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Control of viscous instability by variation of
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Using variational calculus, we investigate the time-dependent injection rate that
minimises the growth of the Saffman–Taylor instability when a finite volume of fluid
is injected in a finite time, tf , into a Hele-Shaw cell. We first consider a planar
interface, and show that, with a constant viscosity ratio, the constant injection rate is
optimal. When the viscosity of the displacing fluid, µ1(t), gradually increases over
time, as may occur with a slowly gelling polymer solution, the optimal injection rate,
U∗(t), involves a gradual increase in the flow rate with time. This leads to a smaller
initial value of flow rate than the constant injection rate, finishing with a larger value.
Such optimisation can lead to a substantial suppression of the instability as compared
to the constant injection case if the characteristic gelling time is comparable to tf .
In contrast, for either relatively slow or fast gelling, there is much less benefit in
selecting the optimal injection rate, U∗(t), as compared to the constant injection rate.
In the case of a constant injection rate from a point source, Q, then with a constant
viscosity ratio the fastest-growing perturbation on the radially spreading front involves
axisymmetric modes whose wavenumber increases with time. Approximating the
discrete azimuthal modes by a continuous distribution, we find the injection rate that
minimises growth, Q∗(t). We find that there is a critical time for injection, t†

f , such
that if tf > t†

f then Q∗(t) can be chosen so that the interface is always stable. This
critical time emerges from the case with an injection rate given by Q∗ ∼ t−1/3. As
the total injection time is reduced to values tf < t†

f , the system becomes progressively
more unstable, and the optimal injection rate for an idealised continuous distribution
of azimuthal modes asymptotes to a flow rate that increases linearly with time. As
for the one-dimensional case, if the viscosity of the injection fluid gradually increases
over time, then the optimal injection rate has a smaller initial value but gradually
increases to larger values than for the analogous constant viscosity problem. If the
displacing fluid features shear-thinning rheology, then the optimal injection rate
involves a smaller flow rate at early times, although not as large a reduction as in
the Newtonian case, and a larger flow rate at late times, although not as large an
increase as in the Newtonian case.
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1. Introduction
Viscous fingering occurs when a low-viscosity fluid is used to displace a more

viscous fluid through a porous medium. The phenomenon is of considerable
importance for the oil industry since it can lead to injected water bypassing the
oil in a reservoir, with the result that there are large pockets of unswept oil (Lake
1989; Woods 2015). The injection of a less viscous fluid into a more viscous fluid
in a Hele-Shaw cell is also subject to viscous fingering. If pore-scale physics and
two-phase flow effects are neglected, then the Hele-Shaw cell can be used as a
two-dimensional analogue model of a porous medium. We adopt this approach herein,
and the remainder of the paper focuses on Hele-Shaw flows.

A variety of approaches to control the stability of the interface have been explored.
They can be classed as involving modification of (1) the Hele-Shaw cell geometry,
(2) the injection flow rate, (3) fluid properties or (4) combinations thereof. For the
first class, Al-Housseiny & Stone (2013) performed a linear stability analysis for
flow in a tapering cell, and experimentally verified how the tapering angle modified
the stability of the interface, whereas Pihler-Puzović et al. (2012) investigated the
stabilising effect of replacing the top plate with an elastic membrane. Zheng, Kim
& Stone (2015) defined a control parameter that, if held constant in time, permits
selection of which azimuthal mode is manifest throughout the injection. In that study,
the control parameter was held constant by varying the gap thickness, b, according
to b(t)∼ t1/7. In a different study, the control parameter was held constant by varying
the injection flow rate, Q, according to Q(t) ∼ t−1/3 (Li et al. 2009). Both studies
demonstrated good agreement between experiment and theoretical prediction of the
dominant mode of instability that develops. For the latter case, Dias & Miranda
(2010) went on to perform a weakly nonlinear mode-coupling analysis to explain
how the Q∼ t−1/3 injection flow rate leads to sharpening, stable fingers.

Modification of the fluids (class (3) above) has also been shown to give interfacial
control. The viscosity of the injected fluid can be increased, for example by adding a
polymer (Sorbie 1991). Since the field-scale deployment of polymer can be expensive,
in some cases a finite volume of polymer solution is injected between the oil and
the water. This leads to a series of interesting problems concerning the stability of a
flood front with two interfaces, and an analysis has been presented for this coupled
problem based on flow in a Hele-Shaw cell (Cardoso & Woods 1995). Gorell &
Homsy (1983) generalised the two-interface analysis by exploring the stability of a
unidirectional constant flow in which the concentration of injected polymer varies
with position in the flow. They developed a variational approach to determine the
optimal concentration of the injected polymer as a function of time in order to
minimise the viscous instability when finite masses of polymer and water are injected.
Following a different approach, Gin & Daripa (2015) calculated the stability of a
series of discrete layers of different viscosity injected in sequence. However, there
are challenges associated with the direct injection of polymer solutions into a porous
medium, including the risk that the polymer may block up pore throats near the
injector and hence prevent the continued injection of fluid into the reservoir in order
to displace the oil (Sorbie 1991; Woods 2015). In order to mitigate such risks, it
is possible to use a polymer with a delayed activation so that the mixture viscosity
gradually increases with time.

