequisite for
the mass conservation of the incompressible surface fluid. Its direction of transport at the
centre reflects the fact that a deflection of the interface above or below the reference plane
leads to a respectively increased or decreased shear rate on the interface compared with
the planar surface, see figure 4(c).

To further assess the quality of the analytical solution, the velocity close to the centre of
the cavity is plotted as a function of ε in figure 4(b) (blue line) together with corresponding
values from the numerical calculations (green circles). Note that the quality of the
approximation is not symmetric in ε and deviations become lager more quickly for negative
deflections than for positive ones. This expected behaviour was already alluded to above
in the discussion of the functions f1(Z) and f2(Z) in § 2.4.

Another estimate for the range of validity of the expansion can be obtained by
investigating the expansion of WS(X) = W(X, εH1(X)) to second order in ε as

W̃S(X) = ε
(

1 − X2 − C1

√
1 − X2

)
+ ε2

(
−1

3

√
1 − X2

(
1 + 2X2 + 3C2

)
.

+C1

[
1 − X2 −

√
1 − X2

π

{
2 + X log

(
1 − X
1 + X

)}])
. (3.1)

Since similar expansions are performed during the projection of boundary conditions in
(2.18) and (2.19), the difference between W̃S(0) and W(0, ε) should indicate when the
expansion becomes inadequate. Remarkably, W̃S(0), shown as a yellow dashed line in
figure 4(b), closely traces the numerical values obtained and is thus a faithful indicator of
the range of validity of our expansion.

Equation (3.1) thus is an excellent approximation for determining the extremal velocity
encountered at the midpoint of the channel in the interval −0.2 � ε � 0.3. It can also be
used to assess the extremum occurring towards the edges of the groove. When considering

(3.1) to first order in ε only, the location of this extremum lies at X =
√

1 − C2
1/4 ≈ 0.905,

while for the full equation (3.1) the location X ≈ 0.9 ± 0.02 of this extremum is only
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weakly dependent on ε in the considered interval of ε and thus W̃S(0.9) remains within
1 % of the value obtained from (3.1) at the location of the extremum. Similarly, the position
where the interfacial velocity changes sign varies little with ε and according to (3.1) lies
between X = 0.54 and 0.51 in the considered interval of ε, tightly straddling the position

X =
√

1 − C2
1 ≈ 0.529 of the zero of (3.1) to first order in ε.

Another value of interest is the shear rate on the interface. In our expansion this can be
obtained directly from ∂YW(0, ε) = Re[ f ′(iε)]. At the same time, from (2.9), the shear rate
at the interface is encoded in the Lagrange multiplier C(ε). Again, any deviation between
the two is an indication for the quality of our approximation. The curves for both these
quantities are shown as the respective blue solid and yellow dashed lines in figure 4(c),
together with the numerically obtained values as green circles. Note that, in the numerical
calculations, the shear is constant on the entire interface. As can be seen, the shear rate at
the centre of the interface is less sensitive to the approximation than the velocity. However,
for the shear rate the discrepancies are expected to become largest towards the edges of the
groove, and this is indeed reflected in our solution (not shown).

4. Conclusion and outlook

We have presented an analytical solution for shear-driven liquid flow along a single
bounded gas-filled groove, embedded in an otherwise planar surface, when the gas–liquid
interface protrudes slightly above or below the planar surface and is covered by an
incompressible surface fluid. The flow velocities displayed in figures 3 and 4(a) show
that backflow occurs close to the edges of the groove when the interface protrudes above
the planar surface and close to its centre when it deflects below the plane. Evidently, such
regions with backflow are mandatory since on a bounded groove as much surface fluid is
transported along the flow direction as against it.

Qualitatively, the same behaviour of the interface flow predicted for an incompressible
surface fluid was observed experimentally at a single gas-filled groove in the presence
of large concentrations of surfactant by Song et al. (2018). We take this as evidence for
the adequacy of our model for describing such situations. Nevertheless, there are some
discrepancies, as experimentally the backflow on the interface is not always as prominent
as in our prediction. This may be due to interfacial concentrations not being large enough
for the surfactant film to become fully incompressible or due to surfactant dissolving in
the liquid. Moreover, experiments were performed using pressure-driven Poiseuille flow
in a relatively shallow channel instead of pure shear flow, affecting the details of the
boundary conditions. While a more complex model for surfactants taking into account
adsorption/desorption kinetics and an equation of state or an effective surface viscosity at
large surfactant concentrations could be incorporated in a more complete model, it would
be difficult to capture such details in an analytical description. Despite the mentioned
shortcomings, we hope that our analytic model will be a valuable reference for describing
flow with large interfacial concentrations of surfactants.