There are a variety of methods that could achieve this. For example, if the polymer
is supplied in a soluble encapsulant with a finite release time, then the concentration
of polymer in solution would gradually change as the encapsulant dissolves. Gun
& Routh (2013) explored the possibility of using poly(lactic-co-glycolic) acid to
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encapsulate a gelling agent that is gradually released. In the context of drug delivery
in the body, Makadia & Siegel (2011) detail how the release profile of this encapsulant
can be tuned by varying the composition. Alternatively, the polymer may be thermally
activated, gelling once it passes through an activation temperature. Tran-viet, Routh
& Woods (2014) explored the thermal response of poly N-isopropylacrylamide to
this end. The viscosity may also vary on account of reaction. Polyacrylamide (PAA)
solutions are commonly used in oil field displacements (Kamal et al. 2015). In
addition to gradual release from encapsulant, time dependence can be introduced
to PAA solution viscosity through tailoring reaction kinetics. Han et al. (1995)
demonstrated that the addition of chromium ions to PAA led to the formation of
a cross-linked gel structure, and that the addition of acetic acid to this solution
delayed the rate of gel formation. Furthermore, we hypothesise that, by limiting
the initial concentration of chromium ions, the rheological properties of the final
polymer solution, including the cross-links, can also be controlled. In the case of
PAA polymerisation, Lee et al. (2012) measured the gradual change in solution
viscosity over the course of the reaction and demonstrated that the rate of reaction is
dependent on the concentration of various reagents. With polymer solutions (including
those of PAA), shear can cause the polymer chains to align, which can lead to a
decrease in the effective viscosity. Thus, polymer solutions with time-dependent
viscosity may exhibit shear-thinning behaviour.

Drawing on the results of previous work related to time-dependent changes in
viscosity, we now explore how such variations of viscosity may impact the stability
of a moving interface, and, given the evolving rheology, we also account for possible
variations in injection rate. Such effects may be key for the class of problem in
which a finite volume of fluid is to be injected in a finite time, and in this case
there is the intriguing possibility that, by varying the flow rate with time, the final
amplitude of instability can be further reduced. In exploring this class of problem,
we are guided by the pioneering works of Dias, Parisio & Miranda (2010) and Dias
et al. (2012), who examined the impact of changes in flow rate on the growth of
viscous fingers. In particular, Dias et al. (2012) considered the problem of injection
of a finite volume of fluid in a finite time, and, using variational calculus, developed
an expression for the injection flow rate as a function of time which minimises the
final amplitude of instability.

We have arranged the paper as follows. In § 2 we consider the impact of
time-dependent rheology in a unidirectional displacement of Newtonian fluids, in
which there is a continuous range of unstable wavenumbers. We assess the relationship
between the time-dependent viscosity of the injected fluid and the optimal injection
rate. In § 3 we extend the results to consider injection from a central source in
which the instability leads to a discrete series of modes with increasing azimuthal
wavenumber, n, of the form An(t) exp(inθ) (cf. Paterson 1981). In this case, the
analysis is more complex owing to the continual stretching of the interface, which
progressively suppresses the instability of lowest modes as the interface grows, while
surface tension suppresses the instability of the highest modes (cf. Cardoso & Woods
1995). In order to make progress, following Dias et al. (2012) we approximate the
discrete spectrum of modes with a continuous spectrum, noting that this will lead
to an upper bound on the actual growth rate. We find that, for a given initial radius
R0, there is a particular total injection time, t†

f , for which the system is just stable,
provided the injection rate decreases with time according to Q= a(b+ ct)−1/3, where
the constants a, b and c are found in our analysis. If tf decreases to values tf < t†

f ,
for this given R0, then the optimal injection rate gradually evolves towards the simple
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linearly increasing rate Q= d+ et, where d and e again are found from the analysis.
This limit coincides with the results of Dias et al. (2012), who investigated the
optimal injection rate in the limit tf � t†

f . We then illustrate how a gradual increase
in the viscosity of the injected fluid, for example resulting from slow activation
of gel, modifies this optimal solution so that, as for the unidirectional flow, the
optimal injection rate increases with time from a smaller to a larger value than for
the case in which the injected fluid has a constant viscosity equal to the initial
viscosity. Given that many polymer solutions exhibit shear-thinning rheology, in § 4
we generalise the analysis to account for such rheology in the calculation of the
optimal flow rate with time. Earlier work has explored aspects of the stability of
non-Newtonian fluids as they are displaced through a Hele-Shaw cell. In particular,
Wilson (1990) developed the dispersion relation for the case in which air displaces a
non-Newtonian fluid through a rectilinear geometry and this work was developed to
describe the stability of a radially spreading front by Sader, Chan & Hughes (1994).
In the present work, we explore a different problem in which a non-Newtonian fluid
displaces a more viscous Newtonian fluid through a rectilinear geometry. It is noted
that the more complicated configuration in which both fluids are non-Newtonian has
been considered by Martyushev et al. (2015) for the axisymmetric geometry and, in a
different study, the stability of a bubble contracting towards a point sink surrounded
by a power-law fluid was considered by McCue & King (2011). We explore the
control implications of the nonlinear rheology and compare our results to Fontana,
Dias & Miranda (2014), who generalised the analysis of Dias et al. (2012) to the case
in which air displaces a shear-thinning fluid. In comparison with the Newtonian case,
Fontana et al. (2014) found that the optimal injection rate involves a more rapid
injection at early times and slower injection later. Finally, in a discussion section
of the paper, we summarise our key results and draw some conclusions about the
efficacy of the control strategies identified herein.

2. Rectilinear channel flow of Newtonian fluids
2.1. Formulation

The depth-averaged flow of fluid in a Hele-Shaw cell is governed by the following
equations (Saffman & Taylor 1958):

∇ · u= 0 and u=−
b2

12µ
∇p, (2.1a,b)

where u denotes velocity, b is the plate separation, µ is the viscosity of the fluid and
p is the pressure.