Flow over a superhydrophobic surface in the Cassie state is often characterized by
reporting an apparent slip length (Rothstein 2010; Lee et al. 2016). It should therefore
be of interest to extend the present study from a single groove to a parallel array of
gas-filled grooves in order to investigate the impact of large surfactant concentrations on
the observable slip length. Moreover, as mentioned in the introduction, thermal Marangoni
flow along a grooved surface can also be approximately described by a constant shear stress
along the grooves (Baier et al. 2010). The similarity to the flow over an incompressible
surface fluid promises some synergy between the investigations of both situations.
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More generally, flow over arbitrary gas- or liquid-filled patches (e.g. circular holes)
covered by an incompressible surface fluid, with interfaces protruding above or below a
flat surface is of interest for various designs of superhydrophobic surfaces. In this respect,
an extension to a slightly compressible surface fluid, possibly exhibiting surface viscosity,
may be of interest for a more complete picture. Such configurations may also be relevant in
other situations such as flow over vesicles attached to a solid wall (Woodhouse & Goldstein
2012; Honerkamp-Smith et al. 2013).

On a higher level of abstraction, we hypothesize that the results reported in this paper
may hint at a quite general class of fluid dynamic phenomena: that the flow along a
surfactant-covered liquid surface is very sensitive to the surface deformation. In our case,
the surface flow is suppressed on a flat surface, while a flow emerges on a deformed
surface. It is conceivable that the flow field itself deforms a liquid surface, or that the
surface deformation is controlled by an external parameter (such as pressure), which in
turn would influence the flow pattern on the surface.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Tobias Baier https://orcid.org/0000-0002-2539-3969;
Steffen Hardt https://orcid.org/0000-0001-7476-1070.

Appendix A. Surface incompressibility

In § 2 the interface was modelled as containing an incompressible surface fluid. In this
appendix we briefly discuss the compatibility of this simple model with momentum
conservation and transport of a surfactant species at the interface in the limit of large
Marangoni number.

The steady-state interfacial stress balance in the Boussinesq–Scriven model reads
(Edwards, Brenner & Wasan 1991; Slattery, Sagis & Oh 2007; Manikantan & Squires
2020)

n ·
(

p(+) − p(−)
)

+ γ (∇s · n)n = n ·
(
τ (+) − τ (−)

)
− ∇sΠ + ∇s · τ s, (A1)

where Is = I − nn is the interface projection operator and ∇s = Is · ∇ the interface
gradient. Also, p(+), p(−), τ (+) and τ (−) are the pressures and viscous stress tensors in the
fluid on the side of the interface the normal vector n points to and away from, respectively,
with τ ( · ) = μ( · )(∇u( · ) + (∇u( · ))T). On the interface it is assumed that the velocities
of both fluid phases are identical, u = u(+) = u(−). Here, Π(Γ ) = γ0 − γ (Γ ) is the
surface pressure with γ (Γ ) being the interfacial tension of an interface with surfactant
concentration Γ and γ0 the interfacial tension of the clean interface. The interfacial
rheology is captured in the Boussinesq–Scriven stress

τ s = [(κs − μs)∇s · u]Is + μs[∇su · Is + Is · (∇su)T], (A2)

where μs and κs are the surface shear and the surface dilatational viscosity, respectively.
In our model with a gas–liquid interface, we assume that the viscous stress τ (−) on the

gas side is negligible compared with the viscous stress τ (+) on the liquid side. For small
Boussinesq numbers Bqμ = μs/(μa) and Bqκ = κs/(μa), the intrinsic surface stresses
can be neglected compared with the stresses exerted by the adjacent fluid. In our case the
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z-component of (A1) along the grove then reads

μn · ∇w = ∂zΠ = ∂Π(Γ )

∂Γ
∂zΓ = Γ0

∂Π(Γ )

∂Γ
∂zδΓ̃, (A3)

where in the last step we have assumed that the surfactant concentration has the form Γ =
Γ0(1 + δΓ̃ ) with δΓ̃ � 1. It is useful to introduce the Marangoni modulus (Manikantan
& Squires 2020)

E0(Γ ) = Γ
∂Π

∂Γ
, (A4)

as a measure of the interfacial elasticity or the amount of work needed for compressing an
interface with surfactants. As in § 2.1 we use the length scale a to introduce dimensionless
coordinates, here writing Z̃ = z/a for the z-coordinate, and the velocity scale u0 = aτ∞/μ.
The non-dimensional form of (A3) is approximately

n · ∇̃W = Γ0

μu0

∂Π(Γ )

∂Γ
∂Z̃δΓ̃ ≈ Ma ∂Z̃δΓ̃, (A5)

where we have introduced the Marangoni number

Ma = E0(Γ0)

μu0
= E0(Γ0)

aτ∞
. (A6)

Consequently, for a constant shear stress along the groove, the surfactant gradient becomes
arbitrarily small for large Ma, with δΓ̃ remaining small for not too large groove lengths.
Since the left-hand side of (A5) is constant in our model, this equation corresponds to
(2.4) (or (2.9)).