By applying the interfacial boundary conditions of conservation of velocity and
the jump in pressure on account of interfacial tension, and exploring the stability of
the interface to small sinusoidal perturbations along the interface, Saffman & Taylor
(1958) obtained the dispersion relation

Ȧ
A
= σk =

µ2 −µ1

µ2 +µ1
Uk−

b2T
12(µ1 +µ2)

k3, (2.2)

where T is the interfacial tension, A(k, t) is the amplitude of a perturbation of
wavenumber k, U(t) is the velocity of the interface and subscript 1 denotes the
displacing fluid whereas subscript 2 is the displaced fluid. With injection of a finite
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volume of fluid in a finite time tf , such that the interface migrates a distance xf , this
relation may be expressed in dimensionless form as

σ̂k =
(1− V)Ûk̂− τ k̂3

1+ V
, (2.3)

where the hat notation denotes a dimensionless variable, k̂= kxf , t̂= t/tf , the control
parameter τ = b2Ttf /(12µ2x3

f ), Û(t̂) = Utf /xf , σ̂ = σ tf and V(t̂) = µ1(t̂)/µ2. We
now drop the hat notation for convenience and henceforth work with dimensionless
variables. The wavenumber, kmax, with maximum growth rate, σmax, is given by

kmax =

√
(1− V)U

3τ
, (2.4)

where

σmax =
2

3
√

3τ

(1− V)3/2

(1+ V)
U3/2. (2.5)

At each time, the growth rate of any mode, σ(k, t)<σmax(t), and so an upper bound
on the amplitude of any mode once all the fluid has been injected is given by

I =
∫ 1

0
σmax dt. (2.6)

In order to find the injection rate, U(t), that minimises I subject to the requirement∫ 1
0 U dt= 1, we can follow the Euler–Lagrange framework of variational calculus and

seek a solution for U(t) of the equation

d
dt

(
∂σmax

∂U

)
= 0. (2.7)

This leads to the ordinary differential equation (ODE) for U(t),

(5+ V(t))V̇(t)U(t)− (1− V(t)2)U̇(t)= 0, (2.8)

with solution

U∗(t)=Ω
(1+ V(t))2

(1− V(t))3
, where Ω =

(∫ 1

0

(1+ V(t))2

(1− V(t))3
dt
)−1

. (2.9)

If the viscosity ratio is constant, V̇ = 0, then (2.8) predicts that the constant flow,
U = 1, is optimal. It follows that

k∗max =

√
Ω

3τ
(1+ V(t))
(1− V(t))

(2.10)

and

σ ∗max =
2
3

√
Ω3

3τ
(1+ V(t))2

(1− V(t))3
. (2.11)

A key parameter in the present model is τ . Analysis of the upper bound on the
amplitude of perturbations, equation (2.6), shows that this may be re-expressed in the
form

A= exp
(∫ 1

0
f (U, V) dt/τ 1/2

)
, (2.12)

where f (U,V) takes on different functional forms depending on whether the injection
rate is constant or follows the optimal injection rate. It follows that A

√
τ ,
√
τσmax and√

τkmax are independent of τ .
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2.2. Effect of a gradual increase in viscosity
As mentioned in § 1, the time-dependent viscosity could be tailored through
choosing the thickness or composition of polymer micro-encapsulant, altering reagent
concentrations to control polymerisation or cross-linking reaction kinetics or altering
the temperature to trigger a thermally activated viscosity change. In the case of release
from micro-encapsulant, we assume the viscosity of the displacing fluid is directly
proportional to the concentration of released polymer and model this concentration as
following the release profiles shown in Makadia & Siegel (2011). Thus, the viscosity
ratio has the form

V(t)= V0 + (Vf − V0)(1− e−θ t), (2.13)
where V0 is the initial viscosity ratio, Vf is the long-time asymptotic viscosity ratio
and θ is the ratio of the injection time, tf , to the characteristic time for the viscosity
change or ‘gelling’. In figure 1(a,b) we illustrate the optimal solutions for the cases
in which θ = 1, corresponding to slow gelling, and θ = 10, corresponding to faster
gelling. In both cases, the target change in viscosity of the injected fluid is Vf /V0= 90.
In the case θ = 10, the viscosity of the injected fluid reaches this target value early
in the flow, whereas for the slow gelling case, θ = 1, the viscosity is increasing for
the duration of the injection. For the faster gelling case, θ = 10, the optimal flow
rate strategy involves injection of the majority of the fluid once the viscosity has
reached its maximum value since adverse viscosity differences are reduced at these
later times. In contrast, with slow gelling, the change in viscosity is smaller and so
the optimal flow rate increases gradually with time. In figure 1(c,d) we show how the
most unstable wavenumber

√
τkmax evolves in time, for the optimal flow rate (dashed

line), and, for reference, for the case of a constant injection rate (solid line). With a
constant flow rate, the most unstable wavenumber decreases with time, owing to the
increasing stability of the system. In contrast, the optimal injection profile actually
leads to a gradual increase in the most unstable wavenumber with time as a result of
the increasing flow rate, even though the viscosity ratio falls with time. As a result
of the different evolution of the maximum growth rate with time, we find that, for
the optimal flow, the maximum growth rate actually increases with time owing to the
progressively faster injection, whereas for a constant injection, the growth rate falls
with time (figure 1e, f ).

We now explore the final amplitude of the perturbation, once the finite volume
of fluid has been injected. In order to compare the benefit of the optimal injection
rate with the case of constant injection, for different values of θ , it is convenient
to investigate the variation of A

√
τ

f with θ for each case. For clarity, figure 2(a)
illustrates the difference between these two amplitudes as a function of wavenumber
in the case Vf = 0.9 and V0 = 0.01. Figure 2(b) illustrates the ratio of the two final
largest amplitudes as a function of θ . Figures 2(a) and 2(b) both illustrate that the
maximum benefit arises when θ is close to unity so that the viscosity is changing
over the whole period of injection. For small or large θ the difference is much
smaller, since in either of these limits the majority of the injection occurs with either
the original or the final viscosity. In figure 2(c), curves are given for V0 = 0.01 and
Vf = 0.5, 0.7 and 0.9 corresponding to polymer solutions whose final viscosity is
progressively larger. The curves all have a similar shape, but the magnitude of the
reduction in amplitude associated with using the optimal injection strategy is greater
when the change in viscosity of the polymer gel is greater. This is further illustrated
by figure 2(d), which shows how the magnitude of reduction in amplitude diminishes
as V0 approaches Vf for θ = 2. Finally, in order to illustrate the effect of increasing
the overall injection time τ , in figure 2(e) we show contours of the ratio of the final
amplitude associated with constant and optimal injection in θ–τ space, for the case
V0 = 0.01 and Vf = 0.9.
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FIGURE 1. (Colour online) Results for (a,c,e) θ = 1 (slow gelling) and (b,d, f ) θ = 10
(rapid gelling). (a,b) Viscosity ratio profiles with parameters θ , V0 = 0.01 and Vf = 0.9
(primary axis) and the optimal velocity profiles (secondary axis). (c,d) The transition of
√
τkmax for the optimal (dashed line) and constant (solid line) flow rate profiles. (e, f ) The

evolution of
√
τσ .

3. Radially spreading flow of Newtonian fluids
3.1. Formulation

We now turn to the more complex problem of an axisymmetric geometry. Paterson
(1981) derived a dispersion relation for the growth of perturbations on a circular
interface of radius R in terms of a series of discrete azimuthal modes n, which
depend on the viscosity ratio across the interface, V , the surface tension T and the
permeability K, taken to be b2/12 for a Hele-Shaw cell. For injection of a fixed
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FIGURE 2. (Colour online) (a) The final amplitude of perturbations of wavenumber k for
the viscosity invariant case (θ = 0, grey) and a gelling case (θ = 1) for a constant flow
rate (solid line) and the optimal flow rate (broken line). (b) The final maximum amplitudes
varying as a function of θ for Vf = 0.9. (c) The ratio of these two final amplitudes as a
function of θ for a series of Vf . (d) The effect of increasing V0 for a series of Vf and
θ = 2. (e) A contour plot of the final amplitude ratio varying with τ and θ for V0= 0.01
and Vf = 0.9.
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volume of fluid, πb(R2
f − R2

0), over a time tf , we can scale the growth rate with 1/tf

and the radius with Rf , leading to the dimensionless growth rate

σn(R, Ṙ)=
Ṙ
R

(
1− V
1+ V

n− 1
)
−

τ

R3(1+ V)
n(n2
− 1), (3.1)

where the stability parameter τ = b2Ttf /(12µ2R3
f ). Although n corresponds to a series

of discrete modes, we can find an upper bound on the maximum growth rate at each
time by treating n as a continuous variable (Dias et al. 2012), leading to

nmax(R, Ṙ)=
√

1
3(1+ 2ΛṘR2), (3.2)

σmax =

(
1− V
1+ V

)
1

3
√

3ΛR3
(1+ 2ΛṘR2)3/2 −

Ṙ
R
, (3.3)

where Λ= ((1− V)/2τ). Since the amplitude of each mode grows as the exponential
of the integral of the growth rate of that mode, the ultimate amplitude of the instability
will be smaller than the expression

A= exp
(∫ 1

0
σmax(Ṙ, R, t) dt

)
. (3.4)

If we find a minimum value for A by varying dR/dt through all possible functions
that satisfy the boundary conditions, then this will provide an upper bound on the
amplitude of the instability. To this end we apply the Euler–Lagrange equation

d
dt

(
∂σmax

∂Ṙ

)
=
∂σmax

∂R
, (3.5)

leading to the following differential equation governing the optimal injection rate:

1+ΛR2Ṙ+Λ2R5R̈−
V̇

2τ(1+ V)
(2R3
+Λ(5+ V)ṘR5)= 0. (3.6)

3.2. The constant viscosity regime
In the case that the injection fluid has constant viscosity, the evolution of R is given
by the equation

1+ΛR2Ṙ+Λ2R5R̈= 0, (3.7)

subject to the constraint that R=R0 < 1 at t= 0 and R= 1 at t= 1, as noted by Dias
et al. (2012). This equation has an exact solution,

R=
(

t+ t0

1+ t0

)1/3

, (3.8)

where t0 = R3
0/(1− R3

0) in the special case that Λ=Λ† and

1+ 1
3Λ

†(1− R3
0)=

2
9Λ

†2(1− R3
0)

2, (3.9)
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FIGURE 3. The flow rate, Q∗(t), that minimises
∫ 1

0 σmax dt for Λ = Λ† (dashed line),
Λ= 3Λ† and Λ= 10Λ† (solid lines) and Λ= 100Λ† (dash-dotted line) while R0 = 0.1.

which requires

Λ†(R0)= 3
1

(1− R3
0)
. (3.10)

This solution fixes the most unstable mode to the circular mode, nmax = 1, for the
injection duration, and corresponds to a maximum growth rate

σ †
max =−

2
3(t+ t0)

V
(1+ V)

. (3.11)

This solution was recently found independently using a Hamiltonian formulation
by Batista, Dias & Miranda (2016). If V = 0 this solution is neutrally stable for the
duration of flow (σ †

max = 0) and the result quantitatively matches the flow rate that
would be found by setting σ = 0 in the dispersion relation (3.1) (cf. Beeson-Jones &
Woods 2015). If 0< V < 1, then σ †

max < 0 for all t and the solution (3.10) leads to a
decay of each mode.

We have solved (3.7) numerically for Λ= 3Λ† and Λ= 10Λ†, with fixed R0, and
these solutions are shown in figure 3 (solid lines). It is seen that, as Λ increases to
values much larger than Λ†(R0), the variation of the optimal injection rate, Q∗= 2RṘ,
with time changes in character from the slowly decaying flow rate for values close to
Λ† (dashed line) to a linearly increasing flow rate in the case Λ�Λ† (dash-dotted
line). The solution for Λ� Λ† corresponds to the solution proposed by Dias et al.
(2012),

R= R0 + (1− R0)t, (3.12)

and the numerical solutions (solid lines) smoothly connect this limit with the solution
(3.8) for Λ=Λ†(R0), which coincides with the analytical solutions in the Hamiltonian
formulation of Batista et al. (2016).