The surfactant flux at the interface in the z-direction along the grove is governed by
convection and diffusion,

NΓ,z = wΓ − D∂zΓ = u0Γ0

(
W(1 + δΓ̃ )− Pe−1∂Z̃δΓ̃

)
≈ u0Γ0

(
W
(

1 + Ma−1n · ∇̃WZ̃
)

− (Pe Ma)−1n · ∇̃W
)

≈ wΓ0, (A7)

where we have substituted δΓ̃ according to (A5) and in the last step taken the limit of
large Marangoni number, assuming that Z̃ = z/a is not too large and the Péclet number
Pe = au0/D is not too small. Additionally, in our approximation the transverse velocity
on the groove vanishes, which is consistent with a negligible gradient in the surfactant
concentration in this direction. Thus, for large Ma the surfactant concentration can be
considered as constant, Γ0, on the interface, with Π taking the role of the pressure in the
momentum equation for the incompressible surface fluid. Integrating (A7) across the width
of the interface then leads to (2.1) of our model. Finally, the pressure difference between
the phases is governed by the mean curvature H of the interface, 2H = −∇s · n, such that
p(+) − p(−) = 2γH. As for large Ma the surface tension γ stays nearly constant on the
interface, this is consistent with the circular-arc cross-section of the interface assumed in
our model.

Typical values of the shear rates employed in experiments are γ̇ = τ∞/μ =
0.1 . . . 1 s−1, for water with μ 
 1 mPa s, and a typical length scale is a = 0.1 . . . 1 mm.
With the Marangoni modulus scaling as E0 
 kBTΓ0 at a surfactant concentration
Γ0 
 0.01 . . . 1 nm−2, typical values for the Marangoni number lie in the range Ma 

kBTΓ0/(aτ∞) 
 4 × (101 . . . 105). With surface diffusion coefficients in the range
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D 
 (0.1 . . . 1)× 10−9 m2 s−1 the corresponding Péclet numbers are in the range Pe =
au0/D 
 a2γ̇ /D 
 1 . . . 104. It is thus expected that in many experimental scenarios the
assumption of an incompressible surfactant phase is well justified.

Appendix B. Outline of a derivation of the Keldysh–Sedov formula

In § 2.3 a holomorphic function was obtained in the upper half-plane, obeying certain
boundary conditions on the real line, by using the Keldysh–Sedov formula. Here,
we give a brief sketch of how to obtain this expression based on the behaviour of
holomorphic functions at cuts on the real line. Standard references for these techniques
are Muskhelishvili (2008) or Gakhov (1966) while England (2003) gives an excellent brief
introduction.

Consider a function Φ(Z) that is holomorphic in the complex plane with the exception
of possible cuts on intervals located on the real line. For such a function it is useful to
define the limit when approaching a point X on the real line from above or below

Φ±(X) = lim
ε→0+

Φ(X ± iε). (B1)

When Φ(Z) has purely real values in an interval on the real line, the Schwartz reflection
principle, Φ(Z) = Φ(Z̄), where the overbar denotes complex conjugation, leads to
Φ+(X) = Φ−(X). As an example, the function

R(Z) =
√

Z2 − 1 (B2)

has a cut on the interval [−1, 1] of the real line and obeys

R+(X) = −R−(X) for X2 ≤ 1,

R+(X) = R−(X) for X2 > 1.

}
(B3)

According to the Sokhotski–Plemelj theorem (Gogolin 2014, § 1.4.1)

lim
ε→0+

∫ ∞

−∞
f (X) dX
X ± iε

= ∓iπf (0)+ P
∫ ∞

−∞
f (X) dX

X
, (B4)

where P denotes the principal value of the integral. Hence, the function

F(Z) = 1
2πi

∫ ∞

−∞
f (X) dX
X − Z

(B5)

is another example that obeys the jump condition

F+(X)− F−(X) = f (X). (B6)

The conditions (B3) and (B6) can be used to obtain a holomorphic function g(Z) in the
upper half-plane that obeys boundary conditions as in (2.29) and (2.30)

Re[g+(X)] = 1
2 [g+(X)+ g−(X)] = η(X) for X2 ≤ 1,

Im[g+(X)] = 1
2 [g+(X)− g−(X)] = 0 for X2 > 1.

}
(B7)

Introducing ψ(Z) = R(Z)g(Z) and using (B3), these can be converted to

ψ+(X)− ψ−(X) =
{

2R+(X)η(X) for X2 ≤ 1,
0 for X2 > 1,

(B8)
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which has the form of (B6). Finally, using (B5), we obtain

ψ(Z) =
√

Z2 − 1 g(Z) = 1
2πi

∫ 1

−1

√
X2 − 1 η(X) dX

X − Z
. (B9)

Apart from the solution of the homogeneous problem, this is the Keldysh–Sedov formula
of (2.32). Further generalizations and details on the conditions for applicability can be
found in the standard references listed above.
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