We now explore the evolution of the instabilities over time, to assess the value of
the predicted optimal injection rate, which is based on minimising the upper bound
of the growth rate as a function of time, and we compare the results with the case of
a simple constant injection rate.
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FIGURE 4. (Colour online) (a) The evolution of the upper bound of growth rate, σ ∗max, for
V = 0 (broken lines), V = 0.1 (solid lines) and a series of increasing values of Λ/Λ† with
R0 = 0.2. (b) A regime diagram for the conditions σ ∗max < 0 for all t (broken lines; region
S) and σ ∗max > 0∀t (solid lines, region U) for a series of values of V as labelled.

It is useful to recall that the upper bound on the growth rate, σmax, has been
estimated by assuming a continuous distribution of modes, whereas in practice the
modes are quantised in the azimuthal direction. We anticipate that for cases in which
the most unstable azimuthal wavenumber is large, the model will offer a better bound
than for slower injection rates when only the lowest modes are unstable.

To proceed, we first explore the evolution of the upper bound as a function of time
during the injection, from the case Λ∼Λ† to the case Λ�Λ†. The only parameters
that govern the optimal flow rate are Λ and R0; however, σmax additionally depends
on the viscosity ratio V . In figure 4(a), the bound is shown with broken lines for two
cases in which V = 0 and R0 = 0.2: Λ=Λ† (black) and Λ= 3Λ† (blue) as labelled.
The solid lines correspond to four cases in which V = 0.1 and R0 = 0.2: Λ = Λ†

(black), Λ= 3Λ† (blue), Λ= 10Λ† (green) and Λ= 30Λ† (red).
It is seen that, in the case V = 0, the upper bound on growth rate is initially zero,

and with Λ=Λ† this remains the case throughout the injection duration since it is the
neutrally stable solution. With Λ= 3Λ†, the instability gradually develops with time.
In the case V = 0.1, then when Λ = Λ† the bound is in fact stable throughout the
injection period, whereas with Λ = 3Λ†, the bound is initially stable, but eventually
becomes unstable just before all the fluid has been injected. As the value of Λ
gradually increases, the bound becomes unstable at progressively earlier times until
eventually it is unstable as soon as the injection commences. If we extrapolate from
these results, it follows that for each initial radius R0 there is a critical value of Λ,
above which the bound is always unstable (Λu, solid lines), and a second critical
value of Λ below which the bound is always stable (Λs, dashed lines). These values
are shown in figure 4(b). Curves are given for viscosity ratios of 0.1 (blue), 0.3 (red)
and 0.5 (black). For a given radius, the critical value of Λ below which the modes
are always stable increases with the viscosity ratio owing to the reduced viscous
destabilisation of the front. Similarly, the critical value of Λ for which the modes are
always unstable increases with the viscosity ratio.

The number of discrete modes that become unstable during the course of the
injection can be calculated from the evolution of the continuous bound nmax (3.2).
This is shown for the optimal injection case in figure 5(a) where R0 = 0.1. For
Λ = Λ† (black line), the most unstable mode is fixed to nmax = 1 for the duration
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FIGURE 5. (Colour online) (a) The evolution of the most unstable mode nmax for R0= 0.1
and a series of increasing Λ/Λ†. (b–g) The growth rate of discrete modes n for a constant
injection rate (b–d) and the optimal injection rate (e–g) for V = 0, R0= 0.1 and Λ= 3Λ†

(b,e), Λ= 10Λ† (c, f ) and Λ= 100Λ† (d,g). (h–j) The amplitude of perturbations following
the optimal injection rate. Mode 2 (11) is highlighted with thick line in orange (purple).
The growth-rate bound derived from treating n as a continuous variable is shown as the
thick black line.
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of the injection, as discussed. For Λ= 3Λ† (blue line), initially mode 1 is the most
unstable, but at the end of the injection mode 2 is the most unstable, whereas for
Λ = 10Λ†, once again initially mode 1 is the most unstable, but at the end of the
injection mode 4 has the largest growth rate. For Λ = 100Λ† (green line) mode 2
is the most unstable at early times, while the most unstable mode at the end of the
injection is mode 13 (not shown). Similarly, for Λ = 1000Λ† (purple line), initially
mode 4 is the most unstable, whereas the most unstable mode at the end of injection
has now increased to mode 42. As the value of Λ increases, the discrete azimuthal
mode that is initially the most unstable has a larger wavenumber and furthermore the
span of different modes that become the most unstable during injection increases too.
We now investigate the evolution of these discrete modes (n= 2, 3, . . .).

The coloured lines in figure 5(b–d) show the evolution of the growth rates of the
discrete modes n= 2, 3, . . . during the injection period for the case of injection at a
constant rate. The upper bound σmax is included as the thick black line. Figure 5(b–d)
correspond to the cases Λ = 3Λ†, Λ = 10Λ† and Λ = 100Λ†, respectively. For
comparison, in figure 5(e–g) we show the evolution of the growth rates of the
discrete modes for the case in which the injection follows the optimal injection rate,
the solution of (3.7). Figure 5(e–g) correspond to the same values of Λ as in panels
(b–d). In figure 5(h–j), we present the amplitude of each of the discrete modes as
a function of time for the case in which the injection follows the optimal injection
rate.

When Λ= 3Λ†, mode 2 is the only mode to become unstable for both the constant
(figure 5b) and optimal (figure 5e) injection flow rate profiles. In the case of constant
injection, the bound on growth rate is initially large, then decreases to zero, and
subsequently rebounds to a local maximum before decaying away. The bound is
initially large on account of a non-physical mode, n < 1, that causes the interfacial
tension term to become positive in the dispersion relation (3.1). The growth rate
of mode 2 becomes positive during the flow but does not become as large as the
bound, even at the end of the injection. In the case of optimal injection, the bound
monotonically increases from near zero to a final value larger than that of the constant
injection case. Once again mode 2 is the only mode to become unstable during the
flow, but in the optimal injection case the magnitude of the growth rate is equal to
the bound σmax at the end of the injection. The amplitude of mode 2 at the end of the
flow is O(0.1) because the late-stage growth of the mode is insufficient to overcome
the early-time decay whilst the mode is stabilised by interfacial tension.

Where Λ= 10Λ†, the bound σmax in the constant injection case (figure 5c) initially
increases, but after reaching a maximum it gradually decreases with time. The
maximum in growth rate is larger and earlier in time than for Λ = 3Λ†. Mode 2
becomes unstable at an early time, with modes 3 and 4 following over the course
of injection. The growth rates of each of the modes reach a maximum value then
decay away, leading to a cascade to higher modes. In the case of optimal injection
(figure 5f ), the bound on growth rate is once again initially small and then increases
monotonically. The onset of instability of mode 2 is delayed relative to the constant
injection case and features a smaller maximum compared to the constant injection
case. The onset of instability of modes 3 and 4 is also delayed, but the maxima
are larger in growth rate than the constant injection case. In contrast to the constant
injection case, mode 5 becomes unstable during the flow. Figure 4(i) illustrates that
the amplitude of mode 2 at the end of the injection phase is greater than the initial
value, owing to the dominance of the instability at the later stages of injection, even
though it is initially stable. However, the amplitudes of modes 3–5 do decay to
smaller values.
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FIGURE 6. The final amplitude varying with Λ/Λ† for V = 0, R0 = 0.1 for constant
injection (solid lines) and optimal injection (broken lines) computed with discrete modes
(black) and a continuous series of modes (grey).

For the case Λ = 100Λ†, in the constant injection case (figure 5d), the bound on
growth rate is initially very large, then monotonically decreases for the duration of the
flow and closely follows the locus of the mode that is the most unstable at that time.
Mode 2 (bold orange line) is initially unstable, and also monotonically decreases in
growth rate. Modes 6–16 behave like the lower modes when Λ = 10Λ†, insofar as
they become unstable during the flow, reach a maximum in growth rate and then
subsequently decay. Mode 11 is highlighted with a bold purple line. Curiously, the
maximum in growth rate of a discrete mode can occur before it becomes tangential
to the bounding curve σmax. When the fluid is injected with the optimal injection rate
(figure 5g), the bound on growth rate is initially non-zero but nonetheless considerably
smaller than the constant injection case. Mode 2 is initially unstable. The growth rate
increases to a maximum coincident with the bound σmax, before decreasing as the
radius increases further. Modes 3–22 all become unstable during the injection. The
behaviour of each mode follows the same pattern of increasing towards the maximum
growth rate and then decaying as the radius increases to larger values. However,
owing to the fact that many of the modes are initially stable, the modes with larger
azimuthal wavenumber, which spend a smaller fraction of the injection period being
unstable than stable, finish with an amplitude smaller than unity. Only modes 2–4
feature overall growth during the injection.

As the value of Λ increases, the number of different modes that become unstable
increases and the bound, σmax, becomes a better approximation of the locus of the
most unstable mode for both the constant and optimal injection cases. There are
two factors that appear to contribute to stabilisation: (i) the large initial growth rates
featured in the case of constant injection are mitigated by slower flow at early times
in the optimal case; and (ii) a larger number of modes become unstable in the optimal
case, giving each mode relatively less time to grow.

Figure 6 is a comparison of the final amplitude as computed from integrating the
bound, σ ∗max (grey lines), and the largest final amplitude of any discrete mode (black
lines) as the total time of injection is reduced, i.e. as the value of Λ is increased for
parameters V = 0 and R0= 0.1. Figure 6 also compares the amplitudes resulting from
constant injection (solid lines) and optimal injection (broken lines). The discrete-mode
curves are not smooth. The overestimation of the final amplitude as computed by
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FIGURE 7. (Colour online) The critical value of Λ0, above which the system is always
unstable for the gelling case in which V0= 0.3 and Vf = 0.5. A series of values of gelling
rate, θ , is shown.

integrating the bound of all modes as compared to the actual growth rate of each
individual mode can be seen by comparing the grey and black lines. The overall
stabilisation gained by optimal injection can be seen by comparing the broken and
solid lines. The effect of stabilisation is more pronounced when considering each
mode individually, and – as the curves are seen to diverge – the benefit of optimal
injection becomes larger as the total injection time is reduced.

3.3. Effect of a gradual increase in viscosity
As for the unidirectional flow problem, when the viscosity of the injected fluid
gradually increases with time, we expect that the optimal flow solution will involve
an increase in the flow rate with time relative to the case of a constant viscosity.
The parameter Λ= (1− V)/2τ is no longer a constant but varies with the change in
viscosity between Λ0= (1− V0)/2τ and Λf = (1− Vf )/2τ . If the duration of the flow
tf is small, or interfacial tension T relatively weak given the duration of the flow,
then Λ� 1 for V ∼O(0.1). In this case, equation (3.6) becomes

(5+ V)V̇Ṙ− (1− V2)R̈= 0, (3.13)

which has the solution

Ṙ= (1− R0)Ω
(1+ V(t))2

(1− V(t))3
. (3.14)

This closely corresponds to the rectilinear case (2.9). To explore this behaviour, we
use the same example of a gelling process as previously described using (2.13). In an
analogous fashion to figure 4(b), for a given initial radius there is a particular value
Λ0,u such that if Λ0 > Λ0,u then the bound σ ∗max is unstable for the duration of the
flow. In figure 7, we present this critical value, Λ0,u, for V0 = 0.3 and Vf = 0.5. The
critical value of Λ0 for the non-gelling case, θ = 0 (red), can be recognised from
figure 4(b). In the gelling case, θ = 1 (blue), the critical value Λ0,u is larger than for
the non-gelling case since the growth rate can be negative at any stage of the flow.
In the faster gelling case, θ = 2, the critical value Λ0,u is larger still.

Figure 8 shows how the optimal flow rate Q∗(t) varies for a series of increasing
gelling rates, θ , for parameters V0= 0, Vf = 0.5, Λf = 1250 and R0= 0.35. Figure 8(a)
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FIGURE 8. (Colour online) The optimal flow rate, Q∗(t), for a series of different gelling
rates θ for R0 = 0.35, V0 = 0, Λf = 1250 and Vf = 0.9 found using (3.14) (solid lines)
and the invariant viscosity case (broken line). In (a), the time scale of viscosity change
compared to the flow is small, whereas in (b) it is large. In (a) the numerical solution to
(3.6) is shown (crosses).

compares the optimal flow rates when the viscosity change is slow relative to
the injection duration, θ 6 O(1), whereas figure 8(b) corresponds to faster gelling,
θ >O(1). For the constant viscosity case, θ =0, the optimal injection profile analogous
to the result of Dias et al. (2012), equation (3.12), is shown in figure 8(a,b) as broken
lines. For a very slow gelling rates, θ = 0.1 (red line), the optimal flow rate is initially
smaller than the non-gelling case but then involves injecting with a larger injection
rate than the non-gelling case at later times. This may be understood in terms
of the system optimising the benefits of the higher viscosity at later times in the
injection process. As θ increases to the value for which the time scales of gelling
and injection, tf , are matched, θ = 1 (blue line), equation (3.12), these features become
more pronounced. We also note that full numerical solution of the ODE (3.6) (crosses
in figure 8a) and the asymptotic solution (3.14) (solid line) agree in this limit of a
small total injection time, or large Λf . Turning to figure 8(b), for θ = 10 (red line),
the optimal flow rate is more akin to the non-gelling case at late times; however,
initially the flow rate is approximately zero. For θ = 30 (black line, figure 8b), the
optimal flow rate is again initially approximately zero, and subsequently follows the
non-gelling case since the viscosity ratio is effectively the final value, Vf , for the
duration of the flow.

Figure 9 explores the benefit of injecting with the optimal flow rates shown in
figure 8 at the end of the injection by illustrating the amplitudes of the discrete modes,
n = 2, 3, . . . . In the absence of gelling, θ = 0 (grey lines), the optimal injection
solution (broken line) shows a smaller peak in amplitude of any of these modes than
the constant injection case (solid line); this illustrates the benefit of optimal injection
as discussed in § 3.2. For θ = 1 (black lines), the gelling leads to a reduction in the
final maximum amplitude with constant injection since the adverse viscosity gradients
are reduced, and deploying optimal injection strategy leads to further stabilisation. The
variation of the magnitude of these maxima as the rate of gelling, θ , increases is
shown in figure 9(b). As the rate of gelling increases, the amplitudes decrease to
a smaller plateau. The amplitude of each mode at the end of the injection period
when deploying the optimal injection rate solution is consistently smaller than those
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FIGURE 9. (a) The final amplitude of each mode n for the viscosity invariant case (θ =
0, grey lines), for a constant flow rate (solid lines) and the equivalent optimal flow rate
(broken lines) where V0= 0, Vf = 0.5, Λf = 1250 and R0= 0.35. A gelling example is also
shown (θ = 1, black). (b) The variation of both maximum amplitudes with θ , and (c) the
ratio of the constant to optimal injection final amplitude plotted against θ for a series of
Λf .

associated with using a constant injection rate, and the ratio of these two values, which
may be interpreted as a measure of the benefit of deploying the optimal injection
strategy, is plotted in figure 9(c) (blue line). As with unidirectional flow, it can be seen
that the benefit of using the optimal flow rate is largest when the time scale of gelling
is similar to that of the flow, θ ∼ O(1). Also, as the overall injection rate increases,
the benefit of deploying the optimal injection rate is greater still, as illustrated for
example with the case Λf = 2500 (black line).

4. Rectilinear channel flow with a shear-thinning injected fluid
In this section, we generalise the results of § 2 to describe the injection of a fluid

that exhibits shear-thinning rheology. We adopt a power-law model to describe shear-
thinning behaviour that neglects the Newtonian plateau at very low shear rates:

φ = k1γ̇
m, (4.1)

where φ is the shear stress, γ̇ is the strain rate, and k1 and m are empirical fitting
parameters known as the consistency index and flow behaviour index, respectively.
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Following Aronsson & Janfalk (1992), the Hele-Shaw flow equation (2.1) is modified
to become

u=−
m

2m+ 1

(
|∇p|

k1

)1/m (b
2

)(m+1)/m
∇p
|∇p|

. (4.2)

Ghannam & Esmail (1998) have shown that this provides a reasonable representation
of the behaviour of PAA over a large range of shear rates.

We now explore the growth rates of sinusoidal perturbations to the interface. Mora
& Manna (2009) derive the dispersion relation for the displacement of one generalised
Newtonian fluid by another. Following their analysis, but treating the displaced fluid
as Newtonian (2.1) while using (4.2) to describe the shear-thinning rheology of the
injected fluid, leads to the dispersion relation

σ =
kU(1− νUm−1)− τk3

1+ ν
√

mUm−1
, (4.3)

where ν = (k1/µ2)((2m+ 1)/m)m(b2/12)(2/b)m+1. The most unstable wavenumber,
kmax, with the largest growth rate σmax is given by

kmax =

√
(1− νUm−1)U

3τ
, (4.4)

where

σmax =
2

3
√

3τ

((1− νUm−1)U)3/2

1+ ν
√

mUm−1
. (4.5)

Ghannam & Esmail (1998) observed that over the range of concentrations of PAA
0.25 % < CPAA,wt < 1 %, the flow behaviour index of the polymer solution, m, was
constant with the value m=0.5, whereas the consistency index, k1, increased from 410
to 1800 m Pa0.5. Thus, we investigate the case in which k1(t) varies with changes
in concentration following the release of polymer from an encapsulant but m is
constant. Generally, however, we note that either m or k1 might vary with the polymer
concentration. For direct comparison to § 2, we suppose the non-Newtonian fluid leads
to the same pressure gradients, Px, as would occur in a Newtonian fluid in the case
of constant flow, U = 1. In this case, ν(t) follows the same time dependence as V(t)
(cf. (2.13)). The evolution of the perturbation amplitude, A

√
τ
= exp(

∫ √
τσmax dt),

during an injection process with a constant flow rate is shown with the solid lines in
figure 10 for V0= 0.01, Vf = 0.9 and θ = 10. For reference, we include the Newtonian
case (black), and a series of shear-thinning cases: m= 0.99 (blue), m= 0.95 (red) and
m = 0.78 (yellow). Figure 10 illustrates that the effect of shear-thinning is to cause
a small increase in the amplitude of perturbations when the unperturbed pressure
gradients are the same as in the Newtonian case. We now seek to minimise the final
amplitude of perturbations in the case in which a finite volume of fluid is injected in
finite time.

Following the previous sections, substitution of (4.5) into (2.7) leads to the scalar
ODE for U(t)

ν(t)4U(t)5m−1
5∑

i=1

[ν(t)−iU(t)−i(m−1)(Ξ(m)i1ν̇(t)U(t)+Ξ(m)i2ν(t)U̇(t))] = 0, (4.6)
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FIGURE 10. (Colour online) Evolution of amplitudes for a shear-thinning fluid in which
the apparent viscosity ratio varies according to V0= 0.01, Vf = 0.9 and θ = 10 for constant
injection (U = 1; solid lines) and a series of values of m: m = 0.99 (blue), m = 0.95
(red) and m= 0.78 (yellow). Also included are the evolution of amplitudes in the case of
optimal injection (cf. figure 11(a); broken lines).
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FIGURE 11. (Colour online) (a) Optimal injection flow rate profiles. (b) Variation of the
final amplitude with gelling speed parameter θ .

where Ξ(m)=
−m(2+m) −m2(2+m)

−10
√

m− 5m− 2m3/2
+ 2m2 2(m−

√
m)(m2

− 4m− 10
√

m− 4)
−
√

m(−14−
√

m+ 8m+ 4m3/2) −
√

m(4+ 9
√

m− 24m− 7m3/2
+ 8m2

+ 4m5/2)

(3+ 2
√

m)(1+ 2m) 2
√

m(2m2
+ 3m3/2

− 5)
0 −3

.
(4.7)

The solution of (4.6) is shown in figure 11(a) for m = 1 (black broken line, cf.
figure 1b) and a series of decreasing values of m, i.e. m= 0.99 (blue), m= 0.95 (red)
and m= 0.78 (yellow), with the effective viscosity of the polymer solution being the
same as the Newtonian case for both the early and late stages of the process.

According to the optimal injection rate, the proportion of fluid injected later in
the flow is reduced compared to the Newtonian case. This is interpreted to be a
response to the shear-thinning, which would be enhanced with a faster flow rate
and which would lead to a more unstable front at later times. This is analogous
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to the modification of the optimal injection profile for air invading a non-gelling
power-law fluid in an axisymmetric geometry described by Fontana et al. (2014).
The broken lines in figure 10 show the evolution of the largest amplitude, A

√
τ ,

resulting from injection with a variable injection rate as shown in figure 11(a). As
the flow behaviour index decreases, the final amplitude increases owing to the greater
impact of the shear-thinning. Figure 11(b) shows the variation of the final amplitude
with the gelling speed, θ , after the optimal injection as shown in figure 11(a) (broken
lines) in comparison to the case of constant injection (solid lines). As with the
Newtonian case, there is a very substantial benefit to adopting the optimal profile.

5. Discussion

In this paper we have explored the use of the Euler–Lagrange variational framework
to find the particular injection rate that leads to a minimisation of the growth of the
modes in the Saffman–Taylor instability. We first explored the problem in a rectilinear
geometry and found that, if the viscosity of the injected fluid gradually increases with
time, then it is optimal to increase the injection rate gradually with time, so that more
of the injection occurs during the period when the system is more stable.

In a radial geometry the problem is more complex since the azimuthal modes are
quantised and the curvature of the interface tends to stabilise the system. As the
radius increases then, with a constant injection rate, the system becomes unstable
to progressively higher modes leading to a shift in the mode of highest amplitude
as a function of time. This leads to a difference in the optimal injection strategy
depending on the average injection rate over time. With a relatively slow mean
injection rate, the optimal strategy involves a gradual decrease in the injection rate
with time, consistent with earlier predictions (Cardoso & Woods 1995; Beeson-Jones
& Woods 2015), whereas with a faster injection rate, the optimal strategy involves a
gradual increase in the injection rate with time (Dias et al. 2012), so that less time
is spent at conditions near the maximum growth rate of each mode. In this way, the
overall amplitude of the perturbations can be reduced.

In the radial system, if the viscosity of the injected fluid gradually increases with
time, then the variational calculus suggests that the optimal injection rate should
increase at a faster rate with time than the optimal rate in the constant viscosity case,
so that more of the fluid is injected once its viscosity has increased. This involves
commencing the injection more slowly but then gradually building up the injection
rate with time beyond the case of constant viscosity.

Although these results are based on linear stability theory, they point to the
significant benefits of controlling the injection rate in order to control the growth
of viscous instability and of the merits in optimising the deployment of a polymer
if the injected fluid is changing in viscosity with time. There are several interesting
developments of this approach which merit further analysis. First, in some cases it
may be that there is a background level of noise, and in this case, the amplitude
of each mode would remain at least as large as this noise threshold for all time. It
would be fascinating to explore the effect of such a forcing on the present problem.
Secondly, the present analysis only explores the linear phase of the growth of an
instability. In many cases, the instability may grow to have nonlinear effects, and it
is not clear how the optimal injection strategy should evolve once the instability has
become nonlinear. To this end, Huang & Chen (2015) and Chen & Yan (2017) have
shown that injection with a linearly increasing injection rate can suppress instability
as the amplitude increases into the nonlinear regime for flow in both a Hele-Shaw
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cell and a porous medium. However, it is not clear whether a variable injection rate
will influence the ultimate development of a fractal pattern of fingering (e.g. Praud
& Swinney 2005), and this would be of interest to explore in future work.
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